A Mesh-Adaptive Metric-Based Full-Multigrid for the Poisson problem

Abstract : This paper studies the combination of the Full-Multi-Grid (FMG) algorithm with an anisotropic metric- based mesh adaptation algorithm. For the sake of simplicity, the case of an elliptic two-dimentional Partial Differential Equation (PDE) is studied. Meshes are unstructured and non-embedded, defined through the metric-based parametrisation. A rather classical MG preconditionner is applied, in combination with a quasi-Newton fixed point. An anisotropic metric-based mesh adaptation loop is introduced inside the FMG algorithm. FMG convergence stopping test is re-visited. Applications to a few 2D continuous and discontinuous-coefficient elliptic model problems show the efficiency of this combination.
Type de document :
Article dans une revue
International Journal for Numerical Methods in Fluids, Wiley, 2015, 79 (1), pp.30-53. 〈10.1002/fld.4042〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01255500
Contributeur : Gautier Brèthes <>
Soumis le : lundi 18 janvier 2016 - 14:04:14
Dernière modification le : jeudi 11 janvier 2018 - 16:35:50
Document(s) archivé(s) le : vendredi 11 novembre 2016 - 04:56:27

Fichier

article-ADA-MG.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gautier Brethes, Olivier Allain, Alain Dervieux. A Mesh-Adaptive Metric-Based Full-Multigrid for the Poisson problem. International Journal for Numerical Methods in Fluids, Wiley, 2015, 79 (1), pp.30-53. 〈10.1002/fld.4042〉. 〈hal-01255500〉

Partager

Métriques

Consultations de la notice

182

Téléchargements de fichiers

109