Stability of the cell dynamics in acute myeloid leukemia

Emilia Fridman 1 Catherine Bonnet 2, 3 Frederic Mazenc 4, 3 Walid Djema 4, 3
4 DISCO - Dynamical Interconnected Systems in COmplex Environments
L2S - Laboratoire des signaux et systèmes, Inria Saclay - Ile de France, SUPELEC, CNRS - Centre National de la Recherche Scientifique : UMR8506
Abstract : In this paper we analyze the global asymptotic stability of the trivial solution for a multi-stage maturity acute myeloid leukemia model. By employing the positivity of the corresponding nonlinear time-delay model, where the nonlin-earity is locally Lipschitz, we establish the global exponential stability under the same conditions that are necessary for the local exponential stability. The result is derived for the multi-stage case via a novel construction of linear Lyapunov functionals. In a simpler model of hematopoiesis (without fast self-renewal) our conditions guarantee also global exponential stability with a given decay rate. Moreover, in this simpler case the analysis of the PDE model is presented via novel Lyapunov functionals for the transport equations.
Type de document :
Article dans une revue
Systems and Control Letters, Elsevier, 2016, 〈10.1016/j.sysconle.2015.09.006〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01257577
Contributeur : Frederic Mazenc <>
Soumis le : dimanche 17 janvier 2016 - 19:06:30
Dernière modification le : jeudi 11 janvier 2018 - 06:27:32
Document(s) archivé(s) le : vendredi 11 novembre 2016 - 09:10:11

Fichier

new_pap.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Emilia Fridman, Catherine Bonnet, Frederic Mazenc, Walid Djema. Stability of the cell dynamics in acute myeloid leukemia. Systems and Control Letters, Elsevier, 2016, 〈10.1016/j.sysconle.2015.09.006〉. 〈hal-01257577〉

Partager

Métriques

Consultations de la notice

466

Téléchargements de fichiers

160