D. Ambrosi and F. Mollica, On the mechanics of a growing tumor, International Journal of Engineering Science, vol.40, issue.12, pp.1297-1316, 2002.
DOI : 10.1016/S0020-7225(02)00014-9

R. Araujo and D. Mcelwain, A history of the study of solid tumour growth: the contribution of mathematical modelling, Bulletin of Mathematical Biology, vol.66, issue.5, pp.1039-1091, 2004.
DOI : 10.1016/j.bulm.2003.11.002

E. Baratchart, S. Benzekry, A. Bikfalvi, T. Colin, L. S. Cooley et al., Computational Modelling of Metastasis Development in Renal Cell Carcinoma, PLOS Computational Biology, vol.28, issue.11, p.11, 2015.
DOI : 10.1371/journal.pcbi.1004626.s010

URL : https://hal.archives-ouvertes.fr/hal-01164834

H. Berestycki, B. Nicolaenko, and B. Scheurer, Traveling Wave Solutions to Combustion Models and Their Singular Limits, SIAM Journal on Mathematical Analysis, vol.16, issue.6, pp.1207-1242, 1985.
DOI : 10.1137/0516088

A. Brú, S. Albertos, J. L. Subiza, J. L. García-asenjo, and I. Brú, The Universal Dynamics of Tumor Growth, Biophysical Journal, vol.85, issue.5, pp.2948-2961, 2003.
DOI : 10.1016/S0006-3495(03)74715-8

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.135, issue.2, pp.187-216, 1996.
DOI : 10.1016/0025-5564(96)00023-5

H. Byrne and M. A. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computer Modelling, vol.24, issue.12, pp.1-17, 1996.
DOI : 10.1016/S0895-7177(96)00174-4

H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison, Journal of Mathematical Biology, vol.14, issue.1, pp.657-687, 2009.
DOI : 10.1007/s00285-008-0212-0

H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures, Mathematical Medicine and Biology, vol.20, issue.4, pp.341-366, 2003.
DOI : 10.1093/imammb/20.4.341

P. Ciarletta, L. Foret, and M. B. Amar, The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis, Journal of The Royal Society Interface, vol.35, issue.2, pp.345-368, 2011.
DOI : 10.1016/j.compbiomed.2003.11.004

E. N. Dancer, D. Hilhorst, M. Mimura, and L. A. Peletier, Spatial segregation limit of a competition???diffusion system, European Journal of Applied Mathematics, vol.10, issue.2, pp.97-115, 1999.
DOI : 10.1017/S0956792598003660

D. Drasdo and S. Hoehme, Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones, New Journal of Physics, vol.14, issue.5, p.55025, 2012.
DOI : 10.1088/1367-2630/14/5/055025

URL : https://hal.archives-ouvertes.fr/hal-00778129

A. Friedman, A hierarchy of cancer models and their mathematical challenges, Discrete and Continuous Dynamical Systems Series B, pp.147-160, 2004.

H. Greenspan, On the growth and stability of cell cultures and solid tumors, Journal of Theoretical Biology, vol.56, issue.1, pp.229-242, 1976.
DOI : 10.1016/S0022-5193(76)80054-9

M. Kowalczyk, B. Perthame, and N. Vauchelet, Transversal instability for the thermodiffusive reaction-diffusion system, Chinese Annals of Mathematics, Series B, vol.25, issue.1, pp.871-882, 2015.
DOI : 10.1007/s11401-015-0981-x

R. J. Leveque, Finite volume methods for hyperbolic problems, 2002.
DOI : 10.1017/CBO9780511791253

M. Mimura, H. Sakaguchi, and M. Matsushita, Reaction???diffusion modelling of bacterial colony patterns, Physica A: Statistical Mechanics and its Applications, vol.282, issue.1-2, pp.283-303, 2000.
DOI : 10.1016/S0378-4371(00)00085-6

B. Perthame, F. Quirós, M. Tang, and N. Vauchelet, Derivation of a hele-shaw type system from a cell model with active motion, Interfaces and Free Boundaries, pp.489-508, 2014.

B. Perthame, F. Quirós, and J. L. Vázquez, The Hele???Shaw Asymptotics for Mechanical Models of Tumor Growth, Archive for Rational Mechanics and Analysis, vol.34, issue.2, pp.212-93, 2014.
DOI : 10.1007/s00205-013-0704-y

URL : https://hal.archives-ouvertes.fr/hal-00831932

L. Preziosi, Cancer modelling and simulation, 2003.
DOI : 10.1201/9780203494899

I. Ramis-conde, D. Drasdo, A. R. Anderson, and M. A. , Chaplain, Modeling the influence of the e-cadherin-?-catenin pathway in cancer cell invasion: a multiscale approach, Biophysical journal, pp.95-155, 2008.

J. Ranft, M. Basan, J. Elgeti, J. Joanny, J. Prost et al., Fluidization of tissues by cell division and apoptosis, Proceedings of the National Academy of Sciences, pp.20863-20868, 2010.
DOI : 10.1073/pnas.1011086107

T. Roose, S. J. Chapman, and P. K. Maini, Mathematical Models of Avascular Tumor Growth, SIAM Review, vol.49, issue.2, pp.179-208, 2007.
DOI : 10.1137/S0036144504446291

P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or heleshaw cell containing a more viscous liquid, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.312-329, 1958.

J. A. Sherratt and M. A. , A new mathematical model for avascular tumour growth, Journal of Mathematical Biology, vol.43, issue.4, pp.291-312, 2001.
DOI : 10.1007/s002850100088

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Tang, N. Vauchelet, I. Cheddadi, I. Vignon-clementel, D. Drasdo et al., Composite waves for a cell population system modeling tumor growth and invasion, Chinese Annals of Mathematics, Series B, vol.45, issue.2, pp.295-318, 2013.
DOI : 10.1007/s11401-013-0761-4