
HAL Id: hal-01256969
https://hal.inria.fr/hal-01256969v2

Submitted on 25 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study about decomposition and integration of
continuous systems in discrete environment

Thomas Paris, Alexandre Tan, Vincent Chevrier, Laurent Ciarletta

To cite this version:
Thomas Paris, Alexandre Tan, Vincent Chevrier, Laurent Ciarletta. Study about decomposition and
integration of continuous systems in discrete environment. Annual Simulation Symposium (ANSS),
Apr 2016, Pasadena, United States. 2016, Proceedings of the Annual Simulation Symposium (ANSS)
2016. <hal-01256969v2>

https://hal.inria.fr/hal-01256969v2
https://hal.archives-ouvertes.fr


Study about decomposition and integration of

continuous systems in discrete environment

Thomas Paris
Université de Lorraine

CNRS, Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy, F-54506, France

thomas.paris@loria.fr

Alexandre Tan
Inria

LORIA, UMR 7503
Villers-lès-Nancy, 54600, France

alexandre.tan@inria.fr

Vincent Chevrier
Université de Lorraine

CNRS, Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy, F-54506, France

vincent.chevrier@loria.fr

Laurent Ciarletta
Université de Lorraine

CNRS, Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy, F-54506, France

laurent.ciarletta@loria.fr

Abstract

A complex system is one composed of many interact-
ing heterogeneous entities. This kind of system can be
dealt with multi-modeling and co-simulation but indi-
vidual models may also be heterogeneous (continuous,
discrete, event-based...). To manage this complexity,
we use MECSYCO1, a DEVS2 compliant environment
for co-simulation.

MECSYCO handles heterogeneity issues, but the
number of models which may interact during a co-
simulation of a complex system raises performance is-
sues and it is important to develop performance mea-
surement tools to study these issues with MECSYCO.

In this article we present modular performance mea-
surement tools for MECSYCO. We exemplify the use
of these tools on our \Multi-Room Heating" toy model,
a scalable continuous system, to assert the tradeo�
between accuracy and computational time when inte-
grating continuous system in a discrete modeling en-
vironment. We explore the impact of decomposing a
continuous system contained in one FMU3 into several
FMUs which interact. Finally we study how, under
some conditions, a large model that cannot be solved
on one block, can be decomposed into smaller ones,
solved and simulated in a co-simulation on MECSYCO
without signi�cant loss of accuracy.
Keywords: Co-simulation; Decomposition; FMI4

1 Introduction

Modeling a complex system which combines discrete
and continuous behaviors is not simple. More gener-
ally, it can be hard to model a complex system com-
posed of many heterogeneous entities. One way to deal

1Multi-agent Environment for Complex-SYstem CO-
simulation

2Discrete EVent System speci�cation
3Functional Mockup Unit
4Functional Mockup Interface

with this complexity is to use a multi-paradigm ap-
proach [12]. The complex system is decomposed into
subsystems which are modeled separately, and then
these models are combined to make a multi-model. The
di�erent models interact together to reproduce the be-
havior of the entire system. In a co-simulation, each
model is associated to its own well-adapted simulator
and simulators are coupled and exchange data during
the simulation (simulators communicate their time and
variables to update their inputs and to synchronize
their execution). Then it is interesting to be able to
reuse existing checked models [7]. But reusing existing
models raises the heterogeneity issues.

The growing interest for co-simulation in the M&S
community leads to the development of the Functional
Mockup Interface [3]. This is an emerging standard
which aims to ease model-exchange and co-simulation
between di�erent modeling software. FMI is an in-
terface for time dependent model described with dif-
ferential, discrete and algebraic equations. FMI for
co-simulation solves the heterogeneity issues at the ex-
ecution level, it describes an interface to interact with
a model and its simulator. FMUs for co-simulation just
need a FMI compliant modeling environment to man-
age the execution. Several works, such as [11, 2, 1],
have been done to enable the use of the FMI standards
in modeling tools, to test their FMI compliancy, or to
improve the usage of FMUs.

We are working on MECSYCO [5], a modeling en-
vironment based both on the DEVS formalism [13]
and Multi-Agent concepts like Agent&Artifact [10].
MECSYCO deals with heterogeneity issues and enables
the interaction of models from di�erent software and
based on di�erent formalisms in a co-simulation, it can
handle FMUs for co-simulation. In this paper, we are
interested in the simulation of a large number of mod-
els with many interactions. Such systems raise perfor-
mance issues and we need to scale-up. Then it is partic-
ularly relevant to give performance measurement tools

1



to MECSYCO to analyze its abilities (computational
time, communication time, accuracy of results etc...).
The co-simulation of a complex system implies to de-
compose it into subsystems which interact. Since FMI
is an emergent standard for co-simulation, notably for
continuous systems, it is relevant to study the impact
of decomposing FMUs in MECSYCO.

In this article, we present performance measurement
tools on MECSYCO adapted to its Agent&Artifact ar-
chitecture. After that we use these tools to collect per-
formance indicators when we decompose a continuous
system from Modelica into smaller ones contained in
FMUs and when we simulate them in the discrete en-
vironment of MECSYCO. These simulations aim to ex-
emplify the use of our tools and to evaluate both the
use of FMUs with MECSYCO and the impact of the
decomposition of a continuous system when we simu-
late it as a co-simulation of subsystems.

2 Background

This section presents the di�erent tools used in this
article.

2.1 MECSYCO

MECSYCO is a software for complex system modeling
and simulation. It enables the reuse of models from
di�erent modeling tools (with their simulator) to build
a multi-model, then the simulation of this multi-model
is a co-simulation between models with their simula-
tor. In order to ensure that, MECSYCO is based on
the DEVS formalism [13] and on Multi-Agent concepts
such as A&A (Agent & Artifact) [10].

The architecture of MECSYCO is based on the A&A
concept, there are four main entities which describe our
multi-models and run the simulation:

� M-agent: Model-agents are the dynamic entities
of the system, they handle the simulation. Each
of them is in charge of one model.

� Model-artifact: Artifacts are tools used by agents
to interact with their environment. A model-
artifact is used to encapsulate each model into the
DEVS formalism and it makes the m-agent able
to interact with it. Each m-agent is connected to
one model-artifact.

� Coupling-artifact: These artifacts represent the
connections between m-agents and enable data
exchange between models during the simulation.
Operations on time and data can be performed
during the data exchange to resolve representation
heterogeneity issues between models.

� Model: In MECSYCO, the models represent pre-
existing models with their simulator. They come
from other modeling software.

Moreover, in MECSYCO agents use the Chandy-
Misra-Bryant algorithm to synchronize their simula-
tor. It is a conservative and decentralized simulation

algorithm which enables the distribution of the co-
simulation through di�erent computers.

2.2 Modelica

Modelica is an object-oriented modeling language
adapted to system modeling and simulation [6]. Mod-
elica is attractive because it is an object-oriented
language which enables a modular and hierarchi-
cal construction of models. Moreover, Modelica is
an equation-based modeling, hence it is particularly
adapted for the design of continuous systems described
by di�erential equation systems. We choose to use
Modelica because all these properties enable the hierar-
chical build of model and then an easy decomposition.

2.3 FMI

FMI (Functional Mockup Interface) is an emerging
standard which aims to ease model-exchange and co-
simulation between di�erent modeling tools [3]. An
FMU is a model exported following the FMI standard.
An FMU can be seen as a black box with some in-
puts and outputs, and an explicit interface to inter-
act. An XML �le describes the model (parameters,
inputs, outputs etc...) and speci�es if some optional
C-functions are available. All the functions de�ned by
the FMI interface are stored in a binary. All these el-
ements are stocked in a zip �le with extension \.fmu".
For co-simulation, FMUs must be managed by a mas-
ter software which leads the simulation assuming that
data exchange between FMUs is restricted to discrete
communication points.

3 Performance measurement tools

This section presents the development and the de-
ployment of our performance measurement tools on
MECSYCO.

3.1 What do we need to measure?

The �rst question when we want to analyze a model
performance is to wonder what we need to measure.
Many parameters must be taken into account to ana-
lyze a model performance, they can be classi�ed into
four groups [4]:

� Results of the model (easy to understand, accu-
rate, good description of the system behavior)

� The validation of the model (error, accuracy, cred-
ibility)

� Resources needed (Construction time and cost,
computational time and cost, result analysis time
and cost, hardware requirement)

� Future use (portability, reusability)

In our case we focus on measures related to model
decomposition and co-simulation. We develop tools for

2



data logging (to compare di�erent execution and com-
pute the accuracy) and for computational time logging.
As MECSYCO uses a decentralized simulation algo-
rithm, for distributed simulation we must be able to use
the same tools. Consequently we need to log compu-
tational time for each model simulated. Additionally,
we want to log data about the algorithm execution like
the number of events and synchronizations.

3.2 Constraints

MECSYCO is an environment for complex system
modeling which is still under development. Speci�c
implementations could change and new features will
be added in the future. Therefore, to be long-term
useful our performance measurement tools must be
code-independent and generic. Particularly, many dif-
ferent kinds of models may interact in a MECSYCO
co-simulation, then the tools must not be dependent of
the nature of model. Naturally, these tools should not
disturb the simulation and the measures, especially for
time analysis.

3.3 Method

3.3.1 Concept

MECSYCO uses the A&A concept, the simulation is
conducted by the m-agents which use the artifacts to
lead their model and to exchange data. This modular
architecture is interesting to collect performance indi-
cators because at each step, agents need to use their
artifacts. That means that if we give to our artifact
new abilities to log their internal functioning, we are
able to get many relevant data about our co-simulation:
exchanged events, computational time, the number of
internal/external events for each model etc...

We choose to use the design pattern decorator which
is particularly adapted to our A&A architecture. In-
deed, it lets us add some features to our entities with-
out changing their internal functioning. When we dec-
orate an artifact, we give it new features to collect mea-
sures each time an agent uses it. The same method can
be used on the agents, for instance to measure their
computational time.

3.3.2 Implementation

In MECSYCO, the main concepts (agent, artifact...)
are directly associated to an implementation. Our
main idea is to encapsulate our pre-existing piece of
code for agent and artifact into decorators which copy
their behavior while adding some features. For exam-
ple, we have created a model-artifact decorator (Fig.
1), it takes a model-artifact as parameter and copies
its behavior by calling its functions. With this archi-
tecture we can add some operations before and after
the normal model-artifact functions. A model-artifact
is used to encapsulate a pre-existing model into DEVS,
it implements �ve main functions. These functions
are used for the execution of the simulation algorithm.
Adding operations before and after these functions lets

us get information about the algorithm such as the
number of events exchanged, the computational time
to process each step etc... We use the same approach
on coupling artifacts to collect data about the events
exchanged, and on m-agents to estimate the computa-
tional time of the algorithm.

3.3.3 Use

Finally, when we want to get some extra information
about a multi-model, we just have to decorate the ar-
tifacts (or the agents) used to build it. These new
artifacts will log information about events exchanged,
computational time, algorithm execution etc... Then
we can use them for post-mortem analysis.

To be easy to understand, we choose to create deco-
rators for each speci�c task (log of times, data, execu-
tion etc...). This is not restrictive because decorators
are modular and can be composed. We can easily ex-
change an artifact decorated with another to collect
other data or we can decorate several times an artifact
to use the features proposed by several tools at the
same time. For now, we are able to measure:

� the total computational time for each model

� the computational time to process internal events

� the computational time to process external events

� the number of internal and external events for each
model

� the number of synchronizations and exchanged
events between two models

4 Generalization

Our tools let us enhance the behavior of our
MECSYCO entities to collect data during the execu-
tion. But when we have to test several multi-models,
it is very tiresome to change every single MECSYCO
artifacts. We want to automate the exchange between
di�erent artifacts when we look for performance indica-
tors on a multi-model. The automation of performance
indicator collection raise a new issue, on MECSYCO
there is no formal structure to build multi-models.
Without structure we are unable to create generic func-
tions for the MECSYCO multi-models. Therefore we
must add a structure for our multi-models and this
structure must be compliant with the actual proper-
ties of MECSYCO.

4.1 Structuring MECSYCO multi-model

MECSYCO is based on the DEVS formalism, each
agent which is in charge of a model using a model-
artifact can be considered as an atomic DEVS model.
Then a MECSYCO multi-model can be considered as
a set of interacting atomic DEVS models. This is help-
ful because DEVS de�nes a structure for this [13], the

3



Figure 1: UML diagram of our model-artifact decorator.

DEVS coupled model structure. This structure looks
like this:

N = (X, Y, D, {Md|d ∈ D}, EIC, EOC, IC)

� D is the set which contains the names of the sub-
models

� X is the set of inputs

� Y is the set of outputs

� {Md|d ∈ D} is the set of DEVS submodels

� EIC (External Input Coupling), represents the
connections between the inputs of the multi-
models and the inputs of the submodels

� EOC (External Output Coupling), represents the
connections between the outputs of the submodels
and the outputs of the multi-model

� IC (Internal Coupling), represents the connections
between the submodels

This structure de�nes the models used in a multi-
model and the way they interact, it is easily adapted
to the multi-agent description of MECSYCO multi-
models. The set of submodels becomes a set of
model-agents, and the set IC is adapted to take into
account the coupling-artifact abilities. Indeed, in
DEVS, IC is a set {((a, opa), (b, ipb)‖a, b ∈ D, opa ∈
OutputP orta, ipb ∈ InputPortb)}. However, in
MECSYCO we must also de�ne the list of operations
(on time and on data) we have to perform at each ex-
change. Finally the structure of the MECSYCO multi-
model is formalized with the set:

MM = (Names, X, Y, A, EIC, EOC, IC)

� Names is the set which contains the names of
agents

� X is the set of input ports

� Y is the set of output ports

� A is the set of agents associated to one model
thanks to a model-artifact

� EIC represents the connections between the input
ports of the multi-models and the input ports of
the submodels

� EOC represents the connections between the out-
put ports of the submodels and the output ports
of the multi-model

� IC =f{((a, opa), operationtime, operationdata, (b, ipb)‖a, b ∈
D, opa ∈ OutputP orta, ipb ∈ InputP ortb)}g rep-
resents the connections between the submodels

4.2 Implementation

We worked on the java implementation of MECSYCO,
we have de�ned a new object multi-model which con-
tains the adapted DEVS coupled model structure. We
de�ne an abstract class which contains our new struc-
ture and few functions to handle the multi-models (to
start a simulation for instance). Now, instead of build-
ing a multi-model as a simple process, we de�ne it as
a structured object easier to handle and which enables
generic analysis.

Now with our modular tools we are able to:

� put or remove performance measurement tools

� put several tools on a single entities

� perform measures on subsets of multi-models

5 Test

In this section, we exemplify the use of our performance
measurement tools on a basic continuous system exam-
ple using FMUs. A continuous system is a good start-
ing point for various reasons. Continuous systems are
very common in the modeling and simulation �eld, and
there are a lot of dedicated tools (like Dymola) to sim-
ulate them. These speci�c tools are quite accurate and

4



allow to easily compute a reference solution to compare
with the results of the di�erent. We choose to run our
tests with a toy example (a basic thermic system) easy
to decompose and to make more complex.

5.1 Presentation of “Multi-Room Heating”

\Multi-Room Heating" is a model which represents
temperature evolution in four rooms under the in
u-
ence of the outside temperature, this model is closed
to the one in [8]. It is a continuous system de�ned by
two main equations. The equation

C ∗ dT (t)
dt

= Q(t)

represents the behavior of a room. T (t) is the tem-
perature inside the room, C the heat capacity of the
volume of air and Q(t) is the incoming heat 
ow. This
incoming heat 
ow is determined with the equation

Qi(t) = G ∗ (Ta(t)− Tb(t))

which represents the behavior of a wall i. Q(t) is the
heat 
ow through the wall, G is the thermal conduc-
tance of the wall, Ta(t) and Tb(t) represents the tem-
peratures at the two faces of the wall.

If we consider that the outside temperature is
Tout(t) = A ∗ sin(t ∗ f) + B where A is a amplitude,
B an o�set temperature and f a frequency adapted
to have the evolution of the outside temperature in a
day (86400 seconds). The problem with a single room
becomes:

C ∗ dT (t)
dt

= G ∗ (A ∗ sin(t ∗ f) + B − T (t))

This equation has an analytical solution:

T (t) = T (0) ∗ e− G
C ∗t

+ A∗G2∗(sin(t∗f)− C∗f
G ∗cos(t∗f)+ C∗f

G ∗e
− G

C
∗t)

G2+C2∗f2

−B ∗ e− G
C ∗t + B

This analytical solution could have been interesting
but the purpose of this kind of models is not the model-
ing of one room but the modeling of many rooms inter-
acting (to represents a building for instance). In most
cases the analytical solution does not exist or is too
hard to compute and we must compute approximate
solutions. That is why we use the results of Dymola as
a reference for our experiments.

This continuous system is interesting because it can
be easily complexi�ed by adding rooms and connec-
tions between these rooms. Analytical solutions be-
come quickly complicated to �nd and we have to use
approximate solutions. Our main example is con-
structed with four rooms (Fig. 2).

5.2 Simulations

We simulate our \Multi-Room Heating" using Model-
ica �rst, on Dymola, this simulation is used as a ref-
erence. Then, we export the entire model in a single

Figure 2: \Multi-Room Heating" model.

Figure 3: Evolution of the temperature of 4 rooms un-
der the in
uence of an outdoor temperature during 3
days.

FMU, and �nally we decompose it into several parts
(rooms, walls and the outside temperature), each ex-
ported in FMUs. These FMUs are connected to re-
build the \Multi-Room Heating" and are used in a co-
simulation on MECSYCO. This allows us to compare
the accuracy of MECSYCO, depending on the time
step size, with our reference results. Performing the
same tests with a single FMU containing the entire
model allow us to evaluate the impact of decomposing
a continuous system into several FMUs instead of us-
ing one single FMU. We choose to export our FMUs
with JModelica because it is an open-source Model-
ica platform. We import the FMUs in the java ver-
sion of MECSYCO with a FMI model-artifact based
on JavaFMI, an open-source java library. In our sim-
ulations our systems represents the evolution of the
temperature of rooms during 10 days. We choose to
use the same constant time step size for each FMU.
We follow our multi-model structure to build our test
models, and then we run several simulations with our
new tools encapsulating our artifacts. These simula-
tions let us test our performance measurement tools.

5.2.1 Results

We compare our results to a set of results from Dymola
to compute the accuracy. Previous tests show that the
evolution of accuracy is approximately the same for the
4 rooms, so we only display the evolution of error in
the room 1. The Figure 3 shows the behavior of our
system for three days.

The computational time on Dymola is not displayed

5



Figure 4: Evolution of the mean computational time
(with min and max bounds) depending on the time
step size, for our model with one FMU or several FMUs
(logarithmic scale).

Figure 5: Evolution of the mean and max di�erence
between our models (one FMU and several FMUs) and
our reference result, depending on the time step size.

because it is very closed to the computational time ob-
tained with one FMU on MECSYCO.

The Figure 4 shows our results concerning the com-
putational time. In both cases (one FMU or several
FMUs), the computational time is inversely propor-
tional to the time step size. Moreover, the computa-
tional time is increased when several FMUs are used.
Indeed, in our particular example, the FMUs are very
simple and most of the global computing time is spent
for the communications.

The Figure 5 represents the evolution of the accu-
racy. As expected, when using a single FMU the dif-
ference with the results of Dymola is independent of
the time step size and are very similar to the results of
Dymola. Our test using several FMUs shows that the
di�erence with Dymola varies almost linearly depend-
ing on the time step size.

These results could be used to �gure out a tradeo�
between computing time and accuracy, but they de-
pend on the system under study and the objectives.
The tradeo� between computing time and accuracy
must be determined for each system. This �rst exper-
iment mainly allows to verify that the data collected
by the measurement tools are consistent and validate
their implementation. Then our tools can be used for
further performance tests.

Figure 6: Graph showing the evolution of the tem-
perature of 4 heated rooms under the in
uence of the
outdoor temperature, view for 3 days.

5.3 Further tests

5.3.1 Adding discrete events

Our �rst model is a pure continuous system which
evolves quite slowly. Now we want to study the im-
pact of adding discrete events which increase our sys-
tem variation. For that, we add a heater to our model
on Modelica. When the temperature inside a room is
lower than a value, a heater is put on and heats the
room to reach quickly a maximal temperature, i.e. the
temperature inside the room stays inside an interval.
For this test, we choose to add an heater to rooms 1, 2
and 3 with respectively 293.15 K, 293.15 K and 288.15
K for the setpoint temperatures (see Fig. 6).

We run our test with this new feature and, as ex-
pected, we �nd that MECSYCO is still accurate even
if the error increases more rapidly with the time step
size. That shows that the tradeo� between accuracy
and computational time depends closely on the model.

5.3.2 Making rooms more complex

We �nd that we can decompose a continuous system
and simulate it using several FMUs without a signi�-
cant loss of accuracy. Now we want to test that with
more complex versions of our FMUs. By more complex,
we mean that these new FMUs contain more equations
or compute more calculation at each step. We try that
according two ways: adding useless equations in our
Modelica models and adding an algorithm (a matrix
product) at each step. With both of these methods we
run tests with an increasing number of extra computa-
tions.

In our case, the computational time increases lin-
early with the number of calculations per FMU, but
this increase is quite low, we stay in the range of sec-
onds. There is no impact on the accuracy, but at the
end we �nd a limit in term of memory. We try to gener-
ate our single FMU of the entire system with JModel-
ica �rst but its FMU export does not handle too many
equations (about 30000) due to memory limitations.
Dymola is more resilient so we use it to export our
FMUs for this test. With MECSYCO as with JModel-
ica, we �nd a memory limit due to the size of our FMU.
In this case, the decentralized algorithm of MECSYCO
combines with the possibility of decomposing our sys-

6



tem let us overcame this limitation by distributing our
FMUs co-simulation on several computers.

5.3.3 Simulating large sets of rooms

Another way to make our system more complex is to
add rooms and walls. This adds more equations and
more connections in our decomposed system. We sim-
ulate our system with a varying number of rooms in-
terconnected by walls. We just want to test our com-
putation limits. This raises interesting questions about
the build of such multi-models because it is too long
to connect each model by hand. To construct these
multi-models on MECSYCO we use our multi-model
structure to de�ne a parametric multi-model where we
can choose the number of rooms and the way they are
connected. We de�ne a rectangular set of rooms where
they are connected like a grid. We use this model to
test our tools on a large set of models, thus we are able
to simulate a set of about 615 FMUs and to get their
computational time. We verify also that the use of our
tools does not limit the number of models we can load.

6 Study of different decompositions of
a system

Until now, we have compared two versions of our
\Multi-room Heating" example, one where we consid-
ered it as a whole with a single FMU (Fig. 7) and the
others where it is totally decomposed into 14 compo-
nents (Fig. 8).

Now we study di�erent ways to decompose our sys-
tem and to �gure out the best in terms of balance be-
tween accuracy and computational time. To do so, we
propose �ve di�erent ways to generate FMUs for the
co-simulation of our system (from the whole version to
the totally decomposed one). As the tools we have im-
plemented are modular, they work whatever the con-
�guration of the FMUs. We use them to collect the
computational time and to compute the accuracy of
each con�guration.

6.1 First decomposition, 2 FMUs

For this �rst decomposition, we get out the outside
temperature of our FMU (Fig. 9) and we obtain two
FMUs interacting.

Figure 7: "Multi-Room
Heating" as a single
FMU.

Figure 8: "Multi-Room
Heating" decomposed as
14 FMUs.

Figure 9: "Multi-Room
Heating" as two FMUs.

Figure 10: "Multi-Room
Heating" as three FMUs.

Figure 11: "Multi-Room Heating" as three FMUs, one
for the outside temperature, one for rooms and the last
one for walls.

6.2 Second decomposition, 3 FMUs

For the second decomposition we split our set of rooms
and walls in two almost equal parts (Fig. 10). We get
three FMUs.

6.3 Third decomposition, 3 FMUs

Another way to get three FMUs is to gather the ele-
ments by nature: Rooms, Wall, Outside Temperature
(Fig. 11).

6.4 Study

Now we have 5 versions of the same multi-model (one
FMU, 14 FMUs and the three previous possible de-
compositions), for each con�guration we generate the
appropriate FMUs and we build a MECSYCO multi-
model. To compare these di�erent con�gurations we
choose to observe the subset of each con�guration
which contains the \Room 1" to log the temperature
of this room at each step and to get the computing
time of this FMU. We choose to collect also the total
computing time of each multi-model. For each version
we observe the accuracy and the computing time of a
subset of the multi-model, and the computing time of
the entire model. With our new multi-model structure
and our decorated artifacts we build the generic tools
we need and we use them on our multi-models.

6.4.1 Collected results

The Figure 12 displays computing time measures, the
more there are FMUs the more we need time to com-
pute the simulation. It is natural since all these FMUs
are simple and most of the computing time is the time
needed to exchange data and to synchronize the FMUs.
The Figure 13 represents an evaluation of the commu-
nication time as the di�erence between the time spent
to compute events in one FMU and the global time
of the agent managing this FMU. This communication

7



Figure 12: Evolution of the global computing time for
each con�guration depending on the time step size.

Figure 13: Evolution of the communication time for
the agent which \contains" the room 1 for each con�g-
uration depending on the time step size.

time increases with the number of FMUs, in our simu-
lations it is almost equal to the global computing time.

Finally the Figure 14 shows the evolution of the max
di�erence of temperature between each con�guration of
the multi-model and the results of Dymola, depending
on the time step size. This kind of result enables to
determine a tradeo� between accuracy and computa-
tional time. For example, the third decomposition is
not useful since it has the same evolution than the ver-
sion with 14 FMUs. The second decomposition is more
interesting, there is probably a compensation of errors
since it is more closed to the results on Dymola with a
time step of 900s than with a time step of 600s.

Figure 14: Evolution of the max di�erence of temper-
ature with Dymola depending on the time step size.

Finally, if we consider that we are accurate enough
with an error below 0.4K, the second decomposition is
the best because we can keep a time step of 1200s.

7 Conclusion

We presented a set of modular performance measure-
ment tools for MECSYCO, a co-simulation platform
based both on DEVS and on Multi-Agent concepts. We
applied these tools to study the impact of decomposi-
tion of a continuous system toy example to illustrate
their use in the context of decomposition and integra-
tion of complex systems.

These �rst preliminary results are mainly focusing on
solving continuous systems with multiple FMUs and
on comparing their accuracy to a reference provided
by the Dymola tool. Our experiments show that the
use of one FMU provided results very closed to the
ones of Dymola. When decomposing a complex system
into several FMUs, our experiments highlight that our
tools enable to study the tradeo� between accuracy and
computational time when simulating several FMUs on
MECSYCO. This result can be especially interesting
when a single FMU can not be executed on a single
machine because of memory consumption and imposes
to assess di�erent decomposition strategies.

The tools proposed in this article are not speci�c to
continuous systems and we plan to use them on hy-
brid systems (with continuous and discrete models).
They enable more advanced work on MECSYCO per-
formances for potential improvements, for example a
time step optimization like in [11]. An approach like in
[9] could be interesting to evaluate MECSYCO on var-
ious kinds of models. This can lead also to the study
of better deployment strategies for our multi-models.
The structuration of MECSYCO multi-model is a �rst
step for the integration of the concept of composition in
MECSYCO, to enhance the reusability of multi-models
and to enable a hierarchical build of them.

ACKNOWLEDGMENTS

We would like to thank Jean-Philippe Tavella from
EDF R&D for his contribution on FMU export with
Dymola.

References

[1] Christian Andersson, Johan �Akesson, Claus
F�uhrer, and Magnus G�afvert. Import and export
of functional mock-up units in jmodelica. org. In
8th International Modelica Conference 2011. Mod-
elica Association, 2011.

[2] Christian Bertsch and Elmar Ahle Ulrich Schul-
meister. The functional mockup interface-seen
from an industrial perspective. In 10 th Interna-
tional Modelica Conference, Lund, Sweden, 2014.

8



[3] Torsten Blochwitz, M Otter, M Arnold, C Bausch,
C Clau�, H Elmqvist, A Junghanns, J Mauss,
M Monteiro, T Neidhold, et al. The functional
mockup interface for tool independent exchange
of simulation models. In 8th International Model-
ica Conference, Dresden, pages 20{22, 2011.

[4] ROGER J Brooks and ANDREW M Tobias.
Choosing the best model: Level of detail, complex-
ity, and model performance. Mathematical and
computer modelling, 24(4):1{14, 1996.

[5] Benjamin Camus, Christine Bourjot, and Vincent
Chevrier. Combining DEVS with multi-agent con-
cepts to design and simulate multi-models of com-
plex systems (WIP). In Proceedings of the Sympo-
sium on Theory of Modeling & Simulation - DEVS
Integrative M&S Symposium (TMS/DEVS 15).
Society for Computer Simulation International,
2015.

[6] Peter Fritzson and Vadim Engelson. Modelica
- A uni�ed object-oriented language for system
modeling and simulation. In ECOOP’98-Object-
Oriented Programming, pages 67{90. Springer,
1998.

[7] Javier Gil-Quijano, Thomas Louail, and Guil-
laume Hutzler. From biological to urban cells:
lessons from three multilevel agent-based mod-
els. In Principles and Practice of Multi-Agent Sys-
tems, pages 620{635. Springer, 2012.

[8] Leilani Gilpin, Laurent Ciarletta, Yannick Presse,
Vincent Chevrier, and Virginie Galtier. Co-
simulation solutions using aa4mm-fmi applied to
smart space heating models. In Proceedings of the
7th International ICST Conference on Simulation
Tools and Techniques, pages 153{159. ICST (In-
stitute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2014.

[9] Ezequiel Glinsky and Gabriel Wainer. Devstone: a
benchmarking technique for studying performance
of devs modeling and simulation environments.
In Distributed Simulation and Real-Time Appli-
cations, 2005. DS-RT 2005 Proceedings. Ninth
IEEE International Symposium on, pages 265{
272. IEEE, 2005.

[10] Alessandro Ricci, Mirko Viroli, and Andrea
Omicini. Give agents their artifacts: the A&A
approach for engineering working environments in
MAS. In Proceedings of the 6th international joint
conference on Autonomous agents and multiagent
systems, page 150. ACM, 2007.

[11] Tom Schierz, Martin Arnold, and Christoph
Clau�. Co-simulation with communication step
size control in an fmi compatible master algo-
rithm. In 9th Int. Modelica Conf., Munich, Ger-
many, pages 205{214, 2012.

[12] Hans Vangheluwe, Juan De Lara, and Pieter J
Mosterman. An introduction to multi-paradigm
modelling and simulation. In Proceedings of the
AIS’2002 conference (AI, Simulation and Plan-
ning in High Autonomy Systems), Lisboa, Portu-
gal, pages 9{20, 2002.

[13] Bernard P. Zeigler, Herbert Praehofer, and
Tag Gon Kim. Theory of modeling and simula-
tion : integration discrete event and continuous
complex dynamic systems. Academic press, 2000.

9


	Introduction
	Background
	MECSYCO
	Modelica
	FMI

	Performance measurement tools
	What do we need to measure?
	Constraints
	Method
	Concept


	Generalization
	Structuring MECSYCO multi-model
	Implementation

	Test
	Presentation of ``Multi-Room Heating''
	Simulations
	Further tests
	Adding discrete events


	Study of different decompositions of a system
	First decomposition, 2 FMUs
	Second decomposition, 3 FMUs
	Third decomposition, 3 FMUs
	Study
	Collected results


	Conclusion

