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Simulation-based Optimal Motion Planning for Deformable Object

Eiichi Yoshida1, Ko Ayusawa1, Ixchel G. Ramirez-Alpizar2, Kensuke Harada2,
Christian Duriez3, and Abderrahmane Kheddar1

Abstract— This paper presents a method for planning mo-
tions of a flexible objects based on precise simulation using
Finite Element Method (FEM). The proposed method is applied
to ring-shape objects manipulated by robot arms, which is often
seen in various applications. Since large deformation is implied,
assembly planning with realistic simulation is important to
ensure task efficiency for the robot and also to avoid damage
of the object. We first verify that the behavior of a ring-shape
object by dual-arm manipulation is well predicted using FEM
model of bent beam through a simulation along the trajectory
computed by optimization-based motion planning previously
reported. Next, a precise FEM model is integrated into opti-
mization to compute a trajectory of robot hands minimizing the
deformation energy as well as satisfying such criteria as collision
avoidance and smoothness. Since the direct computation leads
huge computational cost, we present a realistic formula which
transforms the planning problem into the static equilibrium
problem of several FEM models located along the trajectory.
Simulation results show that the proposed method is promising
for such assembly tasks requiring large deformation.

I. INTRODUCTION

Integration of dexterous robots has been accelerating in
part and assembly manipulation in high-mix low-volume
production system. Recently, dual-arm robots like Baxter [1]
of Rethink Robotics and Nextage [2] of Kawada Industries
have been introduced in cellular production systems by
sharing the space with human workers. Especially, their dual-
arm manipulation capacity combined with vision recognition
system widens the range of tasks that those robots can
execute: picking up parts with complex shape and placing
them in other assembled parts through dual-arm motions or
regrasping [3]. By delegating simple tasks to robots, humans
can concentrate on more complex assembly tasks. The main
tasks executed by those robots are currently limited to
manipulations that do not involve large deformations of parts.
However in factory automation using industrial robots, there
still exist some assembly tasks requiring large deformations
that need to be automated in manufacturing, such as cable
handling, snapping assembly [4] or O-ring assembly [5].

In this paper, we focus on an assembly task to place a ring-
shape flexible part on a desired position of a cylindrical part
by bimanual manipulation (Fig. 1). This type of manipulation
often appears in assembly of oil-seals and o-rings in chemical
or automobile industries. Previous research has addressed
optimization-based motion planning of a ring-shape object
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Fig. 1. Assembly of a ring-shape object including deformation

in order to meet criteria of trajectory smoothness, collision
avoidance and minimum deformation simultaneously [5].
This work employs a simple model of the ring object
by using a set of rigid bodies connected through springs.
Likewise, although several methods have been proposed for
motion planning of deformable objects [6], [7], [8], [9],
[10], they reduce the dimension of the problem or utilize
simplified model of deformable objects due to the complexity
of the problem. This particular assembly implies necessarily
large elastic expansion since we need to consider the space
for the hands holding the object. Therefore manipulation
motion without excessive deformation is important in order
to avoid any damage on the object. Moreover, free defor-
mation is assumed without taking into account the robot
hands manipulating the object in previous research. This
background motivates us to integrate precise modeling of
deformable objects simulating their realistic behavior into
assembly motion planning.

In this paper, we propose a method for planning of ring-
shape objects by using a more precise simulation model
based on finite element method (FEM), where manipulating
robotic hands are explicitly represented instead of allowing
free object motions assumed in most previous work. An
optimization-based planning method is first described based
on Covariant Hamiltonian Optimization and Motion Planning
(CHOMP) method [11], [12] by combining the deformation
energy into the cost function. We then introduce a beam
FEM model of ring-shape objects to demonstrate the validity
of simulation-based motion planning that allows reducing
excessive forces applied to the object during manipulation.
Finally a precise FEM model is integrated into trajectory op-
timization problem together with mechanical equilibrium as
an additional constraint. An efficient method is presented for
solving the complex planning as a static equilibrium problem
through decoupling FEM models at each time instance of
discretized trajectory. We will demonstrate simulation results
to validate the effectiveness the proposed method.

II. RELATED WORK

The problem of motion planning for deformable object
has started attracting researchers’ interest in early 2000s
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when randomized and sampling-based motion planning made
a significant progress. Since deformable objects have far
more degrees of freedom (DOF) than even complex robotic
manipulators, the principal approach is to apply motion
planning method to its reduced model. Lamiraux and Kavraki
proposed a method for planning thin deformable objects
manipulated by two actuators at the edges using sampling-
based method in reduced dimensions with pre-computed
deformation configurations [6]. Mahoney et al. proposed
another approach to extract a reduced basis approximating
the deformed configuration space using Principal Component
Analysis (PCA) [9].

Rather than converting the problem into a framework
whose reduced-dimension is subject to important simplifying
assumptions, some methods intrinsically rely on planning
strategies that were previously developed for rigid objects
such based on the Probabilistic Roadmap Method (PRM)
[13] or on the Rapidly-Exploring Random Tree (RRT) [14].
Bayazit et al. [10] take a two-stage PRM-based method that
consists in first generating an “approximate path” which
may contain collisions with the environment, and second,
specifically computing deformations to adapt to such col-
lisions. A more sophisticated method has been proposed
later by introducing a volume preservation constraint that is
taken into account in order to improve the physical realism
of deformations computed based on a mass-spring system
representation for efficient computation [7]. Rodriguez et
al. proposed a planning method using RRT to deal with
kinodynamic planning problem [8] for a deformable object
in an environment that is also flexible. Using an extension
of the mass-spring representation as a deformation model,
a particular care is taken not to lead to unrealistic deforma-
tions by considering so-called distance-preserving forces and
volume-preserving forces. A hierarchical approach is then
employed for deformation computation. Another efficient
simplified representation for motion planning of deformable
objects using voxels has been proposed [15].

So far we have outlined related work based on sampling-
based motion planning combined with models of deformable
object simplified to some extent. In general in those previous
studies, more attentions have been paid to implement a
planning method that exhibit realistically-looking behavior,
rather than simulating the true reaction of the deformable
objects. Although some of the work like [8] introduced FEM-
like method to model the deformation, most of them assume
deformable objects that can make free motions generated
by forces applied at arbitrary points without considering
robotic hands manipulating the objects. In contrast, one of
the contributions of this paper is that we explicitly model
the robot hands as Dirichlet boundary conditions for FEM
computation.

On the other hand, optimization-based motion planning
has also been studied more and more intensively. Among
them, CHOMP [11], [12] has been proposed as a method
that refines the trajectory using covariant gradient techniques
with a given cost function to improve the quality of sampled
trajectories in a continuous manner. Since we can even start

with an initial trajectory in collision, CHOMP is considered
to be suitable for highly constrained motion planning prob-
lems including narrow passages. For this reason, Ramirez-
Alpizar recently employed CHOMP for motion planning
of deformable objects that is also a problem under severe
constraints by integrating deformation energy into the cost
function [5]. It is, however, based on simplified model of
deformable objects. In the following sections, we will present
a method with FEM model for deformation to simulate the
precise behavior in order to reduce the risk of damages
of manipulated objects and to improve the efficiency of
assembly.

III. SIMULATION-BASED PLANNING

In this section we integrate FEM simulation to planned
trajectory to address such assembly tasks requiring large
deformation like ring-shape objects. In our previous research
[5], CHOMP was introduced to optimize the trajectory ξ
connecting initial and goal configurations qi and qf (∈ �m)
of the robot hands manipulating the ring-shape object, by
formulating the objective function as follows:

U(ξ) = wcFobs(ξ) + wsFsmooth(ξ) + weFenergy(ξ) (1)

where wc, ws, we, are the weights of objective for the
obstacle Fobs, smoothness Fsmooth and energy Fenergy

respectively. The first two objectives are found in [12] and
the last one for energy is based on the deformation energy of
the ring-shaped object based on simple model of rigid bodies
connected by springs.

In order to confirm the feasibility of the planned trajec-
tories, more realistic simulation model based on FEM has
been applied. We adopt SOFA (Software Open Framework
Architecture) [16] developed at mainly in INRIA, France.
This framework has been developed principally for medical
simulation based on real-time FEM computation, but its
capacity of simulating various flexible objects allows other
dynamic simulations like soft robot control [17] or interact-
ing deformable objects that we are dealing with in this paper.

In this section, we model the ring-shape object as a
“bent” beam in FEM model with 40 nodes together with
the collision detection with the cylinder. We assume two
firm grasping points by robotic hands which are modeled by
Dirichlet boundary conditions for FEM as shown in Fig. 2.
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Fig. 2. Grasping points of the ring-shape objects



(a) Initial state (b) (c) (d) (e) (f) (g) Final state

Fig. 3. Snapshot of ring motion: successful case with optimized trajectory
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(a) Initial state (b) (c) (d) (e) (f) (g) Final state

Fig. 4. Snapshot of ring motion: failure case with non-optimized trajectory

A simple feedback control law is implemented to simulate
the manipulations by force-controlled robotic hands whose
positions are given as xi(t) (i = 1, 2) with reference position
xref
i (t) at time t.

f i = K(xi(t)− xref
i (t)) (2)

Here K is a diagonal matrix specifying the stiffness along
each axis of motion. We have implemented a bent beam using
FEM model in SOFA and applied the control law.

The assembly task is to place the ring-shape object on
the rigid cylindrical part. The inner diameter of the ring is
49mm with the cross-section of diameter 3.1mm whereas
the diameter of cylinder is 50mm. The Young’s modulus of
the ring-shape object is 4.1 MPa which corresponds to soft
material and we used 3.0 × 1010N/m as the coefficient K
in each axis. Figures 3 and 4 show the simulation results
with optimized and initial non-optimized trajectory of each
grasp point. The latter fails to place the ring-shape object
correctly as it is not completely inserted as decribed later.
In the figures, we can clearly observe that the ring-shape
object is manipulated by the two firm grasping points. The
object is pulled first horizontally then vertically to achieve the
insertion. Then as can be seen, at the early stage (b) of failure
case the object touches the cylinder which is not the case for
success case (see the attached video). The vertical downward
motion allows the whole ring-shape object to reach around
the side surface of the cylinder as seen in Fig. 3(g) in the
case of the successful manipulation. On the other hand,
the right part of the ring remains stuck on the upper face
at the final state in Fig. 4(g) in the unsuccessful case.
Thanks to efficient implementation of FEM model in SOFA,
here the simulation was almost in real-time with time step
of 10ms on a processor of Intel(R) Core(TM) i7-4900MQ
CPU(2.80GHz). Although precise parameter settings like
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Fig. 5. Vertical force applied to ring-shape object

friction still need to be refined, overall this simulation results
demonstrate that precise object modeling is useful to predict
the behavior of flexible object for manipulation inducing
large deformation.

Figure 5 shows simulated feedback input applied in ver-
tical (z) direction based on control in Eq.(2) at the one
of the grasping points. The unit is omitted as the main
purpose here is to compare the two simulation results in
Figs. 3 and 4. In this graph, we focus on the final state
where the difference of two cases is clearly seen. Since the
ring-shape object stays expanded even after the manipulation
trajectory is finished, the absolute value of force in case of
failure case is larger than the successful case. This leads to
excessive residual stress to the manipulated object, which
should be avoided. The first peak corresponds to the force
generated when the left part of the object is inserted and
pulled downward at Figs. 3(c) and 4(c). The obtained results
show that the validation of planned trajectory based on
precise physical simulation using FEM is meaningful for
manipulation involving large deformation.



IV. OPTIMIZATION-BASED PLANNING WITH FEM
SIMULATION

This section presents the formulation of the optimization-
based motion planning of an FEM object. The computational
cost of the optimization problem will be larger because of
the large number of variables related to FEM computation.
Therefore, we need to approximate the problem with the
objective function Eq.(1) to accelerate the computation.

Let us decompose trajectory ξ into discrete time samples
as follows:

ξ =
[
ξ(1)

T ξ(2)
T · · · ξ(T )

T
]

(3)

We now consider the following variables at each time
instance.

ξ(t) =
[
d(t)

T x(t)
T
]
T (4)

where, d represents the vector of all positions of each node in
an FEM object, and x means the vector of all positions of the
grasping points by robotic hands. In this section, we consider
the following optimization problem instead of Eq.(1).

min U(ξ) subject to y(ξ) = 0 (5)

where, y represents the equality constraints related to FEM
simulation.

The stationary condition of problem (5) is as follows:(
∂U
∂ξ

)T

+

(
∂y

∂ξ

)T

λ = 0 (6)

where λ is Lagrange multiplier. In order to optimize trajec-
tory ξ, we solve Eq.(6), for example, by Newton-Raphson
method.

We now detail the each component in problem (5). In
this paper, we consider the following boundary conditions
as constraint y(ξ):

yS � x(1) − xS = 0 (7)

yE � x(T ) − xE = 0 (8)

yf � df (t) − r(x(t)) = 0 (9)

where, xS and xE represents the initial and final positions
of the grasping points respectively, df is the vector of all
positions of constrained nodes, and r(x) means the forward
kinematics mapping of df with respect to x. The following
relationship holds between df and d.

df = Sd (10)

where, S is the selection matrix which extracts df from d,.
We now implement smoothness objective Fsmooth(ξ) as

follows:

Fsmooth(ξ) =

T∑
t=2

l(t,t−1) +

T−1∑
t=2

e(t) (11)

where,
l(t,t−1) � ωl||x(t) − x(t−1)|| (12)

e(t) � ωe||x(t) − x(t)
init||2 (13)

The first term in Eq.(11) represents the length of the whole
trajectory. The squared distance from the initial trajectory
x(t)

init is added in the second term for the computational
stability. ωl and ωe are the weighting factors.

In obstacle objective Fsmooth(ξ), we also consider the
collision condition between the FEM object (i.e. the O-ring)
and the other environment (i.e. the cylinder). In this paper, we
approximate the collision conditions as the penalty functions
against penetration.

Fobs(ξ) =
∑
t

Ep(t) �
∑
t

ωpEp(d(t)) (14)

where, Ep(d) represents the collision penalty function, and
ωp is its weighting factor. Let the energy function be imple-
mented by

Fenergy(ξ) ≈
∑
t

Ee(t) �
∑
t

ωeEe(d(t)) (15)

where, Ee(d) is the elastic energy of the FEM object, and
ωe is its weighting factor.

In the original implementation of CHOMP, Fobs(ξ) is
the integrated penalty functions along trajectory ξ. In this
paper, we approximate both Fobs(ξ) and Fenergy(ξ) as the
summation of the individual corresponding functions. With
the approximation, stationary condition (6) can be written as
follows:

yd(t) � g(d(t)) + STf (t) = 0 (16)

yx(t) � h(t) + J (t)
Tf (t) + δt,1λS + δt,TλE = 0 (17)

where, f means the vector of the constraint forces acting on
the constrained nodes of the FEM objects, λS and λE are
Lagrange multipliers related to the initial condition, J � ∂r

∂x ,
and δi,j is Kronecker’s delta symbol. g(t) and h(t) are the
forces defined as follows:

g(d) �
(
∂Ee

∂d

)T

+

(
∂Ep

∂d

)T

(18)

h(t) �
(
∂l(t−1,t)

∂d(t)

)T

+

(
∂l(t,t+1)

∂d(t)

)T

+

(
∂e(t)

∂d(t)

)T

(19)

It should be noted that g represents the standard static equi-
librium formula of the FEM object under the given boundary
conditions. Therefore, Eq.(16) is independent of other time
instances; on the other hand, Eq.(17) is dependent. When
solving Eq.(16) and Eq.(17) by Newton-Rapthon method,
we have to compute the Hessian matrix of the augmented
Lagrangian function of problem (5).

Let us redefine the trajectory including Lagrange multipli-
ers as follows:

ξ̂ =
[
λS

T ξ̂(1)
T ξ̂(2)

T · · · ξ̂(T )
T λE

T
]

(20)

where,
ξ̂(t) =

[
d(t)

T x(t)
T f (t)

T
]
T (21)

We also concatenate all the stationary conditions and the
constraints as follows:

y =
[
yS

T y(1)
T y(2)

T · · · y(T )
T yE

T
]

(22)



y(t) =
[
yd(t)

T yx(t)
T yf (t)

T
]

(23)

The Hessian matrix can be written as follows:

Hδξ̂ = δy (24)

H �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O E O · · · O O O
E H1 G1,2 · · · O O O
O G2,1 H2 · · · O O O
...

...
...

. . .
...

... O
O O O · · · HT−1 GT−1,T O
O O O · · · GT,T−1 HT E
O O O · · · O E O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)
where, E represents the identify matrix. Ht and Gt,s are
defined by

Ht =

⎡
⎢⎢⎣

∂g(t)

∂d(t)

O ST

O
∂h(t)

∂x(t)
J (t)

T

S J (t) O

⎤
⎥⎥⎦ (26)

Gt,s =

⎡
⎢⎣
O O O

O
∂h(t)

∂d(s)

O

O O O

⎤
⎥⎦ (27)

As can be seen from Eq. (25), all the columns and rows
related to the FEM variables are decoupled each other; the
columns and rows related to the rigid-body variables at each

time instance are coupled with those of the previous and
the following time instance. Since the number of variables
related to the rigid-body part is quite smaller than that of the
FEM variables, the computational cost at each iteration of
the Newton-Rapthon method is almost the same as when we
solve independent FEM equations at T time instances. In ad-
dition, all the components in H and y can be obtained from
the standard computation of FEM and rigid-body equations
respectively. In other word, the motion-planning problem
is transformed into the huge static equilibrium problem of
T objects whose grasping points are connected via virtual
springs along with the trajectory.

We tested the proposed optimization formula by using the
ring-shape object and the grasping points shown in Fig. 2,
and the same environmental setting as that in section III. In
this section, the ring-shape object was expressed with tetrahe-
dral 3D meshes whose number of nodes is 1088 and number
of elements is 3072, in order to test the proposed scheme
for general FEM models. The O-ring was modeled using
a hyper-elastic material (Mooney-Revlin). We also consider
the quasi-incompressibility condition of the ring object in the
simulation; the pressures inside the elements of the object
were also taken into account by adding them in vector d as
new variables. We utilized FEM solver V-biomech [18] in
order to compute the terms of nonlinear FEM model used in
the optimization. The trajectory was discretized by T = 10
samples, and the initial trajectory before optimization was
given as shown in Fig. 6. Since the initial trajectory was
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Fig. 6. Snapshot of initial trajectory of ring motion before optimization
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Fig. 7. Snapshot of obtained trajectory of ring motion after optimization



just interpolated linearly without considering deformation,
the ring penetrated inside the cylinder during the motion. The
method was implemented on the workstation with the same
CPU used in section III. As we mentioned, our framework
is equivalent to solving huge static equilibrium problem of
T FEM objects. Since i-th FEM object is only coupled with
(i−1)-th and (i+1)-th objects as shown in Eq.(25), we can
utilize this sparseness when we solve Eq.(24). Therefore, the
computational complexity to solve Eq.(24) is almost linear
with respect to the number of time samples. Finally, the total
computation time of the whole optimization was around 30
minutes.

Fig. 7 shows the obtained trajectory after the optimization,
which resulted in another strategy to achieve the insertion
from section III. The left grasping point in the figure re-
mained fixed on the top of the cylinder during first time
samples, and the right grasping point went down and close
to the side of cylinder, which leads to the increase of the
internal length of the ring along the direction vertical to
this paper (Fig. 7, step 5). After hooking the half part of
the ring on the cylinder, the left grasping point passed over
the cylinder without collision, and went down to the final
position to achieve the insertion.

Although the pilot optimization framework can obtain the
local optimal solution according to the objective functions,
it does not guarantee the global optimal solution. For this
purpose we need another framework to explore the candidate
of the initial guess of the trajectory, for example, by a simpler
simulation as shown in section III. The current optimization
also approximates the integration of the objective function
along with the trajectory by the simple summation. Those
issues will be investigated in our future works.

V. CONCLUSION AND FUTURE WORK

This paper presented a simulation-based optimal motion
planning method for assembly of a flexible ring-shape
object including large deformation. After introducing an
optimization-based motion planning called CHOMP that can
integrate objective functions of minimum energy manipula-
tion, realistic simulation model based on FEM, together with
the collision detection, was applied to verify the planned
trajectory. The ring-shape object was represented by a bent
beam firmly grasped by robotic hands of a dual-arm ma-
nipulator. By comparing the force applied to the object for
non-optimized and optimized trajectories, we could observe
that the latter was successful without excessive manipulation
force. This simulation showed the significance of realistic
simulations instead of reduced models in previous work.
Next we presented optimization-based motion planning in-
tegrating the more accurate FEM model containing more
than 1000 nodes by using objective functions of smooth-
ness, collision avoidance and minimum deformation energy
under static equilibrium conditions. An efficient computation
scheme was derived to solve the planning problem as a static
equilibrium problem of decoupled FEM objects at each time
instance in a discretized model of the trajectory optimization.
Simulation results demonstrated that the proposed method

can provide plausible behaviors of deformable ring-shape
object to plan the trajectory for the robotic hands.

Future work includes the refinement of the proposed
optimization-based method. As we have discretized the
trajectory and used the sum of objective function instead
of integration, global trajectory optimization scheme with
even more efficient FEM computation will be one of the
forthcoming stages of this research. The verification of the
planned trajectory with experiments with a real robot is also
another future topic. We intend to confirm the predicted
behavior from the simulation and to improve the model based
on the experimental results.

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to Mr. Tu-
Hoa Pham, currently a Ph.D candidate at CNRS-AIST JRL,
for his contribution to discussion on motion planning and
mechanical computing.

REFERENCES

[1] http://www.rethinkrobotics.com/baxter/, 2015.
[2] http://nextage.kawada.jp/, 2015.
[3] http://www.glory.co.jp/company/news/2012/1011.html, (in Japanease).
[4] J. Rojas, K. Harada, H. Onda, N. Yamanobe, E. Yoshida, K. Nagata,

and Y. Kawai, “Towards snap sensing,” Int. J. Mechatronics and
Automation, vol. 3, no. 2, pp. 69–93, 2013.

[5] I. G. Ramirez-Alpizar, K. Harada, and E. Yoshida, “Motion planning
for dual-arm assembly of ring-shaped elastic objects,” in Proc. 2014
IEEE-RAS Int. Conf. on Humanoid Robots, 2014, pp. 594–600.

[6] F. Lamiraux and L. E. Kavraki, “Planning paths for elastic objects
under manipulation constraints,” Int. J. Robotics Research, vol. 20,
no. 3, pp. 188–208, 2001.

[7] R. Gayle, M. C. Lin, and D. Manocha, “Constraint-based motion
planning of deformable robots,” in Proc. 2005 IEEE Int. Conf. on
Robotics and Automation, 2005, pp. 1046–1053.

[8] S. Rodriguez, J.-M. Lien, and N. M. Amato, “Planning motion in
completely deformable environments,” in Proc. 2006 IEEE Int. Conf.
on Robotics and Automation, 2006, pp. 2466–2471.

[9] A. Mahoney, J. Bross, and D. Johnson, “Deformable robot motion
planning in a reduced-dimension configuration space,” in Proc. 2007
IEEE Int. Conf. on Robotics and Automation, 2010, pp. 5133–5188.

[10] B. Bayazit, J.-M. Lien, and N. M. Amato, “Probabilistic roadmap
motion planning for deformable objects,” in Proc. 2002 IEEE Int.
Conf. on Robotics and Automation, 2002, pp. 2126–2133.

[11] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
Proc. 2009 IEEE Int. Conf. on Roboics and Automation, 2009, pp.
489–494.

[12] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covari-
ant hamiltonian optimization for motion planning,” Int. J. Robotics
Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[13] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996.

[14] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in Algorithmic and Computational Robotics: New
Directions, K. M. Lynch and D. Rus, Eds. A K Peters, 2001, pp.
293–308.

[15] C. Phillips-Grafflin and D. Berenson, “Representation of deformable
objects for motion planning with no physical simulation,” in Proc.
2014 IEEE Int. Conf. on Robotics and Automation, 2014, pp. 98–105.

[16] http://www.sofa-framework.org/.
[17] C. Duriez, “Control of elastic soft robots based on real-time finite

element method,” in Proc. 2013 IEEE Int. Conf. on Robotics and
Automation, 2013, pp. 3982–3987.

[18] J.L.Alves, N.Yamamura, T.Oda, and C.Teodosiu, “Numerical simula-
tion of musculo-skeletal systems by V-biomech,” 2010.


