
HAL Id: hal-01258189
https://inria.hal.science/hal-01258189

Submitted on 9 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance models for hierarchy of caches: Application
to modern DNS caches

Sara Alouf, Nicaise Choungmo Fofack, Nedko Nedkov

To cite this version:
Sara Alouf, Nicaise Choungmo Fofack, Nedko Nedkov. Performance models for hierarchy of
caches: Application to modern DNS caches. Performance Evaluation, 2016, 97, pp.57-82.
�10.1016/j.peva.2016.01.001�. �hal-01258189�

https://inria.hal.science/hal-01258189
https://hal.archives-ouvertes.fr

Performance Models for Hierarchy of Caches:

Application to Modern DNS Caches✩

Sara Aloufa,∗, Nicaise Choungmo Fofacka,1, Nedko Nedkova,2

aInria, 2004 Route des Lucioles, BP. 93 06902 Sophia Antipolis Cedex, France

Abstract

This paper studies expiration-based caching systems in which caches assign a timer to each content they
store and redraw the timer upon a cache miss. The modern Domain Name System (DNS) hierarchy is a
valid application case and will be used throughout the paper. We introduce analytical models to study
expiration-based caching systems based on renewal arguments. For polytree cache networks, we derive the
cache performance metrics and characterize at each cache the aggregate request process, the thinning process
and the miss process. A constant TTL policy is proved to maximize/minimize the hit probability if the
requests’ renewal function is concave/convex. We find that no distribution maximizes the hit probability
anywhere in a network of caches. We validate our theoretical findings using real DNS traces (single cache
and network cases) and via trace-driven simulations (network case).

Keywords: Analysis, expiration-based, cache networks, Domain Name System, Time-To-Live (TTL), real
DNS trace validation, renewal theory

1. Introduction

In-network caching is a widely adopted technique to provide an efficient access to data or resources
on a world-wide deployed system while ensuring scalability and availability. For instance, caches are inte-
gral components of the Domain Name System, the World Wide Web, Content Distribution Networks, the
Information-Centric Network (ICN) architectures, or the recently proposed Dynamic Page Caching systems5

by Akamai Technologies. Many of these systems are hierarchical. The content being cached is managed
through the use of expiration-based policies using a time-to-live (TTL) or replacement algorithms such the
Least Recently Used (LRU), First-In First-Out (FIFO), Random, etc.

In this paper, we focus on hierarchical systems that rely on expiration-based policies to manage their
caches. These policies have the advantage of being fully configurable and provide parameters (i.e. timers)10

to optimize/control the network of caches. Each cache in the system maintains for each item a timer that
indicates its duration of validity. This timer can be initially set by an external actor or by the cache itself
only when a request yields a cache miss.

The Domain Name System (DNS) is a valid application case. In short, the DNS maintains in a distributed
database the mappings, called resource records, between names and addresses in the Internet. Servers in15

charge of managing a mapping are said to be authoritative. Caches—used to avoid generating traffic up in
the DNS hierarchy—are found in both servers and clients (devices of end users). Caching is however limited
in duration to avoid having stale records which may break the domains involved.

✩This manuscript is an extended version of [1].
∗Corresponding author
Email addresses: sara.alouf@inria.fr (Sara Alouf), nchoungmofofack.ext@orange.com (Nicaise Choungmo Fofack),

nedkostefanovnedkov@gmail.com (Nedko Nedkov)
1This author is currently working at INGIMA.
2This author’s contribution was made during a 4-month internship at Inria in 2014.

Preprint submitted to Performance Evaluation, special issue dedicated to ValueTools’13. January 15, 2016

DNS cache updates are strongly related with how the DNS hierarchy works. When a requested resource
record R is not found at the client’s cache, the client issues a request to a bottom-level DNS server (usually20

that of the Internet server provider). If R cannot be resolved locally and is not found in the cache, the
latter server forwards the request to a server higher in the hierarchy. The process repeats itself until R is
fetched at a cache or ultimately from the disk of an authoritative server. The server providing R is called
the answerer. The record R is sent back to the client through the reverse path between the answerer and
the client, and a copy of R is left at each cache on this path.25

According to RFC 6195, all copies of R are marked by the answerer with a time-to-live (TTL) which
indicates to caches the number of seconds that their copy of R may be cached. Consequently, all copies
of a record along a path would be cached mainly for the same duration. This RFC specification is called
the TTL rule in the literature. Caches compliant with it are referred to as traditional DNS caches. Those
overriding the advocated TTL with a locally chosen value (see [2, 3]) are called modern DNS caches [4].30

In a tree of traditional DNS caches a request occurring anywhere just after the content expired in the local
cache yields cache misses at all caches along the path to an authoritative server. Such a miss synchronization
effect [5] is avoided with modern caches. Other differences between traditional and modern DNS caches can
be found in the companion technical report [6].

The objective of this paper is to assess the performance of polytree of caches. Our contributions are:35

(i) we are the first to provide analytic models to study both a single (modern) DNS cache and a polytree
of caches with general caching durations; (ii) we characterize the distribution of the DNS traffic flowing
upstream in the DNS hierarchy besides deriving the usual cache performance metrics; (iii) we identify
conditions under which the deterministic caching duration maximizes/minimizes the performance metrics;
(iv) for the case of a polytree of caches we recursively characterize the request and miss processes at each40

cache and find closed-form expressions when a specific distribution for requests and caching durations is
used; (v) we check the robustness of our single cache model over DNS traces collected at Inria and (vi) the
robustness of our network of caches model through event/trace-driven simulations.

This paper extends our previous work [1] as follows. The performance metrics (hit and occupancy
probabilities) of a single cache are also derived when requests are described by stationary and ergodic45

processes (see Proposition 1). As a direct consequence, the exact analysis derived on linear cache networks
is extended to a large class of hierarchical cache networks called linear star networks which include linear
and two-level tree/star networks (see Section 5.1). Closed-form expressions for cache consistency measures
are provided under the assumption that contents requests and updates occur according to two independent
renewal processes (see Section 4.1.2). The conditions under which the deterministic policy optimizes the50

metrics are new. The network analysis on trees is extended to polytrees in Section 5.4. Section 5.5 has been
revised to fully derive the closure properties of the class of distributions called diagonal matrix-exponential
(or diag.ME for short). A major extension with respect to [1] appears in Section 6 where we evaluate our
model. Additional results using traces of Inria’s DNS server and our model are provided. Also, trace-driven
simulations on a binary tree cache network complement the previous event-driven ones and show that our55

model is still robust under real traffic conditions.
The rest of the paper is organized as follows. Section 2 reviews the works most relevant to this paper.

Section 3 presents the scenario considered and some introductory material. Our single cache model is
analyzed in Section 4 and the case of a tree of caches in Section 5. We validate our models in Section 6 and
show some numerical results. Section 7 summarizes our findings.60

2. Related Works

Since the recent observation of the modern behavior of DNS caches [4, 2], only few results of the state
of the art are applicable to modern DNS caches. Hou et al. consider in [7] a tree of traditional DNS caches
fed by Poisson traffic. The performance metrics derived in [7] cannot characterize modern caches as these
do not cause a miss synchronization effect—like traditional caches do—which is extensively used in their65

model.
Jung, Berger and Balakrishnan study in [8] a single traditional DNS cache fed by a renewal process.

Their model assumes that each content is cached for a deterministic duration which would be either the

2

value marked by an authoritative server or the maximum among all values received from intermediate
caches. The hit/miss probabilities derived are approximate in traditional DNS caches receiving different70

TTLs from higher-level caches and exact in traditional DNS caches getting always their responses from
authoritative servers. It is interesting to note that the model of [8] is valid for a single modern DNS cache
that overrides the given TTL with a fixed caching duration. Characterizing the traffic not served by the
cache (the miss process), considering distributions of caching durations other than the deterministic one,
and most challenging extending to the case of a network of caches are issues yet to be addressed.75

Bahat and Makowski address in [9] the consistency issue of TTL-based caches in isolation as introduced
in [8] (i.e. when timers are set to a fixed constant). They introduce the hit∗ measure of consistency as the
probability to hit the cache and obtain a non-stale data. Closed-form formulas are derived when the original
contents are requested through the cache and updated at the server according to two independent renewal
point processes. Their results are relevant for a single modern DNS cache that uses deterministic timers.80

The extension of their single cache model to networks requires the characterization of the miss streams which
was not addressed by the authors.

Martina, Garetto and Leonardi propose a unified approach to study systems of caches [10]. They gen-
eralize a decoupling technique that allows the study of very large systems of caches at low computational
cost. For the single cache case, their approach to study the Random and FIFO cache replacement policy85

is applicable in the case of a single modern DNS cache. They derive the hit and occupancy probabilities
of a single content when requests are Poisson and the caching duration is generally distributed (using an
M/G/1/0 queue) and when requests form a renewal process and the caching durations are exponentially
distributed (using a G/M/1/0 queue).

The closest papers to our work, methodologically speaking, are [11, 12, 13, 14]. Choungmo et al. an-90

alyze both a single cache and a network of caches in which each content remains in cache for a random
period [11, 12]. The essential difference with our work is that caching durations are regenerated from the
same distribution at each cache hit. As such, the model of [11, 12] applies to modern DNS caches only
if caching durations are exponentially distributed, thanks to the memoryless property of the exponential
distribution. Observe that the context targeted in [11, 12] is that of ICN architectures. More general TTL-95

based cache models are studied in [13, 14] where the statistical correlations that request streams may exhibit
are accounted for (requests described as Markov renewal processes in [13] and as Markov arrival processes
in [14]). Note that Berger et al. address three TTL-based caching policies: one that regenerates the TTL
upon a hit, another that regenerates the TTL upon a miss and a third policy that combines the two other
ones.100

It has been reported in [2, 4, 15]—and we have observed it in our collected DNS traces; see Fig. 8—that
the sequence of TTLs received relatively to a given resource record exhibits some randomness. We believe
it is crucial to consider this randomness when modeling a hierarchy of caches. Another key issue concerns
the optimal distribution for the caching durations. Callahan, Allman and Rabinovich mention in [4] that no
model or experiment characterizes the optimal (deterministic) TTL choice. We consider a related problem105

in this paper, namely, when does the deterministic TTL yield optimal performance metrics.

3. Definitions and Assumptions

3.1. Considered Scenario

In this paper, caches are assumed to consist of infinite size buffers. This assumption derives naturally
from the fact that the cached entities—the DNS records—have a negligible size when compared to the110

storage capacity available at a DNS server [8]. The management of different records can then safely be
decoupled, simplifying thereby the modeling of caches. Our analysis will focus on a single content/record,
characterizing the processes relevant to it. The same can be repeated for every single content requested by
users.

Without loss of generality, consider that a cache miss occurred at time m0 = t0 = 0. In other words,115

the content was not in cache at a request arrival at time t0. We will neglect the request/record processing
time at each server/client and the request/record travel time between servers, as these times are typically

3

hit miss
SZ+1

inter-miss time Ym0 m1

SZ
S1

X1 XZ XZ+1

. . .

m2

Z hits

.

timet1 tZ−1 tZ

data in cache data in cache

Tcaching duration T

t0 tZ+1

Figure 1: Requests, caching durations and inter-miss times.

insignificant in comparison with the request inter-arrival time. Consequently the content requested is cached
and made available to the requester also at time t0. More precisely, upstream requests and downstream
responses are instantaneous.120

A cache miss makes the content available in the respective cache for a duration T . Each cache samples
this duration from its respective distribution. Caches along the path between the server/client receiving
the original request and the server where the content was found all initiate a new duration T at the same
time, but the durations initiated being different they will expire at different instants. Consequently, caches
become asynchronous, something that would not occur should the caches follow the so-called TTL rule.125

Any request arriving during T will find the content in the cache. This is a cache hit. The first request
arriving after T has expired is a cache miss as depicted in Fig. 1 (see for instance instant tZ+1 = m1). It
initiates a new duration during which the content will be cached.

3.2. Metrics and Properties of a Cache

The performance of a cache policy can be assessed through the computation of several metrics. The hit130

probability hP captures the chances that a request has to be served by the cache. The miss probability mP

is simply the complementary probability. The hit/miss rate (hR/mR) represents the rate at which cache
hits/misses occur. The occupancy π is the percentage of time during which the content is cached. We say
“a cache policy is efficient” if its miss probability is low. This is relevant as long as cached contents are
up-to-date.135

In fact, by setting timers (or violating the TTL rule in the case of modern DNS), a server/client takes
a risk by caching a content for a longer period than it should, as the content may well have changed by
the time the locally chosen duration T expires. The cache would then be providing an outdated content.
Therefore, it is important to assess the consistency of a cache. Another metric of interest is the cache refresh
rate). It defines how fast a change in a record can propagate until this cache. High freshness is desirable140

with dynamic authoritative servers. In practice, it is desirable to have both an efficient and consistent cache,
but these are conflicting properties with dynamic servers.

3.3. Processes at Hand

To fully analyze a cache one needs to consider:

The arrival process: it may result from the superposition of multiple independent requests arrival pro-145

cesses. LetXk = tk−tk−1 be the kth inter-request time (k > 0). It is useful to define the kth jump time
Sk = X1 +X2 + . . .+Xk with its cumulative distribution function (CDF) F(k)(t) = P(Sk < t) and its

probability density function (PDF) f(k)(t) =
dF(k)(t)

dt
. Let N(t) = sup{k : Sk ≤ t} =

∑

k>0 1{Sk ≤ t}.
The arrival counting process is then {N(t), t > 0}.

The caching duration: a cache draws the duration T from the same distribution, such that µ = 1/E[T].150

The scenario analyzed here considers memoryless caches, i.e. all caching durations set by the same
cache are independent and identically distributed. With a slight abuse of notation, let T (t) be the
CDF of the random variable (rv) T .

4

The outgoing miss process: cache misses form a stochastic process whose inter-miss time is denoted by
Yk = mk −mk−1 for k > 0.155

The number of hits between consecutive misses: these hits occur within a single caching duration.
Their number is a rv denoted by Z.

Observe that, since T is a rv and N(t) the counting variable, N(T) is a rv which represents the number
of requests during a caching duration T . As all requests arriving during this period are necessarily hits,
following then the above definitions we have that Z = N(T) and its expectation is E[Z] = E[N(T)].160

In the case of a tree of caches, a subscript referring to the cache label will be added to the rvs for
disambiguation. Besides the “instantaneous transmission/processing” assumption that holds throughout
this paper, the following holds:

Assumption 1 (Stationary arrivals). The sequence {tk}k≥0 forms a stationary point process. And inter-
request times {Xk}k≥1 form a stationary and ergodic sequence with finite intensity λ = 1/E[Xk] < ∞.165

Assumption 2 (independence). At any cache, inter-request times and caching durations are independent.

Assumption 3 (independent arrivals). Multiple arrivals at any high-level cache are independent.

Assumption 4 (independent caches). Caching durations from any two different caches are independent.

Assumption 1 is general enough to cover most statistical correlations encountered in practical and exper-
imental cases studied in the traffic modelling literature. Assumptions 2 and 4 hold at modern DNS servers170

[2, 4] and Web browsers [3] as these use their own caching durations independently of the requests and other
servers/browsers. Assumption 3 holds if exogenous arrivals are independent, as long as requests for a given
content “see” a polytree network (that is a directed graph without any undirected cycles).

The example depicted in Fig. 2 shows a general network of caches that is seen by each of the contents
as a (poly)tree.175

Server, S1

Cache, C4
Cache, C5

Cache, C1

Cache, C3

Cache, C2

Server, S2

Users

Users

Users

Users
Server, S1

Green “sees” network as Polytree

Blue “sees” network as Tree

Network topology

Cache, C5

Cache, C1

Cache, C3

Cache, C4Users

Users

Users

Server, S1

Cache, C4
Cache, C5

Cache, C1

Cache, C3

Cache, C2

Server, S2

Users

Users

Users

Figure 2: Example of a network where Assumption 3 holds: requests for a given file view the network as a polytree.

It is worth noting that the scenario and the set of assumptions considered here fit the case of a single
traditional DNS server if the distribution of its caching durations fits the values marking the responses.

5

Table 1: Glossary of main notation

hP hit probability λ arrival rate (1/E[X])

hR hit rate Sk kth jump time (rv)

mP miss probability F(k)(t) CDF of Sk

mR miss rate f(k)(t) PDF of Sk

π occupancy N(t) requests during t (rv)

h̄P global/average cache hit probability M(t) renewal function

Rf refresh rate m(t) renewal density function

cP correctness probability Z hits during T (rv)

U inter-update time (rv) Y inter-miss time (rv)

U(t) CDF of U G(t) CDF of Y

1/ν expectation of U g(t) PDF of Y

Ur forward recurrence update time (rv) Yr interval in r-thinned miss process (rv)

T caching duration or TTL (rv) Gr(t) CDF of Yr

T (t) CDF of T gr(t) PDF of Yr

1/µ expectation of T L(t) expected number of hits until t within T

X inter-request time (rv) H(t) CDF of inter-request time at higher-level cache

F (t) CDF of X χ∗(s) LST of χ(t)

f(t) PDF of X

Observe also that the popularity of a content is proportional to its request rate λ. Therefore, it should be
clear that our models account for a content’s popularity (which can be Zipfian, Uniform, Geometric, etc.)
through the per-content request rate λ.180

A word on the notation: for any function χ(t), its Laplace-Stieltjes Transform (LST) is χ∗(s) =
∫∞

0
e−stdχ(t) (s ≥ 0). Observe that the LST of a function is the Laplace transform of its derivative.

The complementary cumulative distribution function (CCDF) of a CDF χ(t) is χ̄(t) = 1 − χ(t). Table 1
summarizes the main notation used in the paper.

4. Analysis of a Single Cache185

We are ready now to analyze a cache taken in isolation. The results found here will be used in Section
5 when studying multiple caches in a tree network.

4.1. The Model and its Analysis

We start this section by providing closed-form expressions of metrics of interest for a single cache under
the general settings described in Section 3.3. Namely, requests are described by stationary point processes190

which are independent of the caching durations assigned to contents in the cache. The following result
provides the hit/miss/occupancy probabilities under this general scope.

Proposition 1. Under Assumption 1, the miss process of our cache is a stationary point process. Moreover,
the hit probability hP , the miss probability mP , and the occupancy π are respectively given by

hP =
E [N(T)]

1 + E [N(T)]
, (1)

mP = 1− hP , (2)

π = λ(1 − hP)× E[T], (3)

where E[.] is the expectation with respect to (w.r.t.) the Palm probability of the stationary process {N(t), t ≥195

0}.

6

Proof. Under Assumption 1 the sequence {(t0, T0), (tZ1+1, T1) , . . .}, where the random variables {Ti, i ≥ 0}
are successive realizations of the caching duration T , defines a stationary marked point process [16, Sect. 1.1.3].
The latter stationary point process {(t0, T0), (tZ1+1, T1) , . . .} is the cache miss process. Since the miss pro-
cess is a stationary process, statistical properties calculated in the first inter-miss time interval with respect200

to its Palm probability remain valid for the whole process. Hence, the analysis of the cache can be carried
out within the first inter-miss time interval.
The derivation of (1) is straightforward from the definition of the hit probability as the ratio of the expected
number of requests that hit on the cache (i.e. E[Z] = E [N(T)]) to the expected total number of requests
that arrive on the cache during the first inter-miss time (i.e. E[Z] + 1). Equation (3) is obtained by ap-205

plying the Mean-Value Formula [16, Formula (1.3.2)] which is reproduced here for self-containedness. For
any non-negative function g, the time average of g(Z(t)), where {Z(t), t ∈ R} is a stochastic process with
measurable values such that Z(t) = Z(0) ◦ θt (θt can be seen as a shift operator), is given by

time average of g(Z(t)) =
E

[

∫ T1

0 g(Z(t))dt
]

E
[

T1

] . (4)

In this formula, E is the expectation w.r.t. the Palm probability of the stationary process {N(t), t ≥ 0} and
]0, T1] is the first interval. Thus T1 must be Y1, the instant of the first miss. To use (4) for the occupancy210

probability π, we need to use Z(t) = 1{T > t} and g(z) = 1{z > 0} so that the time average of g(Z(t))
(which is then 1{T > t}) is π (recall π = P (T > t)). The integral in (4) becomes

∫ Y1

0

1{T > t} dt =

∫ T

0

1{T > t} dt +

∫ Y1

T

1{T > t} dt = T ⇒ π =
E
[

T
]

E
[

Y1

] .

1/E[Y1] is nothing but the intensity of the miss process mP /E[X1]. Equation (3) is readily found.

Proposition 1 shows that cache performance metrics are clearly related to (or calculated from) the
counting process as long as the request arrival process is a stationary process. The latter might result from215

the superposition of several sources of requests or the miss streams of other caches in case of a network of
caches (see Section 5).

Once performance metrics are computed, our next goal is to characterize the miss process which is the
same as the process going out from a cache towards the higher-level server. Assumptions stronger than
Assumption 1 on the statistical correlations of the requests streams are needed (e.g. Markov Renewal220

processes [13] or Markov Arrival processes [14]). We will consider from now on that the following statement
holds.

Assumption 5 (renewal arrivals). Inter-request times {Xk}k≥1 are independent and identically distributed
rvs.

In other words, the request process {N(t), t > 0} is a renewal process. Let X be the generic inter-request225

time, F (t) be its CDF, f(t) = dF (t)
dt

be its PDF, and λ = 1/E[X].
Assumption 5 covers a broad range of applications. Point processes can be well approximated by renewal

processes [17]. Feldmann and Whitt show in [18] that the long-tailed distributions which are generally
observed in network performance analysis can be fitted by a renewal process with a hyper-exponentially
distributed interval. Renewal processes with either Weibull (with shape less than 1) or Pareto inter-event230

distributions are used in [8] by Jung, Berger and Balakrishnan to fit traces collected at DNS servers caches.
The renewal function M(t) and the renewal density function m(t) associated to {N(t), t > 0} are,

respectively,

M(t) = E[N(t)] =
∑

k>0

F(k)(t),

m(t) = dM(t)
dt

=
∑

k>0

f(k)(t) . (5)

7

It is well-known that the renewal function satisfies the so-called renewal equation [19]

M(t) = F (t) +

∫ t

0

F (t− x)dM(x) = F (t) +

∫ t

0

F (t− x)m(x)dx. (6)

Equivalently, (6) can be written using the PDF f(t)235

M(t) = F (t) +

∫ t

0

M(t− x)dF (x) = F (t) + (M ∗ f)(t). (7)

It will be useful to derive the LST M∗(s) which is also the Laplace transform of m(t). Differentiating (7)
yields (use M(0) = 0)

m(t) = f(t) + (m ∗ f)(t) (8)

Laplace transform ⇒ M∗(s) = F ∗(s) +M∗(s)F ∗(s)

⇔ M∗(s) =
F ∗(s)

1− F ∗(s)
. (9)

Relation (7) between the functions M , F and f is equivalent to Relation (9) between the LSTs M∗ and F ∗.
This equivalency will be used later in Section 5.4.

Remark 1 (Practical considerations). The renewal function M(t) can be approximated by discretizing the240

renewal equation [20].

Proposition 2 (Miss process). Under Assumptions 2 and 5 the miss process of a single cache is a stationary
renewal process.

Proof. Since the arrival process is a stationary (renewal) process, it follows from the proof of Proposition 1
that the miss process is also a stationary process. Without loss of generality, we assume that the first245

request arrives at time t0 = 0 while the content is not cached. This cache miss triggers a new caching
period. Consequently, miss instants are regeneration points of the state of the cache, implying that these
form a renewal process.

According to Proposition 2 inter-miss times {Yk}k>0 are independent and identically distributed. Let Y
be the generic inter-miss time and G(t) be its CDF. Computing G(t) will complete the characterization of250

the miss process. To this end we consider first the number of hits occurring in a renewal interval Y until
time t, and more specifically its expectation L(t). We can readily write for t ≥ 0

L(t) =
∑

k>0

P(Sk < t, T > Sk) =
∑

k>0

∫ t

0

P(T > x)dF(k)(x)

=

∫ t

0

T̄ (x)dM(x). (10)

Observe that limt→∞ L(t) is nothing but the expected number of hits in a renewal interval, i.e. E[N(T)].

Proposition 3 (Inter-miss times). The CDF G(t) of the generic inter-miss time Y and its LST are given
by255

G(t) = F (t)−

∫ t

0

(

1− F (t− x)
)

dL(x) (11)

G∗(s) = 1−
(

1− F ∗(s)
)(

1 + L∗(s)
)

. (12)

8

Proof. Let m0 = 0 be the first miss time. The CDF G(t) of the inter-miss time Y can be derived by noticing
that Y = SZ+1 where Z is the number of hits in a renewal interval (Z ∈ N). As such, the (Z + 1)st request
occurs after T expires and it will initiate a new renewal interval. By considering the possible values of Z,
we can write

G(t) = P (SZ+1 < t) =
∑

k≥0

P (SZ+1 < t, Z = k)

=
∑

k≥0

P (Sk +Xk+1 < t, Sk < T < Sk +Xk+1).

By conditioning first on Sk and then on Xk+1, we get260

G(t) =
∑

k≥0

∫ t

0

(∫ t−u

0

(T (u+ x)− T (u))f(x)dx

)

f(k)(u)du

=
∑

k≥0

∫ t

0

(∫ t−u

0

T (u+ x)f(x)dx

)

f(k)(u)du−
∑

k≥0

∫ t

0

T (u)f(k)(u)

(∫ t−u

0

f(x)dx

)

du

=
∑

k≥0

∫ t

0

(∫ t

u

T (v)f(v − u)dv

)

f(k)(u)du −
∑

k≥0

∫ t

0

T (u)f(k)(u)F (t− u)du (change v = u+ x)

=
∑

k≥0

∫ t

0

T (v)

(∫ v

0

f(v − u)f(k)(u)du

)

dv −
∑

k≥0

∫ t

0

T (u)f(k)(u)F (t− u)du . (13)

Equality (13) has been obtained after exchanging the integrals in the first sum. Observe now that, under
Assumption 5, the jump time Sk is the sum of k independent rvs that are identically distributed with
density f . Hence, The density f(k) of Sk is the k-fold convolution of f , which will be denoted as f (k). We
can compute the following

∫ v

0

f(v − u)f(k)(u)du = (f ∗ f(k))(v) = (f ∗ f (k))(v) = f (k+1)(v) = f(k+1)(v),

where we have used the fact that the density of the jump time Sk+1 is the convolution of f(k) and f , since265

Sk+1 = Sk +Xk+1 and these rvs are independent. We can rewrite (13) as follows

G(t) =
∑

k≥0

∫ t

0

T (v)f(k+1)(v)dv −
∑

k≥0

∫ t

0

T (u)f(k)(u)F (t− u)du

=
∑

k≥1

∫ t

0

T (x)f(k)(x)dx −
∑

k≥0

∫ t

0

T (x)f(k)(x)F (t− x)dx

=
∑

k≥1

∫ t

0

(

1− F (t− x)
)

T (x)f(k)(x)dx −

∫ t

0

T (x)f(0)(x)F (t − x)dx

=

∫ t

0

(

1− F (t− x)
)

T (x)
∑

k≥1

f(k)(x)dx − 0 (S0 = 0 ⇒ f(0)(t) = δ(0))

=

∫ t

0

(

1− F (t− x)
)

T (x)dM(x) (using (5))

= M(t)−

∫ t

0

F (t− x)dM(x) −

∫ t

0

(

1− F (t− x)
)

T̄ (x)dM(x) (use T (x) = 1− T̄ (x))

= F (t)−

∫ t

0

(

1− F (t− x)
)

T̄ (x)dM(x) (14)

9

where we have used (6) to write (14). The prefinal step is to differentiate (10) which yields dL(x) =
T̄ (x)dM(x). We can then rewrite (14) as follows

G(t) = F (t)−

∫ t

0

(

1− F (t− x)
)

dL(x)

which is nothing but (11). To compute G∗(s) we use the fact that the LST of a function is the Laplace
transform of its derivative. It is straightforward to rewrite (11) as follows270

G(t) = F (t)− L(t) + (F ∗ L′)(t)

differentiating ⇒ g(t) = f(t)− L′(t) + (f ∗ L′)(t) (use F (0) = 0)

Laplace transform ⇒ G∗(s) = F ∗(s)− L∗(s) + F ∗(s)L∗(s)

G∗(s) = 1−
(

1− F ∗(s)
)

− L∗(s)
(

1− F ∗(s)
)

G∗(s) = 1−
(

1− F ∗(s)
)(

1 + L∗(s)
)

which completes the proof.

Proposition 3 states that one needs to know the CDF and renewal function of the arrival process and the
CDF of the caching duration to derive the CDF of the miss process, or equivalently, the outgoing process.
This proposition will be repeatedly used in Section 5 when analyzing networks of caches.

Remark 2. Although the statement of Proposition 3 is exact, evaluating numerically the CDF of the miss275

process does not always return exact results. If the renewal function has to be approximated, then the exact
analysis may only return approximate numerical results.

We now focus on the performance metrics defined in Section 3.2. These metrics are for a single content.
Similar metrics for the entire set of cache contents can also be defined as long as the contents’ popularity is
known.280

4.1.1. Hit/Miss/Occupancy Probabilities

The following corollary specializes Proposition 1.

Corollary 1 (Cache performance). Under Assumption 5 the hit probability hP , the miss probability mP ,
and the occupancy π are respectively given by

hP =
E[M(T)]

1 + E[M(T)]
; mP =

1

1 + E[M(T)]
; π =

λ/µ

1 + E[M(T)]
, (15)

where E[M(T)] =

∫ ∞

0

M(x)dT (x).285

Proof. In the stationary regime, the expected number of hits within a renewal interval is E[Z] = E[N(T)] =
E [E[N(T)|T]] = E[M(T)] (where M is the renewal function defined in (6)). Recall that λ = 1/E[X] is the
arrival rate and µ = 1/E[T] is the caching duration expiration rate. Substituting for E[N(T)] in (1)-(3)
yields (15) and the proof is completed.

Corollary 1 states that it is enough to compute E[M(T)] (e.g. M(T) = λT for Poisson processes) and290

estimate the request rate λ at a cache to derive all its metrics of interest (µ is locally known). It is worth
noting that the hit probability hP and the occupancy π are different in general and in particular under
renewal arrival processes. The equality hP = π holds only if the arrival process is a Poisson process thanks
to the PASTA (Poisson Arrivals See Time Average) property.

10

Global cache performance. The global cache performance refers generally to the average hit probability h̄P295

over all contents. This metric of interest is calculated as the weighted sum of the file hit probabilities where
the weights are the files’ popularity. Consider file k, with k = 1, . . . ,K; its hit probability is denoted hP,k,

its requests arrival rate is λk and its popularity is pk = λk/
∑K

j=1 λj . The average hit probability is then

h̄P =

K
∑

k=1

pkhP,k.

Note that the content popularity may be Zipfian (pk = κ× k−α, α > 0), Geometric (pk = ρk, ρ < 1), etc.

4.1.2. Consistency Metrics300

In the case of a dynamic server (i.e. original content located at the server may change over time), it is
important to evaluate the consistency of the cache. As the content is cached for a pre-determined duration,
requests hitting on the cache may well obtain an outdated content. (TTL-based policies provide weak cache
consistency.) For a cache directly connected to the authoritative server, the cache refresh rate Rf is nothing
but the miss rate mR since a content may be refreshed only after T expires. Since λ is the request arrival305

rate, the cache refresh rate is

Rf = λmP =
λ

1 + E[M(T)]
. (16)

When there are intermediate caches between a cache c and the authoritative server, the refresh rate Rf,c of
cache c is given by the product of miss probabilities at all intermediate caches. Namely,

Rf,c = λc

∏

n∈P(c)

mP,n (17)

where λc is the requests arrival rate at cache c, mP,n is the miss probability at cache n, and P(c) is the set
of caches (including cache c) on the path from cache c to the server.310

The consistency of a cache is measured in [9] using two metrics, one is the hit∗ probability and the other
is the ratio between the hit∗ and hit probabilities. The first measures the probability that a cache hit returns
a correct content and the second is the ratio of correct hits to all hits which is a way to quantify the quality
of the data stored in the cache. Both metrics are derived in the case of a cache directly connected to the
server. Similarly to [9], we assume that the content is updated at the server according to an independent315

renewal point process. We denote by U the generic inter-update time, ν−1 its mean, U(t) its CDF, and Ur

the stationary forward recurrence update time. The following proposition generalizes Proposition 2 of [9] to
the case of generally distributed caching durations.

Proposition 4 (Consistency). Under Assumptions 2 and 5, and assuming also that server updates are
described by an independent renewal process, the hit∗ probability h∗

P of a cache directly connected to the320

authoritative server is given by

h∗
P =

E
[

M(min{T, Ur})]

1 + E[M(T)
] (18)

where

E
[

M(min{T, Ur})] =

∫ ∞

0

M(t)dW (t) (19)

with W (t) = P (min{T, Ur} < t) = T (t) +
1− T (t)

ν

∫ t

0

(

1− U(u)
)

du . (20)

Proof. Let Z∗ be a rv giving the number of correct hits in a renewal interval. A request at time m0 will
initiate the first inter-miss interval. Hits are those requests arriving in the interval (m0,m0 + T) however,
only hits occurring in the sub-interval (m0,m0 +min{T, Ur(m0)}) will get a correct content. Here Ur(m0)325

11

is the forward recurrence update time at instant m0. In the stationary regime, the expectation of Z∗ is
E[Z∗] = E[M(min{T, Ur})]. Equation (18) is readily found (same denominator as hP). LetW (t) be the CDF
of min{T, Ur}. Equation (19) follows immediately. We now compute W (t). We have (use the independence
between the caching renewal process and the update process)

1−W (t) = P (T > t, Ur > t) = P (T > t)P (Ur > t) = (1− T (t))(1− P (Ur ≤ t)) .

The distribution of the stationary forward recurrence update time is330

P
(

Ur ≤ t
)

=

∫ t

0

1− U(u)

ν
du .

Hence

W (t) = T (t) +
1− T (t)

ν

∫ t

0

(

1− U(u)
)

du

and the proof is completed.

Observe that (18) is similar to Equation (14) in [9] except that T is deterministic in [9]. The ratio
between the hit∗ and hit probabilities is given by335

h∗
P

hP

=
E[Z∗]

E[Z]
=

E[M(min{T, Ur})]

E[M(T)]
. (21)

From a user point of view, what matters is the probability to get a correct content, regardless of whether
it came from the cache or from the server. We may then define the correctness probability, which we denote
by cP , as the probability to get a correct content. We can write

cP =
1 + E[Z∗]

1 + E[Z]
=

1 + E[M(min{T, Ur})]

1 + E[M(T)]
, (22)

since the total number of requests answered correctly in a miss renewal period is one (the miss request) plus
E[Z∗] (the correct hits). The ratio h∗

P /hP used in [9] is a cache consistency measure, whereas cP can be seen340

as a measure of quality of service. The extension to the case of intermediate caches is not straightforward
and is left for future work.

4.2. Special TTL Distributions

We will consider three particular cases for the distribution of the caching duration and derive the corre-
sponding results.345

4.2.1. Deterministic Distribution

We first look at the case when the caching duration is deterministic and equal to the constant D. This
setup (single cache, deterministic TTL) is identical to the one in [8].

Result 1 (Deterministic TTL). The expected number of hits in a renewal interval is E[M(T)] = M(D).

Combining Result 1 with Corollary 1 yields the performance metrics. These are exactly the ones found350

in [8, Thm. 1]. The CDF G(t) of inter-miss times, on the other hand, is a new result. Using T (t) = 1{t > D},
(11) becomes

G(t) = 1{t > D}

(

F (t)−

∫ D

0

(1 − F (t− x))dM(x)

)

. (23)

12

4.2.2. Exponential Distribution

If caching durations follow an exponential distribution with rate µ, then T (t) = 1−e−µt and the following
holds.355

Result 2 (Exponential TTL). The expected number of hits in a renewal interval is E[M(T)] = F∗(µ)
1−F∗(µ) ,

and (12) giving the LST of G(t) becomes

G∗(s) =
F ∗(s)− F ∗(s+ µ)

1− F ∗(s+ µ)
. (24)

The result above is identical to Propositions 3.1 and 3.2 in [11]. The system considered in [11] consists
of caches using expiration-based policies whose caching durations are reset at every cache hit. The DNS
scenario considered in this paper pre-sets the caching duration at each cache miss. However, when durations360

are drawn from an exponential distribution, both systems coincide thanks to the memoryless property of
the exponential distribution.

4.2.3. Diagonal Matrix-Exponential Distribution

The third particular case considered here is the one of a family of distributions, the so-called diagonal
matrix-exponential distribution (diag.ME for short). The CDF of an ME distribution can be written as365

1 + α exp(St)u, where α and u are dimension-n vectors and S is an n × n matrix; the ME distribution
is said to have a representation of order n. The class of ME distributions is equivalent to the class of
distributions having a rational LST. If S is diagonal or diagonalizable,3 then a diag.ME is obtained.

Our interest in the diag.ME is threefold. First, it covers a large set of distributions in particular any
mixture of exponentials. Second, as reported in [18], a general point process can be well fitted by a renewal370

process having a phase-type distribution such as the mixture of exponentials. Third it is analytically
tractable as will become clear in Section 5.

The CDF of a caching duration following a diag.ME of order K can be written following Karlin’s repre-
sentation [21]

T (t) = 1−

K
∑

k=1

bke
−µkt , with

K
∑

k=1

bk = 1. (25)

There is no restrictions on {µk}1≤k≤K except that T (t) must be a CDF (observe that {bk}1≤k≤K is not375

necessarily a probability distribution). The following then holds.

Result 3 (Diag.ME TTL). The expected caching duration and the expected number of hits are, respectively,

µ−1 =

K
∑

k=1

bkµ
−1
k ; E[M(T)] =

K
∑

k=1

bkF
∗(µk)

1− F ∗(µk)
, (26)

and the LST of G(t) given in (12) can be rewritten

G∗(s) = 1−

K
∑

k=1

bk
1− F ∗(s)

1− F ∗(s+ µk)
. (27)

Using (26) in Corollary 1 yields the performance metrics.

3There exist then an n× n matrix P and an n× n diagonal matrix A such that S = PAP−1.

13

4.3. Optimizing the Performance Metrics380

This section tackles the following challenging question: which distribution optimizes the performance of
a content caching policy and under which conditions? In other words, how can one maximize/minimize the
performance metrics?

Caching has been introduced to limit wide-area traffic and to speed up the service to clients. An efficient
cache is then one that has a small miss rate or equivalently a high hit probability. In the case of DNS385

however, a high hit probability translates into a higher probability of serving an outdated content to the
users. Indeed, as explained in Section 3, contents are refreshed only upon a cache miss. Having then a
minimal miss rate is desirable in a DNS cache when the content is likely to change often. It must be clear
from the above that optimizing a DNS caching policy faces conflicting objectives.

In the general case, there is a convex ordering between different caching distributions. Consider two390

policies: in the first, a content is cached for a deterministic duration D; in the second, the caching duration
T has a CDF T (t) such that E[T] = 1

µ
= D. The following lemma will be used in the sequel.

Lemma 1. The following convex ordering holds

D ≤cx T. (28)

Proof. The definition of convex ordering of random variables T1 and T2 says that T1 ≤cx T2 if and only if
E[φ(T1)] ≤ E[φ(T2)] for any convex function φ. By Jensen’s inequality we know that for any rv T and any395

convex function φ we have

φ(E[T]) ≤ E[φ(T)]

⇔ φ(D) ≤ E[φ(T)] .

This implies the lemma since E[φ(D)] = φ(D).

Proposition 5 (Properties of deterministic TTL). When the caching duration is deterministic:

(i) If the renewal function M of the request process at a cache is concave, then the hit probability is
maximized, and both the miss rate and the occupancy are minimized.400

(ii) If M is convex, then the hit probability is minimized, and both the miss rate and the occupancy are
maximized.

Proof. (i) Define φ(t) = 1 +M(t). We therefore have in Corollary 1

hP (T) = 1−
1

E[φ(T)]
, mR(T) =

λ

E[φ(T)]
, π(T) =

λD

E[φ(T)]
.

We have appended to the notation the rv T to stress that the performance metrics depend on the distribution
of T . If M is concave, then φ is also concave. Since D ≤cx T (Lemma 1), the following holds405

E[φ(D)] ≥ E[φ(T)] ⇒











hP (D) = 1− 1
E[φ(D)] ≥ 1− 1

E[φ(T)] = hP (T)

mR(D) = λ
E[φ(D)] ≤ λ

E[φ(T)] = mR(T)

π(D) = λD
E[φ(D)] ≤ λD

E[φ(T)] = π(T) .

(ii) If M is convex then

E[φ(D)] ≤ E[φ(T)] ⇒











hP (D) = 1− 1
E[φ(D)] ≤ 1− 1

E[φ(T)] = hP (T)

mR(D) = λ
E[φ(D)] ≥ λ

E[φ(T)] = mR(T)

π(D) = λD
E[φ(D)] ≥ λD

E[φ(T)] = π(T) .

The proof is complete.

14

Proposition 5(i) is applicable for instance when the inter-request time has a decreasing failure rate,
as Brown has shown in [22, Theorem 3] that this is a sufficient condition for M(t) to be concave. (The
distribution of X has a decreasing failure rate if P (X > t+ s)/P (X > t) is increasing in t for each s > 0.)410

Observe that mixing exponential distributions results in a distribution with a decreasing failure rate [22].
Note also that both the Pareto and the Weibull distribution (with shape less than one) have a decreasing
failure rate. Such distributions have been used in [8] to fit collected inter-request times at DNS caches (see
discussion around Assumption 5).

Proposition 6 (Insensitivity of metrics to TTL distribution). The miss rate, the hit probability and the415

occupancy are insensitive to the distribution of the caching duration if the renewal function M of the request
process at a cache is linear.

Proof. Define φ(t) = 1 +M(t). If M is linear then E[φ(T)] = φ(E[T]) = φ(D) = 1 +M(D). For any CDF
T (t), the performance metrics are

hP = 1−
1

1 +M(D)]
, mR =

λ

1 +M(D)
, π =

λD

1 +M(D)
. (29)

The performance metrics depend only on the expectation E[T] = D and are insensitive to the distribution420

of T .

Proposition 6 is applicable for instance when the request process is Poisson since we would have M(t) =
λt. Observe that the so-called independent reference model (IRM) that is often used in the analysis of caches
(e.g. [23, 24, 25]) is equivalent to assuming that requests for a single content form a Poisson process [26].

4.4. Applicability to a Traditional DNS Cache425

The modern DNS cache analyzed in Section 4 holds the content for a locally chosen duration. Instead,
in a traditional DNS cache, the caching duration is the one advocated by the answerer. What matters in
the analysis of a single cache is the distribution of the caching durations and not whether the distribution is
set locally or it is imposed. Therefore, the findings of Section 4 apply in the case of a single traditional DNS
cache, as long as Assumptions 2–5 hold. Note that Jung et al. consider in [8] a deterministic caching duration430

set to the maximum value among all those observed in the responses. If the cache is directly connected
to the authoritative server, then the model developed in [8] will be exact. In the cases of intermediate
caches, the answerer which is not an authoritative server will provide responses having varied TTL values.
Consequently, the model in [8] provides approximate results for a single traditional DNS cache every time
the answerer is not an authoritative server. Instead our model yields exact results for both a traditional435

cache and a modern cache, regardless of the distribution chosen for the whole range of caching durations.

5. Analysis of a Cache Network

Section 4 focused on results for a single cache. In this section, we will extend these results for the case
where we have caches at multiple nodes (e.g. client, ADSL modem, Internet server provider’s DNS server,
authoritative server). We say that we have a network of caches.440

Throughout this section, Assumptions 4-5 are enforced and exogenous arrivals are assumed to be inde-
pendent. Requests for a given content may only flow over a (poly)tree network so that Assumption 3 holds.
The notation relative to cache c will have an extra subscript “c”.

To analyze a network of cache, one additionally needs to consider the network topology. In the following
we consider the particular case of linear networks for which exact analytical results can be derived (see445

Section 5.1). Exact partial results can be derived in star networks and in linear star networks (see Section
5.2). We will move next to the general tree network case for which approximate results can be derived (see
Section 5.3). The case of polytree networks is addressed in Section 5.4. Last, we focus on the particular case
where caching durations and exogenous inter-request times follow a diag.ME distribution (see Section 5.5).
Results for this last case are interesting as the diag.ME distribution will be preserved inside the network.450

15

C1 C2 Cn disk
requests
exogenous
independent miss

process· · ·

Figure 3: A line of caches.

5.1. Linear Networks: Exact Analytical Results

Consider the line of caches depicted in Fig. 3. There are n caches in a line and the disk of the authoritative
server (the rightmost cache is the one of the authoritative server). By Assumption 5, the request process at
cache C1 is a renewal process. By Proposition 3, the miss process at cache C1 is also a renewal process. This
miss process is nothing but the request process at cache C2. By the same proposition, the miss process at455

cache C2 is again a renewal process, so on and so forth. Thus, all processes in this linear network of caches
{C1, . . . , Cn} are renewal processes. The distribution of the miss process and the performance metrics at
each cache are derived using Proposition 3 and Corollary 1, respectively.

5.2. (Linear) Star Networks: Exact Partial Results

diskC

C1

Cℓ

miss
process

requests
exogenous
independent

...

(a) a star network

diskC

C1,1

Cℓ,1

C1,2

Cℓ,2

C1,n1

Cℓ,nℓ

· · ·

· · ·

...

(b) a linear star network

Figure 4: Networks where performance metrics can be derived.

We now consider the “star” network depicted in Fig. 4a. This is a one-level tree network composed of ℓ460

leaves and one root. Under Assumption 5, the requests arrival process at cache Ci (i = 1, . . . , ℓ) is a renewal
process, then by Proposition 3 the miss process at cache Ci is also a renewal process. As all exogenous
processes are independent, all miss processes of caches C1, . . . , Cℓ are independent and further independent
of the exogenous request process at cache C. As a result, the root cache C is fed by the superposition of ℓ+1
independent renewal processes which is a stationary ergodic process. The conditions to use Proposition 1465

are satisfied and the hit and occupancy probabilities can be computed accordingly.
The linear star network shown in Fig. 4b is the composition of a star network and ℓ linear networks.

The results of Section 5.1 are applicable within each line of caches {Ci,1, . . . , Ci,ni
}, for i = 1, . . . , ℓ. The

performance metrics and the distribution of the miss process can be computed at any cache Ci,j , for j =
1, . . . , ni and i = 1, . . . , ℓ using Corollary 1 and Proposition 3, respectively. Thus, each of the processes470

arriving to the root cache C is a renewal process and their superposition is a stationary ergodic process.
The hit and occupancy probabilities follow from Proposition 1.

5.3. Tree Networks: Multiple Sources of Requests

The exact analysis in Section 5.1 cannot be easily extended to general networks. In fact, in the presence
of exogenous requests or several independent request streams, the aggregate (overall) arrival process at a475

cache is in general not a renewal process (it would be if requests are Poisson for instance). Hence, we cannot
apply Proposition 3 that allows us to characterize the distribution of the miss process at the higher-layer
cache. To overtake this limitation, we proceed as in [11]: we approximate the aggregate process with a
renewal process and assess the quality of this approximation through a numerical study in Section 6.2.
The solution derived produces highly accurate approximations for all metrics computed using Corollary 1480

(i.e. hit/miss probabilities, hit/miss rates, cache occupancy). This approximation is based on the following
statement:

Approximation 1 (aggregation). The overall request arrival process at each cache is a renewal process.

16

Note that for leaf caches, Approximation 1 is simply Assumption 5. Note also that for Poisson requests the
statement of Approximation 1 is true. It is worth mentioning that under certain conditions (the asymptotic485

sum of intervals’ CDFs grows linearly with time) the superposition of many sparse renewal processes tends
asymptotically to a Poisson process [27, Sect. 5.9]. In cache networks, the request process gets sparser
when moving upstream. The result of [27, Sect. 5.9] suggests that the larger the network is, the better
the approximation will be. In the case of DNS, the hierarchy is very flat, suggesting that Approximation 1
would be tight.490

miss
process

requests
exogenous
independent

c

C(c)

disk

i

CDF Fc(t)
rate λc

rate mR,i

CDF Gi(t)

Figure 5: A tree network. Some of the notation relative to cache c are reported.

Consider the tree network depicted in Figure 5 and focus on a given cache c. The exogenous requests
process (if any) at cache c has rate λc and the CDF of its inter-request time is Fc(t). The set of children
of cache c is C(c) with |C(c)| = C. The miss process at child i, with rate mR,i and CDF of inter-miss time
Gi(t), is seen as one of the requests processes entering cache c.

We now characterize the aggregate request process at cache c. It is composed of the superposition of495

the C miss processes at the children of c and the exogenous request process at cache c. The rate of the
aggregate request process is

Λc = λc +
∑

i∈C(c)

mR,i. (30)

Since all exogenous processes are independent, the C + 1 request processes at cache c are also independent.
Thereby, the result derived by Lawrance in [28, Eq. (4.1)] applies. By Approximation 1, the aggregate
request process at cache c is a renewal process. Let Hc(t) be the CDF of its inter-request time and Mc(t)500

the renewal function associated with it. We can write

H̄c(t) =
λc

Λc

F̄c(t)
∏

i∈C(c)

mR,i

∫ ∞

t

Ḡi(u)du+
∑

i∈C(c)

mR,i

Λc

Ḡi(t)λc

∫ ∞

t

F̄c(u)du
∏

j∈C(c)
j 6=i

mR,j

∫ ∞

t

Ḡj(u)du. (31)

We now move to the characterization of the miss process at cache c. A direct consequence of Approxi-
mation 1 is that the miss process at each cache is a renewal process thanks to Proposition 2. Proposition 3
and Corollary 1 are also valid at any cache.

Recall that in the case of a single cache, the CDF G(t) of the inter-miss time at a cache is expressed505

as a function of F (t), the CDF of the inter-request time, and of M(t), the renewal function of the request
process; see (14). In the case of a tree network, one needs to consider the aggregate request process at cache
c. Replacing F (t) with Hc(t) and M(t) with Mc(t) in (14) yields Gc(t), the CDF of the inter-miss time at
cache c. More precisely, (14) becomes

Gc(t) = Hc(t)−

∫ t

0

(1−Hc(t− x))T̄c(x)dMc(x) (32)

17

where T̄c(t) is the CCDF of the caching duration at cache c.510

Equations (31) and (32) provide a recursive procedure for calculating the CDFs Hc(t) and Gc(t) at
each cache c of a tree network, starting from the lower levels of the tree and moving upward. Numerical
procedures such as Romberg’s method or other techniques for computing (31) and (32) recursively can be
found in [20]. In a special case presented in Section 5.5 Hc(t) and Gc(t) will be found in closed-form.

5.4. Polytree Networks: Multiple Destinations515

miss
process

requests
exogenous
independent

disk

disk

c
...

...

cj

Figure 6: A polytree network.

We consider now the case of polytrees as illustrated in Figure 6. Missed requests at a cache c may be
forwarded to more than one higher layer cache. In the DNS system this occurs when multiple authoritative
servers handle the same record for fault tolerance, load balancing, etc. The results found in Section 5.3 can
be generalized by considering thinned miss processes instead of miss processes.

Consider cache c in Figure 6 and let r be the probability that a miss request at cache c is forwarded520

to cache cj . (More generally, we may consider that the probability to choose the outgoing link j is rj such
that

∑

j rj = 1.) The resulting request process arriving to cache cj and coming from cache c is called the
r-thinned miss process of cache c.

Under Approximation 1, the miss process at cache c is a renewal process. Therefore, its r-thinned
process is also a renewal process [29]. To characterize the distribution of the r-thinned miss process, we525

introduce the rv W as the number of successive miss requests forwarded to other than cache cj , we have
P (W = i) = (1 − r)ir. The probability density function gc,r(t) of the inter-request times of the r-thinned
miss process is the expectation of the (W + 1)-fold convolution of the probability density function gc(t) of
the inter-request times of the original miss process. More precisely,

gc,r(t) = E

[

g(W+1)(t)
c

]

=

∞
∑

i=0

g(i+1)
c (t)(1− r)ir,

where g
(n)
c is the n-fold convolution of gc. By taking the Laplace transform, the LST of the CDF Gc,r(t) of530

the r-thinned miss process is obtained as a function of G∗
c(s) as follows

G∗
c,r(s) =

rG∗
c(s)

1− (1− r)G∗
c (s)

. (33)

We have a relation between the LSTs G∗
c,r and G∗

c . An equivalent relation can be written between the
functions Gc,r, Gc and gc, using the equivalency found in Section 4.1. The following holds

Gc,r(t) = rGc(t) + (1− r)(Gc,r ∗ gc)(t) = rGc(t) + (1 − r)

∫ t

0

gc(t− x)Gc,r(x)dx. (34)

This equation is similar in structure to the renewal equation.

Remark 3 (Feed-Forward Networks). The analysis of feed-forward networks (where a request cannot visit a535

cache twice) is derived from that of polytrees by relaxing Assumption 3. Therefore, request streams arriving
at a cache may not be independent and the characterization of the overall request process using Lawrance’s
formula [28, Eq. (4.1)] may not be accurate.

18

5.5. Closed-Form Results with diag.ME RVs

In this section, we consider a polytree network where caching durations at any cache follow a diag.ME540

distribution. Also, we will consider that the exogenous request process at any cache is a renewal process
whose inter-request time follows a diag.ME distribution. More precisely, at a cache c we have for t > 0

Fc(t) = 1−

Jc
∑

j=1

ac,je
−λc,jt , with

Jc
∑

j=1

ac,j = 1 , (35)

T̄c(t) =

Kc
∑

k=1

bc,ke
−µc,kt , with

Kc
∑

k=1

bc,k = 1 . (36)

Jc and Kc are the respective orders of the diag.ME distributions. We will first prove interesting properties
of the diag.ME distribution before stating the main result of this section.

Proposition 7 (Miss process with diag.ME). If inter-request times and caching durations are diag.ME545

distributed, then the miss process is a diag.ME renewal process with known representation.

Proof. We know from Proposition 2 that the miss process is a renewal process and the CDF of the inter-miss
time (in the general case) is given in Proposition 3. When the CDF of the inter-request time at a cache c is
given by (35), the renewal equation (7) becomes

Mc(t) = Fc(t) +

∫ t

0

fc(t− x)Mc(x)dx = Fc(t) +

∫ t

0

Jc
∑

j=1

ac,jλc,je
−λc,j(t−x)Mc(x)dx. (37)

The solution of (37) is found in [30, Sect. 2.2.1.19], namely550

Mc(t) = Fc(t) +

∫ t

0

Jc
∑

j=1

γc,je
−θc,j(t−x)Fc(x)dx (38)

where (θc,j)1≤j≤Jc
are the Jc roots of the algebraic equation

1−

Jc
∑

j=1

ac,jλc,j

λc,j − z
= 0, (39)

and (γc,j)1≤j≤Jc
are the solution of the linear system of Jc equations

{

1−

Jc
∑

j=1

γc,j
λc,n − θc,j

= 0, 1 ≤ n ≤ Jc. (40)

Differentiating (38) yields (use Fc(0) = 0)

M ′
c(t) = F ′

c(t) +

∫ t

0

Jc
∑

j=1

γc,je
−θc,j(t−x)F ′

c(x)dx

Laplace transform ⇒ M∗
c (s) = F ∗

c (s) +

Jc
∑

j=1

γc,j
s+ θc,j

F ∗
c (s) . (41)

Solving for M∗
c (s) in the system of equations composed of (9) and (41) yields

M∗
c (s) =

Jc
∑

j=1

γc,j
s+ θc,j

⇒ dMc(t) =

Jc
∑

j=1

γc,je
−θc,jtdt . (42)

19

When the CDF of caching durations at a cache c is given by (36), we can rewrite (14) as follows (use (35)555

and (42))

Gc(t) = 1 −

Jc
∑

j=1

ac,j

(

1−

Kc
∑

k=1

Jc
∑

i=1

bc,kγc,i
λc,j − θc,i − µc,k

)

e−λc,jt

−

Kc
∑

k=1

Jc
∑

i=1





Jc
∑

j=1

ac,jbc,kγi
λc,j − θc,i − µc,k



 e−(θc,i+µc,k)t. (43)

Clearly, the inter-miss time at cache c follows a diag.ME distribution. This Karlin representation has order
Jc(Kc + 1) but it is not guaranteed to be the minimal order. The proof is complete.

Proposition 8 (Closure of diag.ME under thinning). The thinning of a renewal process with a diag.ME
distributed interval is a renewal process with a diag.ME distributed interval.560

Proof. Consider a renewal process whose interval has the following CDF

F (t) = 1−

J
∑

j=1

aje
−λjt , with

J
∑

j=1

aj = 1 .

According to (34), the CDF of the interval of the r-thinned version of this renewal process is

Fr(t) = rF (t) + (1− r)

∫ t

0

F ′(t− x)Fr(x)dx

= rF (t) +

∫ t

0

J
∑

j=1

(1− r)ajλje
−λj(t−x)Fr(x)dx . (44)

Equation (44) is similar to (37); its solution is

Fr(t) = r



F (t) +

∫ t

0

J
∑

j=1

γje
−θj(t−x)F (x)dx



 (45)

where (θj)1≤j≤J
are the J roots of the algebraic equation

1− (1− r)

J
∑

j=1

ajλj

λj − z
= 0, (46)

and (γj)1≤j≤J
are the solution of the linear system of J equations565

{

1−

J
∑

j=1

γj
λn − θj

= 0, 1 ≤ n ≤ J. (47)

Starting from (45), we can compute

Fr(t) = r



1−

J
∑

i=1

aie
−λit +

J
∑

j=1

γje
−θjt

∫ t

0

eθjxdx−

J
∑

j=1

γje
−θjt

J
∑

i=1

ai

∫ t

0

e−(λi−θj)xdx





= r



1−

J
∑

i=1

aie
−λit +

J
∑

j=1

γj
1− e−θjt

θj
+

J
∑

j=1

γj

J
∑

i=1

ai
e−λit

λi − θj
−

J
∑

j=1

γje
−θjt

J
∑

i=1

ai
λi − θj





= r



1 +

J
∑

j=1

γj
θj

−

J
∑

i=1

ai



1−

J
∑

j=1

γj
λi − θj



 e−λit −

J
∑

j=1

γj

(

1

θj
+

J
∑

i=1

ai
λi − θj

)

e−θjt



 . (48)

20

The coefficient of e−λit is null due to (47). The coefficient of e−θjt can be rewritten

1

θj
+

J
∑

i=1

ai
λi − θj

=
1

θj

(

J
∑

i=1

ai

)

+

J
∑

i=1

ai
λi − θj

=

J
∑

i=1

ai

(

1

θj
+

1

λi − θj

)

=
1

θj

J
∑

i=1

aiλi

λi − θj
=

1

θj

1

1− r

where the last equality is due to (46). Equation (48) simplifies to

Fr(t) = r



1 +

J
∑

j=1

γj
θj



−
r

1− r

J
∑

j=1

γj
θj

e−θjt = 1−
r

1− r

J
∑

j=1

γj
θj

e−θjt (49)

where we used limt→∞ Fr(t) = 1. The CDF in (49) is a diag.ME with order J . The proof is complete.

Proposition 9 (Closure of diag.ME under aggregation). The aggregation of independent processes each570

with a diag.ME distributed interval is a renewal process with a diag.ME distributed interval.

Proof. Without loss of generality the proof is conducted for the aggregation of C+1 processes. By Assump-
tion 5 and Approximation 1, all processes at hand are renewal processes. We focus then on the distribution
of the inter-event time of the aggregate process. Let Fi be the CDF of the interval of the ith process. We
have for t > 0 and i = 0, 1, . . . , C575

Fi(t) = 1−

Li
∑

li=1

ai,lie
−λi,li

t , with

Li
∑

li=1

ai,li = 1 (diag.ME distribution of order Li).

The rate of process i is denoted ri =
∑Li

li=1 ai,liλi,li . The rate of the aggregate process is Λ =
∑C

i=0 ri.
Given that all processes are independent, the result of Lawrance in [28, Eq. (4.1)] can be used. The CCDF
H̄(t) of the interval of the aggregate process is then

H̄(t) =

C
∑

i=0

ri
Λ
F̄i(t)

∏

j=0,...,C
j 6=i

rj

∫ ∞

t

F̄j(u)du

=
C
∑

i=0

ri
Λ

Li
∑

li=1

ai,lie
−λi,li

t
∏

j=0,...,C
j 6=i

rj

∫ ∞

t

Lj
∑

lj=1

aj,lje
−λj,lj

udu

=

C
∑

i=0

ri
Λ

Li
∑

li=1

ai,lie
−λi,li

t
∏

j=0,...,C
j 6=i

rj

Lj
∑

lj=1

aj,lj
λj,lj

e−λj,lj
t

=

∏C
i=0 ri
Λ

C
∑

i=0

Li
∑

li=1

ai,lie
−λi,li

t
∏

j=0,...,C
j 6=i

Lj
∑

lj=1

aj,lj
λj,lj

e−λj,lj
t. (50)

After tedious calculations, (50) can be rewritten

H̄(t) =

∏C

i=0 ri
Λ

L0
∑

l0=1

L1
∑

l1=1

· · ·

LC
∑

lC=1

(

C
∑

i=0

λi,li

)





C
∏

j=0

aj,lj
λj,lj



 exp



−





C
∑

j=0

λj,lj



 t



 . (51)

The interval of the aggregate process follows a diag.ME distribution. Note that the order of this represen-580

tation is
∏C

i=0 Li but it is not guaranteed that this representation is minimal. The proof is complete.

We are now in position to write the main result of this section that is the self-preservation of the diag.ME
distribution across a polytree network as stated in what follows.

21

Proposition 10 (Diag.ME closure on polytrees). Under Assumption 5 and Approximation 1 and as long
as (35)-(36) are verified at each cache c of a polytree network, miss processes, thinned miss streams, and585

aggregate requests are all renewal processes with diag.ME distributed intervals.

Proof. The proof is readily found using iteratively Propositions 7-9 starting at the leaves of the polytree
and then moving upwards. The miss process at each lowest level cache checks Proposition 10 thanks to
Proposition 7. At any higher level cache, (i) Proposition 8 ensures that thinned requests streams from lower
caches check Proposition 10, (ii) Proposition 9 ensures that the aggregation of these requests streams checks590

Proposition 10, and (iii) Proposition 7 ensures the cache miss process checks Proposition 10.

The performance metrics can be found at each cache by using Result 3 and Corollary 1. It is important
to start the computation with the lowest-level caches as their miss rates will be used to derive Hc(t) at a
higher-level cache. It is also H∗

c (s) that should be used instead of F ∗(s) in Result 3 at each higher-level
cache.595

Sections 5.3-5.5 provide approximate results since Approximation 1 is used. The robustness of our model
is tested in Section 6.2.

6. Validation, Numerical Results

The objective of this section is to test the robustness of our models against violations of the main
assumptions. We first address the case of a single cache by comparing the analytic results of Section 4 to600

results derived from a real DNS cache trace. The case of a network of caches is addressed next.

6.1. Single Cache Case: Using a Real Trace

In this section, we use traces collected from a real DNS cache to assess the robustness of our analysis.
Our home institution Inria at Sophia Antipolis manages two DNS servers in parallel to ensure a good load
balancing. The DNS traffic at one of these servers has been collected from 21 June to 1 July 2013 (a duration605

of 9 days, 23 hours, 19 minutes and 58 seconds). The trace contains information about 2 599 607 resource
records requested a total of 15 376 226 times by a total of 889 users. A pre-processing of this trace provided
for 2 258 086 resource records (or contents) the following information:

1. the requests instants (from users to Inria’s DNS server);

2. the cache miss instants (coinciding with the instants of requests from Inria’s DNS server to Internet);610

3. the responses instants (from Internet to Inria’s DNS server);

4. the final responses instants (from Inria’s DNS server to users);

5. the TTL values (in response packets).

Having this information for each content allows us to compute the popularity distribution. A simple fit
reveals that the popularity in the arrival process follows Zipf law of parameter α ≈ 1 as shown in Fig. 7.615

This is also consistent with the well-known characteristics of Internet traffic.

 1e-08

 1e-06

 0.0001

 0.01

 1 100 10000 1e+06

popularity rank

Content popularity distribution

trace

Zipf

Figure 7: Popularity of resource records at Inria’s DNS server.

22

 0

 1

 2

 3

 0 10 20 30

8720 samples, 301 users(× 10
−2

)

0.46

(a) 232nd ranked record

 0

 1

 2

 3

 4

 0 20 40 60

3179 samples, 45 users(× 10
−2

)

(b) 347th ranked record

 0

 1

 2

 0 100 200 300

47875 samples, 317 users(× 10
−2

)

(c) 9th ranked record

 0

 2

 4

 6

 8

 0 200 400 600

17612 samples, 4 users(× 10
−4

)

(d) 195th ranked record

 0

 3

 6

 9

 0 300 600 900

7508 samples, 32 users(× 10
−3

)

(e) 239th ranked record

 0

 1

 2

 3

 4

 2400 2800 3200 3600

12674 samples, 4 users(× 10
−3

)

(f) 211th ranked record

 1

 2

 3

 4

 0 2000 4000 6000

206437 samples, 142 users(× 10
−4

)

(g) 2nd ranked record

 0

 1

 2

 3

 0 40000 80000 120000 160000

471271 samples, 1 user(× 10
−5

)

(h) 1st ranked record

Figure 8: Probability mass function of TTL with initial TTL equal to (a) 30 s, (b) 60 s, (c) 300 s, (d) 600 s, (e) 900 s, (f) 3 600
s, (g) 7 200 s, and (h) 172 800 s (48 h).

A careful analysis of this trace reveals the following. First, requests instants and final responses instants
do not differ much, thereby justifying our instantaneous transmission/processing assumption. Second, based
on the TTLs recorded, Inria’s DNS server respects the TTL rule. We are therefore in the case of a single
traditional DNS cache. Third, the TTLs found in the final response packets (those from Inria’s DNS server620

to users) vary from 1 to the initial TTL advocated by authoritative servers. For a given content, the initial
TTL did not change for the duration of the trace, therefore the caching duration at the DNS server, for each
content, has a deterministic distribution.

As the TTL in the cache decreases linearly with time, the requests from users get a value that decreases
over time until the content is removed from the cache and a miss occurs. The TTL values found in the final625

response packets are samples from a reverse sawtooth wave. If users’ requests form a Poisson process, then
the TTL values will be uniformly spaced between 1 and the initial TTL.

The trace has initial TTL values in the set {30 s, 60 s, 300 s, 600 s, 900 s, 1 h, 2 h, 4 h, 12 h, 24 h, 48 h,
168 h}. We have checked the distribution for many contents and for initial TTL values in the subset {30 s,
60 s, 300 s, 600 s, 900 s, 1 h, 2 h, 48 h}. The missing values had not enough samples for any content with630

23

that TTL value. We report the probability mass function in Fig. 8 for those contents that have the highest
amount of samples of TTL for the respective initial value. It is clear that the distribution is not uniform in
any of the depicted cases. Observe that in Figs. 8a-8g the number of users requesting the content is higher
than one, consequently the samples that each user gets have a different distribution than the one depicted.
In the case of Fig. 8h corresponding to the most popular content, the requests came from a single user, and635

therefore the depicted distribution is that seen by the cache of that single user and this distribution is not
uniform. This analysis emphasizes the pertinence of our models and the need to consider for the TTLs as
general distributions as possible.

An important point that we considered was to check whether requests are correlated or not. We checked
the auto-correlation function (ACF) of the requests of over 40 records having a large enough number of640

requests (this corresponds to a popularity rank below 350). We selected in particular those with TTL less
than 7 200 to ease the subsequent computation of our models. Table 2 reports important characteristics of
some of these records, namely the number of users (distinct requesters), the aggregate arrival rate, the TTL
of each record in the cache and the maximum and the minimum of the ACF, together with the respective
lags.645

Table 2: Several characteristics of some of the resource records

Record Number Arrival rate TTL Maximum Lag Minimum Lag
rank of users (requests/s) (s) of the ACF of the ACF

2 142 0.23959 7 200 0.70766 3 0.01848 17 924
9 317 0.05556 300 0.39636 8 0.03796 1

10 215 0.03442 300 0.28527 6 0.03850 1
24 3 0.03250 7 200 0.13669 20 −0.02570 189
26 3 0.03243 7 200 0.03809 20 −0.01261 174
29 4 0.03233 7 200 0.06728 20 −0.01584 125
31 3 0.03232 7 200 0.04351 20 −0.01169 1 414
33 4 0.03232 7 200 0.40307 20 −0.02839 512
34 2 0.03231 7 200 0.19227 20 −0.01614 1 206
37 3 0.03230 7 200 0.59283 20 −0.04151 275
38 4 0.03230 7 200 0.04294 20 −0.01190 166
40 4 0.03229 7 200 0.42250 20 −0.03986 44
42 3 0.03228 7 200 0.53545 20 −0.03773 191
44 2 0.03227 7 200 0.02921 20 −0.00962 137
90 3 0.03058 7 200 0.25333 19 −0.00199 124
138 2 0.02930 7 200 0.06785 18 −0.03172 114
157 2 0.02924 7 200 0.02623 18 −0.01505 33
196 6 0.02043 600 0.22308 1 −0.00244 101
346 45 0.00368 60 0.17712 6 −0.00282 40
348 74 0.00368 600 0.13295 3 −0.00229 39

We have observed time-varying behavior (week day/week-end, day/night) in the requests arrival processes
of many records. Such records exhibit correlations as can be seen in Table 2: the maximum of the ACF is
far from 0 (e.g. records with popularity 2, 37 or 42). The ACF of requests for other records remains within
10% (e.g. records with popularity 26, 29, 31). The requests are positively correlated as the minimum of the
ACF is close to 0. We conclude that Assumption 5 (renewal request process) is often not met. Testing our650

model using records of this trace that have correlated requests will give insight into its robustness since the
main assumptions used in the single cache analysis will not be met.

Our aim is to predict the cache performance metrics and most importantly the cache miss process as
it represents the traffic that flows upstream in the DNS hierarchy (also needed for network analysis). We
have tested our model with the same records whose auto-correlation function was checked, we will however655

report the results on only three of them, which have different popularity ranks and different ACF shapes.

24

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50 60 70 80 90 100

lag

Auto-correlation function

(a) 2nd ranked record : correlated requests

 0

 0.2

 0.4

 0.6

 0.8

 1

 7200 7250 7300 7350

inter-miss time (in seconds)

Cumulative distribution function

empirical

analytic

(b) record with rank popularity 2

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60 70 80 90 100

lag

Auto-correlation function

(c) 10th ranked record : correlated requests

 0

 0.2

 0.4

 0.6

 0.8

 1

 250 300 350 400 450 500 550 600

inter-miss time (in seconds)

Cumulative distribution function

empirical

analytic

(d) record with rank popularity 10

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60 70 80 90 100

lag

Auto-correlation function

(e) 90th ranked record : periodic correlation

 0

 0.2

 0.4

 0.6

 0.8

 1

 7200 7250 7300 7350

inter-miss time (in seconds)

Cumulative distribution function

empirical

analytic

(f) record with rank popularity 90

Figure 9: (a), (c), (e): correlation in requests; (b), (d), (f): miss process prediction.

Table 3: Mean, variance, squared coefficient of variation (SCV), and skewness of the inter-request times of selected records

Record rank Mean (s) Variance (s2) SCV Skewness #states of fitted MAP
2 4.16205 4477.5619 258.47 83.8751 128
10 29.06918 3836.6849 4.54 3.0162 16
90 32.70701 18.7103 18.71 20.7823 128

For each record, we used the KPC-Toolbox [31] to find the Markovian Arrival Process (MAP) that best
fits the inter-request times X of the aggregated arrival process. This tool matches with priority higher-
order correlations and can convert any MAP into a renewal process having inter-arrival times identically
distributed as arrivals in the MAP. The number of states of the fitted MAP and the mean/variance/skewness660

of the empirical inter-request time (as computed by the tool) for records with ranks 2, 10, and 90 can be
found in Table 3. These records appear to be significantly diverse as can be seen from their ACFs depicted
in Figs. 9a, 9c, and 9e. Moreover, these records have a significant amount of requests and miss requests
which allows to better compute the empirical distributions and to find a better renewal process fitting the
arrival data using the KPC-Toolbox.665

For each selected record (i.e. content), taking as input the fitted distribution and the TTL value, we use
the findings of Section 4.2.1 (deterministic TTL) to obtain the performance metrics of the cache relative to

25

Table 4: Performance metrics and relative errors

Record Miss rate Hit probability Occupancy
rank Trace Model Error (%) Trace Model Error (%) Trace Model Error (%)

2 0.00014 0.00014 0.920 0.99943 0.99941 0.002 0.99914 0.98995 0.920
10 0.00313 0.00311 0.765 0.90901 0.90924 0.025 0.93491 0.93516 0.027
90 0.00014 0.00014 0.114 0.99547 0.99544 0.003 0.99757 0.99944 0.188

miss
process

requests
exogenous
independent

3

1

4

5

6

7

2

disk

Figure 10: A binary tree with 7 caches.

this content (see Table 4) and the CDF of the inter-miss times (see Figs. 9b, 9d, and 9f). To determine the
CDF (23), we use a naive Riemann’s sum for the integral computation. Two parameters must be set: (i)
the upper bound of the integral τ , and (ii) the step length ∆. Clearly, having a larger τ and a smaller ∆670

decreases the numerical error but increases the computational cost. We set ∆ = 0.1 and τ equal to 100 times
the maximum between the mean inter-request time and the TTL. (For this reason, we tested our model on
records having a TTL less than 7200 s.)

The analytic results for the performance metrics are compared to those computed from the trace. Table 4
reports negligible values of the relative errors on the performance metrics (less than 1%). Looking now at675

the CDFs of both empirical and analytic results depicted in the right-hand side of Figure 9, we can say that
our model accurately estimates the CDF of the inter-miss time.

We conclude from the above that Corollary 1 and Proposition 3 appear to be applicable even if Assump-
tion 5 is not met. Recall Proposition 1; the expressions of the performance metrics are valid when requests
form simply a stationary and ergodic point process. This section suggests that our single cache model is680

robust.

6.2. Network of Caches Case

We now proceed to evaluating the robustness of our model of a network of caches. It is worth recalling
that with exponentially distributed caching durations our model coincides with the one developed in [11] to
study caches that reset the caching durations at each hit. In [11], Approximation 1 is also used; the authors685

evaluate their model by comparing the approximate results it yields to exact analytic results that can be
found when the conceptual IRM is used for requests. An excellent match is found which legitimates the
use of Approximation 1. In other words, our model approximates very well a network of caches with IRM
requests and exponentially distributed caching durations.

To test out model under other conditions, we resort to performing simulations. We will consider at first690

a situation in which Assumptions 4-5 are satisfied, which can be achieved using event-driven simulations.
This allows to test the quality of Approximation 1. Simulated results are used as “ground truth” to evaluate
the goodness of our approximate results (see Section 6.2.1). Seeing that our model is extremely accurate,
we test our model in a situation where Assumption 5 is not met, more precisely, inter-request times will be
correlated. This can be achieved by performing trace-driven simulations using the traces collected at Inria.695

We report the results in Section 6.2.2.
In both cases, we consider a binary tree consisting of 7 caches as shown in Fig. 10. This tree represents

well the hierarchy found in DNS: cache 1 is that of the authoritative server, caches 2 and 3 are typically those
of ISP’s DNS servers, and caches 4-7 are found at the client side (ADSL modem, laptop, etc.). However,
unlike the DNS hierarchy where nodes have a high degree, the node degree is 2 in our simulated network.700

While we chose a binary tree to ease the computation, it is interesting to note that it is the most challenging

26

case for Approximation 1, as it is expected to yield more accurate results as the node degree increases (see
the discussion after the statement of Approximation 1).

6.2.1. Testing Quality of Approximation 1 Using Event-Driven Simulations

We have performed event-driven simulations in which requests were generated according to a pre-705

determined distribution and different distributions for the caching durations were simulated.
To capture the fact that users have interleaving activity and inactivity periods, we assumed that requests

for all contents form a Markov-Modulated Poisson Process (MMPP). In other words, we considered an
Interrupted Poisson Process (IPP) to simulate the requests for a single content at each bottom-level cache.
The request rate at cache i is λi ∈ [0.5, 20] for i ∈ {4, 5, 6, 7}. As a consequence of IPP requests, each710

component (miss process) of the overall request process at caches 2, 3 and subsequently 1 is not a Poisson
process. This setting enables to test the quality of Approximation 1.

The caching durations at all caches follow the same distribution, with expectation in [0.5, 1.5]. Four
distributions have been considered in the simulations: deterministic, hypo-exponential, exponential and
hyper-exponential. Their respective coefficients of variation are 0, < 1, 1, and > 1. This allows to observe715

the effect of increasing the randomness of the TTL.
The “exact” values of the performance metrics are those obtained after running long enough simulations.

Our criterion for a long simulation is one that yields a relative incertitude on each metric less than 10−4.
For instance, the hit probability at cache i obtained through simulation is hS

P,i (the superscript S stands for

“simulation”). We calculated the 99% confidence interval [hS
P,i − ǫ, hS

P,i + ǫ], the relative incertitude on hP,i720

is then 2ǫ/hS
P,i. At the end of a simulation run, the latter was at most 0.6× 10−4.

The approximate values of the performance metrics are those predicted by our model and are obtained
by following the recursive procedure explained in Section 5.3. We have implemented a MATLAB numerical
solver that determines the CDFs in the network (using (31)-(32)) and then the metrics of interest at each
cache (using Corollary 1 where E[Zc] = limt→∞ Lc(t)). The numerical error comes from the integral com-725

putation used in (31)-(32) (e.g., the integrals over infinite ranges). Again, we use Riemann’s sum and, for
simplicity, unique values for τ and ∆ for all computations relative to a single simulation run. Consider all
inter-request times and all caching durations within the network of caches. We set τ to one hundred-fold the
maximum expectation among all these rvs, and ∆ to one thousandth of the minimum expectation among
the same rvs.730

Remark 4. The IPP is stochastically equivalent to a renewal process with a two phase hyper-exponential
CDF (also known as the H2 distribution) which is a special case of the diag.ME distribution. Also, three out
of the four distributions considered for the caching durations, namely the hypo-exponential, the exponential
and the hyper-exponential distributions, are also special cases of the diag.ME distribution. Therefore, three
out of the four simulated scenarios fall in the context of Proposition 10. Instead of following the general735

recursive procedure, we could have determined the CDFs in the network using the closed-form equations (43)
and (51) and then the metrics of interest at each cache using Corollary 1 and (26). The numerical error in
this case is due to finding numerically the roots of (39) and the solution of (40).

We have computed the relative error between the exact results obtained from simulations and the ap-
proximate results predicted by our model. The average relative error across all simulations on the miss rate,740

the hit probability and the occupancy at caches from different hierarchical levels are reported in Table 5
(columns 4, 6, 8, and 10). Our model is extremely accurate in predicting the performance metrics when
caching durations are not deterministic as the relative error does not exceed 0.3%. For deterministic caching
durations, an excellent prediction is available at bottom-level caches. The relative error increases as we
consider caches at higher hierarchical levels, it reaches roughly 5% at the third level, which is nevertheless745

an affordable value.
We performed another series of simulations which is essentially the same as the series described above

with the exception of having deterministic TTLs at all bottom-level caches for all four TTL distributions
considered at higher-level caches. At first we used the same values of λi for i ∈ {4, 5, 6, 7} as in Table 5, then
we repeated the simulations using another set of values that is λ4 = 0.052 requests/s, λ5 = 0.061 requests/s,750

27

Table 5: Analytic performance metrics and their relative errors (in percentage) at representative caches (λ4 = 1.57 requests/s,
λ5 = 0.87 requests/s, λ6 = 1.37 requests/s, λ7 = 0.68 requests/s)

Cache Performance Distribution of caching durations Trend
metric deterministic hypo-exponential exponential hyper-exponential

value rel. err. value rel. err. value rel. err. value rel. err.

4 miss rate 0.4948 0.0092 0.4991 0.0065 0.5004 0.0872 0.5024 0.0770 ր

hit probability 0.4328 0.0383 0.4279 0.0272 0.4263 0.0066 0.4241 0.0007 ց

occupancy 0.3579 0.0447 0.3609 0.0471 0.3619 0.0336 0.3633 0.0236 ր

2 miss rate 0.5671 1.1214 0.5267 0.0848 0.5168 0.1026 0.5107 0.0013 ց

hit probability 0.4161 1.4561 0.4639 0.1868 0.4759 0.1514 0.4841 0.1032 ր

occupancy 0.5817 1.1460 0.5402 0.0485 0.5301 0.0631 0.5238 0.0418 ց

1 miss rate 0.5293 5.0614 0.4823 0.2367 0.4697 0.0687 0.4605 0.0065 ց

hit probability 0.5179 4.5360 0.5205 0.2525 0.5236 0.1067 0.5273 0.0707 ր

occupancy 0.6767 5.0986 0.6167 0.1965 0.6005 0.0277 0.5887 0.0366 ց

λ6 = 0.091 requests/s, λ7 = 0.078 requests/s. For both sets of values, the results are very similar to those
reported in Table 5 and are not reported here to avoid repetitions.

Our comparative study suggests that using Approximation 1 is not a limitation.

Remark 5. An interesting trend is noted in the values reported in Table 5. (The same trend is seen in
the results of the other series of simulations not reported here.) Considering a given metric (mR, hp or π),755

its value changes monotonically with the coefficient of variation of the caching durations’ distribution. The
trend of each metric and at each cache is shown in Table 5, column 11. It is important to observe that no
distribution achieves the maximum hit probability at any cache (values in bold font in Table 5).

This remark suggests that for IPP requests, deterministic caching durations should be used only at
bottom-level caches, i.e., at the client side. Caches at servers should store contents for durations as variable760

as possible (large coefficient of variation) in order to improve the hit probability. Investigating whether this
remark holds under different traffic conditions is left for future work.

6.2.2. Testing Robustness to Assumption 5 using Trace-Driven Simulations

In this section, we assess the robustness of our model (and therefore our renewal assumptions) under
realistic traffic conditions. We repeat the previous experiment on the binary tree (see Fig. 10), but instead765

of generating requests synthetically, we rely on users’ requests from the trace collected at the Inria DNS
cache (see Section 6.1 for a description of this trace).

In this trace all requests for a content form a single stream that arrives to a single cache. What we
need instead are four streams of requests for the same content, one stream for each bottom-level cache. We
resort to artificially separate one single stream of requests into four streams. Naturally, one would pick770

the most popular content which has the highest amount of requests to do this manipulation. However, the
content ranked first had requests issued by a single user. Splitting these requests into four streams would
result in four correlated request streams, whereas we need the input requests at bottom-level caches to be
independent.

Fortunately, the data related to the 2nd most popular content aggregates 206 437 requests issued by 142775

distinct users. This data is thus suitable for our experiment. We split the data into four sets and use each
set to reproduce the request arrival process at one particular bottom-level cache. Doing so, the following
holds:

• 67 079 requests issued by one user arrive to cache 4;

• 56 683 requests issued by one user arrive to cache 5;780

• 41 338 requests issued by seventy users arrive to cache 6;

• 41 337 requests issued by seventy users arrive to cache 7.

28

Table 6: Mean, variance and SCV of the inter-request times at caches 4, 5, 6 and 7

Bottom-level Number of Number of Inter-request times
cache users requests Mean (s) Variance (s2) SCV
4 1 67079 8.10881 1821380.58 27700.42
5 1 56683 3.10663 195484.85 20255.08
6 70 41338 20.84186 77033.81 177.34
7 70 41337 20.84120 33448.23 77.01

Table 7: Mean TTL at all caches

Cache 1 2 3 4 5 6 7
Mean TTL 1.27900 1.02600 1.00540 1.28340 0.72360 1.44790 1.02780

The mean/variance/SCV of the inter-request time at each bottom-level cache can be found in Table 6. Each
sub-trace/input process is fitted into a MAP using KPC-Toolbox and the CDF of the first inter-request time
is used as the input of our TTL-based cache network model.785

Regarding the TTL distribution, we consider that timers are either all deterministic or all exponentially
distributed with mean uniformly chosen at random in [0.5, 1.5] seconds. The values used are in Table 7.

Our objective is to compare the analytic results predicted by our network model to the results found
by simulations. We have modified the event-driven simulator used in Section 6.2.1 to use the four sets of
requests at bottom-level caches instead of generating IPP synthetic requests. This trace-driven simulator790

was run for a long enough time in order to have a relative incertitude on each metric less than 10−4.
As for the analytic results, we implemented again a MATLAB numerical solver that applies the recursive

procedure presented in Section 5.3. The solver computes sequentially:

1. the CDFs of the miss processes at caches 4 to 7 (results similar to those in Figs. 9b, 9d and 9f);

2. the CDFs of the aggregate requests at caches 2 and 3 (results in Figs. 11a and 11c);795

3. the CDFs of the miss processes at caches 2 and 3 (results in Figs. 11b and 11d);

4. the CDF of the aggregate requests at cache 1 (result in Figure 11e);

5. the CDF of the miss process at cache 1 (result in Figure 11f).

Numerical errors or model mispredictions propagate upwards in the tree of caches, as the arrival process at
higher caches builds upon the miss process from previous caches.800

The results of the comparison of the analytic and empirical distributions of the miss processes at caches
4 to 7 are similar to those in Figs. 9b, 9d and 9f. Regarding caches 3 to 1, we report in Figure 11 the analytic
and empirical distributions when timers are exponentially distributed.

The CDFs of the interval of the aggregate requests processes are depicted in Figs. 11a, 11c and 11e for
caches 3, 2, and 1 respectively. Our model computes the CDF according to (31) assuming that requests805

processes at caches 4 to 7 are renewal processes. Despite this assumption being violated in the traces used,
distributions in every graph are fairly close to each other.

Recall that (31) is the CDF of the first inter-request time of the aggregate process. According to
Approximation 1, we use this CDF for all subsequent inter-request times (renewal approximation).

The CDFs of the inter-miss times, both empirical and analytic, at caches 3, 2 and 1 are displayed in810

Figs. 11b, 11d and 11f respectively. The analytic CDF is derived according to (32) using Approximation 1.
The CDF used for the aggregate process is the analytic one and not the empirical one. Overall, we find that
the results shown in Fig. 11 are promising, encouraging us to pursue the validation of our model to cover
other distributions for the caching durations.

7. Conclusions815

The analytic models introduced in this paper allow to study the modern DNS cache hierarchy. Our
single cache model has been tested on real DNS traces that do not meet the renewal assumption. It predicts

29

10
−5

10
0

10
5

0

0.5

1

1.5

Inter-arrival time, X

H
(x
)
=

P
(X

<
x
)

Exp TTL Cache3: Emp. CDF vs Ana. CDF

Ana.

Emp.

(a) intermediate cache 3

10
−5

10
0

10
5

10
10

0

0.5

1

Inter-miss time, Y

G
(t
)
=

P
(Y

<
t)

Exp TTL Cache3: Emp. CDF vs Ana. CDF

Ana.

Emp.

(b) intermediate cache 3

10
−5

10
0

10
5

10
10

0

0.5

1

1.5

Inter-arrival time, X

H
(x
)
=

P
(X

<
x
)

Exp TTL Cache2: Emp. CDF vs Ana. CDF

Ana.

Emp.

(c) intermediate cache 2

10
−5

10
0

10
5

10
10

0

0.5

1

1.5

Inter-miss time, Y
G
(t
)
=

P
(Y

<
t)

Exp TTL Cache2: Emp. CDF vs Ana. CDF

Ana.

Emp.

(d) intermediate cache 2

10
−5

10
0

10
5

0

0.5

1

1.5

Inter-arrival time, X

H
(x
)
=

P
(X

<
x
)

Exp TTL Cache1: Emp. CDF vs Ana. CDF

Ana.

Emp.

(e) root cache 1

10
−5

10
0

10
5

10
10

0

0.5

1

Inter-miss time, Y

G
(t
)
=

P
(Y

<
t)

Exp TTL Cache1: Emp. CDF vs Ana. CDF

Ana.

Emp.

(f) root cache 1

Figure 11: Empirical and analytic distributions for the aggregate request processes and the miss processes at caches 3, 2 and
1.

the performance metrics and the CDF of the miss process remarkably well. The approximation used in our
network of caches model has been validated through simulations. We have found that if the renewal function
of the request process is concave, then the deterministic policy maximizes the hit probability and minimizes820

the occupancy. For convex renewal functions, the opposite holds. Our numerical analysis suggests that no
distribution achieves the maximum hit probability at all caches in a hierarchical network.

Acknowledgments

The authors would like to thank Francis Montagnac and Marc Vesin (IT staff at Inria, Sophia Antipolis)
for collecting and anonymizing the DNS traces. The authors are deeply grateful to Fabrice Huet for his825

help in processing the large amount of data collected. The authors thank the referees for their valuable
comments.

References

[1] N. Choungmo Fofack and Sara Alouf, Modeling modern DNS caches, in: Proc. ACM ValueTools ’13, Torino, Italy, 2013.
[2] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, S. Seshan, On the responsiveness of DNS-based network control, in:830

Proc. IMC ’04, Taormina, Italy, 2004.

30

[3] R. J. Bayardo, R. Agrawal, D. Gruhl, A. Somani, YouServ: a web-hosting and content sharing tool for the masses, in:
Proc. ACM WWW ’02, New York, USA, 2002, pp. 345–354.

[4] T. Callahan, M. Allman, M. Rabinovich, On modern DNS behavior and properties, ACM SIGCOMM Computer Commu-
nication Review 43 (3) (2013) 7–15.835

[5] Y. T. Hou, J. Pan, K. Sohraby, S. X. Shen, Coping miss synchronization in hierarchical caching systems with nonlinear
TTL functions, in: Proc. IEEE ICC ’04, 2004, pp. 2194–2198.

[6] N. Choungmo Fofack and Sara Alouf, Non-renewal TTL-based cache replacement policy and applications: Case of modern
DNS hierarchy, Tech. Rep. RR-8414, Inria (Nov. 2013).

[7] Y. T. Hou, J. Pan, B. Li, S. Panwar, On expiration-based hierarchical caching systems, IEEE Journal on Selected Areas840

in Communications 22 (1).
[8] J. Jung, A. W. Berger, H. Balakrishnan, Modeling TTL-based Internet caches, in: Proc. IEEE Infocom ’03, San Francisco,

CA, USA, 2003.
[9] O. Bahat, A. M. Makowski, Measuring consistency in TTL-based caches, Performance Evaluation 17 (2005) 439–455.

[10] V. Martina, M. Garetto, E. Leonardi, A unified approach to the performance analysis of caching systems, in: Proc. IEEE845

Infocom ’14, Toronto, Canada, 2014.
[11] N. Choungmo Fofack, P. Nain, G. Neglia, D. Towsley, Analysis of TTL-based cache networks, in: Proc. ACM Value-

Tools ’12, Cargèse, France, 2012.
[12] N. Choungmo Fofack, P. Nain, G. Neglia, D. Towsley, Performance evaluation of hierarchical TTL-based cache networks,

Computer Networks 65 (2014) 212–231.850

[13] N. Choungmo Fofack, On models for performance analysis of a core cache network and power save of a wireless access
network, Ph.D. thesis (Feb. 2014).

[14] D. S. Berger, P. Gland, S. Singla, F. Ciucu, Exact analysis of TTL cache networks, Performance Evaluation 79 (2014)
2–23.

[15] J. Jung, E. Sit, H. Balakrishnan, R. Morris, DNS performance and the effectiveness of caching, in: Proc. ACM SIGCOMM855

Workshop on Internet Measurement (IMW ’01), New York, NY, USA, 2001.
[16] F. Baccelli, P. Brémaud, Elements of Queueing Theory, Palm Martingale calculus and Stochastic recurrences, 2nd Edition,

Springer, Berlin, 2003.
[17] W. Whitt, Approximating a point process by a renewal process, i: Two basic methods, Operations Research 30 (1) (1982)

125–145.860

[18] A. Feldmann, W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models,
in: Proc. IEEE Infocom ’97, Kobe, Japan, 1997.

[19] D. R. Cox, Théorie du Renouvellement, Monographies Dunod, Paris, 1966.
[20] M. Tortorella, Numerical solutions of renewal-type integral equations, INFORMS Journal on Computing 17 (2005) 73–96.
[21] S. Karlin, Total Positivity, Vol. 1, Stanford University Press, 1968.865

[22] M. Brown, Bounds, inequalities, and monotonicity properties for some specialized renewal processes, The Annals of
Probability 8 (2) (1980) 227–240.

[23] A. Dan, D. Towsley, An approximate analysis of the LRU and FIFO buffer replacement schemes, in: Proc. ACM Sigmet-
rics ’90, Boulder, CO, USA, 1990, pp. 143–152.

[24] E. J. Rosensweig, J. Kurose, D. Towsley, Approximate models for general cache networks, in: Proc. IEEE Infocom ’10,870

San Diego, USA, 2010.
[25] A. Simonian, M. Gallo, B. Kauffmann, L. Muscariello, C. Tanguy, Performance of the random replacement policy for

networks of caches, in: Proc. ACM Sigmetrics/Performance ’12, London, UK, 2012, pp. 395–396.
[26] J. A. Fill, L. Holst, On the distribution of search cost for the move-to-front rule, Random Structures Algorithms 8 (3)

(1996) 179–186.875

[27] S. Karlin, H. M. Taylor, A First Course in Stochastic Processes, 2nd Edition, Elsevier, 1975.
[28] A. T. Lawrance, Dependency of intervals between events in superposition processes, Journal of the Royal Statistical

Society, Series B (Methodological) 35 (2) (1973) 306–315.
[29] V. Isham, Dependent thinning of point processes, Journal of Applied Probability 17 (4) (1980) 987–995.
[30] A. D. Polyanin, A. V. Manzhirov, Handbook of Integral Equations, 1st Edition, CRC Press, 1998.880

[31] G. Casale, E. Zhang, E. Smirni, KPC-Toolbox: Simple yet effective trace fitting using Markovian Arrival Processes, in:
Proc. QEST ’08, 2008.

31

	Introduction
	Related Works
	Definitions and Assumptions
	Considered Scenario
	Metrics and Properties of a Cache
	Processes at Hand

	Analysis of a Single Cache
	The Model and its Analysis
	Hit/Miss/Occupancy Probabilities
	Consistency Metrics

	Special TTL Distributions
	Deterministic Distribution
	Exponential Distribution
	Diagonal Matrix-Exponential Distribution

	Optimizing the Performance Metrics
	Applicability to a Traditional DNS Cache

	Analysis of a Cache Network
	Linear Networks: Exact Analytical Results
	(Linear) Star Networks: Exact Partial Results
	Tree Networks: Multiple Sources of Requests
	Polytree Networks: Multiple Destinations
	Closed-Form Results with diag.ME RVs

	Validation, Numerical Results
	Single Cache Case: Using a Real Trace
	Network of Caches Case
	Testing Quality of Approximation 1 Using Event-Driven Simulations
	Testing Robustness to Assumption 5 using Trace-Driven Simulations

	Conclusions

