Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a Hybridizable Discontinuous Galerkin method

Abstract : This work is concerned with the development of numerical methods for the simulation of time-harmonic electromagnetic wave propagation problems. A hybridizable discontinuous Galerkin (HDG) method is adopted for the discretization of the two-dimensional time-harmonic Maxwell’s equations on a triangular mesh. A distinguishing feature of the present work is that this discretization method is employed at the subdomain level in the framework of a Schwarz-type domain decomposition algorithm (DDM). We show that HDG method naturally couples with a Schwarz method relying on optimized transmission conditions. The presented numerical results show the effectiveness of the optimized DDM-HDG method.
Type de document :
Article dans une revue
Computer Physics Communications, Elsevier, 2016, 〈10.1016/j.cpc.2015.11.011〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01258441
Contributeur : Stéphane Lanteri <>
Soumis le : mardi 19 janvier 2016 - 09:52:56
Dernière modification le : jeudi 3 mai 2018 - 13:32:55

Identifiants

Citation

Yu-Xuan He, Liang Li, Stéphane Lanteri, Ting-Zhu Huang. Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a Hybridizable Discontinuous Galerkin method. Computer Physics Communications, Elsevier, 2016, 〈10.1016/j.cpc.2015.11.011〉. 〈hal-01258441〉

Partager

Métriques

Consultations de la notice

241