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Abstract
Retinal waves are spontaneous bursting activity propagating in the developping

retina until vision is functional. In this work we propose a biophysical modelling of the
mechanism that generates the spontaneous intrinsic cell-autonomous rhythmic bursting
in Starbust Amacrine Cells (SACs), observed experimentally in [1] which is directly
linked with the emergence of stage II retinal waves. We analyze this system from the
dynamical system and bifurcation theory perspective.

Context & Motivation

Cell-autonomous rhythmic bursts in SACs [1]
Experimental study of the mechanism underlying retinal waves

� In [1] it is shown that stage II retinal waves originate from cell-autonomous rhyth-
mic bursts of SACs; the refractory process is dictated by a slow After HyperPo-
larisation (sAHP) current.

� Rhythmic bursts are shown experimentally in [1] to be consisted of fast oscillations,
mediated by voltage-gated calcium channels.

� The refractory process inbetween the consecutive bursts is found in [1] to be
modulated by calcium-dependent potassium channels inducing a sAHP current
similar to IsAHP reported in [2] for pyramidal neurons.

� Network interactions among SACs through cholinergic synapses ensure the neces-
sary level of synchrony of activity which is the key to the wave generation, along
with the existence of the aforementioned intrinsic periodic bursts [1].
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Experimental study on the mechanism of the sAHP
� The evolution of the intracellular calcium concentration C and the IsAHP with

time under voltage clamp is studied in [2]. Also, an experimentally �tted rela-
tionship between IsAHP and C is deducted in the same work.

Motivation & Goals
� Finding a biophysical modelling reproducing these experiments and generating

waves by taking into account the ionic mechanisms and tuning all parameters
from the biophysical literature.

� Revisiting [3],[4] which do not correctly reproduce these fundamental e�ects in
order to �nd a generic mechanism for stage II retinal waves.

Modelling Cell-Autonomous Bursts

Model Experiment, Zheng et al.,2006 [1]

� Modelling the ionic mechanism of intrinsic bursts according to the experimental
work of [1] based on extended Morris-Lecar equations.

� Fast oscillations of the voltage while applying an external current pulse of 150 pA
followed by a subsequent AHP. Blocking all calcium related currents leads to the
vanishing of both fast oscillations and AHP.

Slow After Hyperpolarization current
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� Biophysical modelling of the mechanism of the slow AHP observed in [1] taking
into account the ionic mechanism of Ca+2 gated K+ currents. We extract the
corresponding parameters using the experimental curves in [2] for the evolution
of intracellular calcium concentration C, IsAHP under voltage clamp and IsAHP
with respect to C.

� By �tting the experimental �ndings in [2], we model more realistically the sAHP
current than [3],[4] which is crucial for the refractory process of the waves.

Phase Portrait and Bifurcations

Stable and Unstable Focus Homoclinisation After Saddle node
bifurcation

� Phase portrait of the Morris-Lecar system (two state variables: V,N). Illustrating
the e�ect of sAHP on the dynamics by using it as a bifurcation parameter which
varies from zero to negative values.

� There is a saddle node bifucation giving rise to an unstable focus which becomes
a stable cycle by homoclinisation. As we increase more IsAHP , there is another
saddle node which destroys the low state stable �xed point.

Simulating the intrinsic bursts and the sahp refractory mechanism

Figure A
Simulated Voltage Rhythmic bursts.
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Figure B
Simulated Intracellular Calcium
Loading/O�oading Mechanism

Figure C
Simulated gsAHP (t)

Figure D
Simulated IsAHP (t)

Figure E
3D Bifurcation diagram of the mechanism

generating rhythmic intrinsic bursts in SACs

Discussion

� We have exhibited a mechanism generating slow oscillations, based on the joint fast
dynamics of Ca+2 and K+ channels generating fast oscillations and a slow sAHP
Ca+2 gated K+ channels modulating slow oscillations.

� Slow oscillations are explained from the dynamical system aspect as switching con-
stantly from a �xed point to a limit cycle, where IsAHP acts as the bifurcation
parameter.

� In �gure E, we draw the 3D bifurcation diagram for V; N; IsAHP showing the global
view of the dynamical mechanism. When IsAHP = 0, there exists a limit cycle during
which we observe the fast oscillations during the bursts.

Proposed biophysical process:

SACs are in a regime where they can oscillate spontaneously. As they oscillate, the calcium
load increases, so the e�ect of sAHP increases up to a point that oscillations stop, reaching
a steady state where the level of the voltage is quite lower. As a consequence, intracellular
calcium concentration unloads, IsAHP decreases, until we reach a state where the e�ect of
sAHP is small and oscillations start again.

Conclusions & Future perspectives
� We proposed a biophysical modelling of the spontaneous intrinsic cell-autonomous rhythmic bursting in Starbust Amacrine Cells during stage II retinal waves, directly

extracted from experimental and biophysical data.
� Our model is able to generate spontaneously the observed rhythmic bursting, without the need of any external excitation to trigger the system, as opposed to [3] and [4].
� With our model we are able to explain biophysically and dynamically how the slow oscillations are generated and sustained in developping SACs.
� The next step would be to add the network e�ect to our modelling through cholinergic synapses, ensuring the necessary level of synchrony between neighbouring SACs to

generate propagating waves.
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