S. Lefèvre, D. Vasquez, and C. Laugier, A survey on motion prediction and risk assessment for intelligent vehicles, ROBOMECH Journal, vol.18, issue.10, 2014.
DOI : 10.1186/s40648-014-0001-z

B. T. Morris and M. M. Trivedi, A Survey of Vision-Based Trajectory Learning and Analysis for Surveillance, IEEE Transactions on Circuits and Systems for Video Technology, pp.1114-1127, 2008.
DOI : 10.1109/TCSVT.2008.927109

H. Gong, J. Sim, M. Likhachev, and J. Shi, Multi-hypothesis motion planning for visual object tracking, Proceedings of the 2011 International Conference on Computer Vision, pp.619-626, 2011.

G. Ferrer and A. Sanfeliu, Bayesian Human Motion Intentionality Prediction in urban environments, Pattern Recognition Letters, vol.44, pp.134-140, 2014.
DOI : 10.1016/j.patrec.2013.08.013

Q. Zhu, A stochastic algorithm for obstacle motion prediction in visual guidance of robot motion, IEEE International Conference on Systems Engineering, pp.216-219, 1990.
DOI : 10.1109/ICSYSE.1990.203136

M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, Featurebased prediction of trajectories for socially compliant navigation, Robotics: Science and Systems, 2012.

S. Kim, S. J. Guy, W. Liu, R. W. Lau, M. C. Lin et al., Predicting Pedestrian Trajectories Using Velocity-Space Reasoning, Tenth Workshop on the Algorithmic Foundations of Robotics, ser. Springer Tracts in Advanced Robotics, pp.609-623, 2013.
DOI : 10.1007/978-3-642-36279-8_37

M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, Learning Motion Patterns of People for Compliant Robot Motion, The International Journal of Robotics Research, vol.24, issue.1, pp.31-48, 2005.
DOI : 10.1177/0278364904048962

D. Vasquez, T. Fraichard, and C. Laugier, Growing hidden markov models: a tool for incremental learning and prediction of motion, International Journal of Robotics Research, vol.28, pp.11-12, 2009.

B. D. Ziebart, N. Ratliff, G. Galagher, C. Mertz, K. Peterson et al., Planning-based prediction for pedestrians, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3931-3936, 2009.
DOI : 10.1109/IROS.2009.5354147

K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, Activity Forecasting, European Conference on Computer Vision, pp.201-214, 2012.
DOI : 10.1007/978-3-642-33765-9_15

K. Yamaguchi, A. Berg, L. E. Ortiz, and L. T. Berg, Who are you with and where are you going?, CVPR 2011, pp.1345-1352, 2011.
DOI : 10.1109/CVPR.2011.5995468

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Elfring, R. V. Molengraft, and M. Steinbuch, Learning intentions for improved human motion prediction, Robotics and Autonomous Systems, vol.62, issue.4, pp.591-602, 2014.
DOI : 10.1016/j.robot.2014.01.003

C. Pradalier, F. Colas, and P. Bessiere, Expressing Bayesian fusion as a product of distributions: applications in robotics, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), pp.1851-1856, 2003.
DOI : 10.1109/IROS.2003.1248913

URL : https://hal.archives-ouvertes.fr/hal-00089247

S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C. Chen et al., A large-scale benchmark dataset for event recognition in surveillance video, CVPR 2011, pp.3153-3160, 2011.
DOI : 10.1109/CVPR.2011.5995586

J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Transactions on Automatic Control, vol.40, issue.9, pp.1528-1538, 1995.
DOI : 10.1109/9.412624

J. A. Sethian, Fast Marching Methods, SIAM Review, vol.41, issue.2, pp.199-235, 1999.
DOI : 10.1137/S0036144598347059

A. Treuille, S. Cooper, and Z. Popovi´cpopovi´c, Continuum crowds, ACM Transactions on Graphics, vol.25, issue.3, pp.1160-1168, 2006.
DOI : 10.1145/1141911.1142008

K. Kitani, Activity forecasting data set, pp.2015-2020, 2012.

D. Munoz, J. A. Bagnell, and M. Hebert, Stacked Hierarchical Labeling, European Conference on Computer Vision, pp.57-70, 2010.
DOI : 10.1007/978-3-642-15567-3_5

M. Dubuisson and A. K. Jain, A modified Hausdorff distance for object matching, Proceedings of 12th International Conference on Pattern Recognition, pp.566-568, 1994.
DOI : 10.1109/ICPR.1994.576361