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Abstract. This paper studies the security level expected by the canon-
ical form of the Self-Synchronizing Stream Cipher (SSSC). A SSSC can
be viewed as the combination of a shift register together with a filter-
ing function. The maximum security of such a cipher is reached when
the filtering function is random. However, in practice, Pseudo Random
Functions (PRF) are used as filtering functions. In this case, it is shown
that the security against chosen-ciphertext attacks (IND-CCA security)
cannot be reached for the canonical form of the SSSC, but it is however
secure against chosen plaintext attacks (IND-CPA secure). This result
guarantees the existence of SSSC that can be IND-CPA secure although
till now, the SSSC proposed in the open literature had be broken against
IND-CPA attacks. The security proof lies on the property of indistin-
guishability.

1 Introduction

Self-Synchronizing Stream Ciphers (SSSC) was patented in 1946. The basic
principe of such ciphers is to encrypt every plaintext symbol with a trans-
formation that only involves a fixed number of previous ciphertexts symbols.
Therefore, every ciphertext symbol is correctly decrypted provided that previ-
ous symbols have been properly received. This self-synchronisation property has
many advantages and is especially relevant to group communications.

Regarding security, as each plaintext symbol influences potentially all subse-
quent ciphertexts, they naturally have good diffusion properties and are efficient
against attacks based on plaintext redundancy. Furthermore, they can prevent
from traffic analysis as the information which is conveyed through the channel
is encrypted whether there is traffic or not.

In the early 90s, studies have been performed [Mau91lDGV92] to propose
secure design of SSSC. These works have been followed by effective construc-
tions ([DGV92Sar03IDK08]), but till now, all of these SSSC schemes have been
broken, what may make believe that a secure SSSC is impossible to design.



The canonical form of the Self-Synchronizing Stream Cipher (SSSC) is con-
stituted by the combination of a shift register, which acts as a state register
with the ciphertext as input, together with a filtering function that provides the
running keystream. In this paper, it is shown that this architecture is not re-
sistant against chosen ciphertext attack (IND-CCA security), but can reach the
resistance against chosen plaintext attack (IND-CPA security), provided that
the filtering function is pseudo random. The technical developments used to es-
tablish the security proof follow similar lines that those used when dealing with
block cipher symmetric encryption scheme.

The paper is organized as follows. In Section [2] we recall the characteristic of
the canonical form of the SSSC. Section [3|is devoted to broad security notions
following by the study of the security of the canonical form of SSSC. Finally, we
end up with concluding remarks in Section[d] In particular, we raise the problem
of deriving minimal conditions on the output function of the canonical form in
order to guarantee the IND-CPA security.

2 Canonical form of the Self-Synchronization Stream
Cipher

2.1 Generalities on SSSC

A conventional way for designing an SSSC is to resort to a shift-register-like ar-
chitecture, giving the so-called canonical representation of the SSSC [MvOV96].
This canonical representation is depicted in Figure [I] It has also been studied
in [Parl2] and admits at the cipher and decipher sides the respective equations:

c =2 Dy my =2y D¢t

cipher: {Zt = fulet=1s s Con) decipher: {Et = fuler=1s con) (1)
where n is the dimension of the shift register, f,, : {0,1}™ — {0,1} denotes
the filtering function parametrized by the secret key « and for all instant t,
m¢ € {0,1} is the plaintext symbol, ¢; € {0,1} is the ciphertext symbol, z; €
{0, 1} is the keystream symbol. The quantity z; € {0, 1} is the keystream symbol
on the deciphering side and m; € {0,1} is the recovered plaintext symbol. If n
ciphertext symbols are properly received, then the receiver recovers the plaintext
since m; = m; whenever z; = z;. Finally, the vector x; = (¢;—1,...,¢—p) stands
for the internal state.
NB: it is worth pointing out that all the results are established here in the
Boolean case but still hold when considering any other finite alphabet.

The secret keys k is some suitable parameters that select the function f
among a family of filtering functions. The dimension of the shift register is given
by the integer n. The keystream symbol z; is the output of the filtering function.
It only depends on the secret key « shared by the cipher and the decipher and on
n past values of the ciphertext. The ciphertext ¢; is worked out from an exclusive
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Fig. 1. Canonical form of a SSSC. Left: the ciphering. Right: the deciphering.

or of the plaintext symbol m; and of the keystream symbol z;. It is conveyed
through the public channel. Since the function f shares, at the transmitter and
receiver sides, the same values, namely the n past ciphertexts, it is clear that
the keystreams synchronize automatically after a finite transient time of length
n. As a result, the dimension n of the shift register defines the synchronization
delay of the decipher.

The SSSC model is actually a conceptual model that can be implemented
by different architectures resulting from different design approaches. An overview
has been given in [Dae95] and more recently in the survey paper [MGI10]. The so
called Cipher Feedback (CFB) mode of operation consists in building a closed-
loop architecture involving both a shift register and a block cipher primitive.
The mostly adopted method to implement a binary SSSC is to resort to a block
cipher (AES for instance) in 1-bit CFB mode [0S80]. Nevertheless, this mode is
quite inefficient in terms of encryption speed since one block cipher operation
is required for encrypting a single plaintext bit. The state transition function is
described by the shift register. It is very simple and is secret key independent.
Therefore, the security relies entirely on the security of the filtering function.
Maurer’s approach is suggested in [Mau91] as an alternative. The most impor-
tant concept of this approach is the use of several finite state automata in parallel
and serial combinations. However, it is shown in [Dae95] that this method is not
really relevant and a recursive approach is preferred. In order to guarantee the
self-synchronization in finite-time, the state transitions functions of the recursive
model proposed in [Dae95)] are the T—functions (T for Triangle), which are func-
tions that propagate dependencies in one direction only, for instance from left to
right. In [MGI0][PGM11], it has been shown that some concepts borrowed from
control theory should appear as promising to design new SSSC architectures.

2.2 Encryption/decryption mechanisms of SSSC

In order to establish the security proof of the canonical SSSC, it is necessary to
formally define the encryption and the decryption mechanisms.

2.2.1 Setup A random secret key k is chosen in the keyspace for both the
cipher and the decipher.



2.2.2 Encryption For encrypting a message m consisting in £ binary symbols,
the steps are the following;:

1. Choose randomly an n-dimensional binary vector as the initial state z¢ of
the shift register.

2. Choose randomly n binary symbols to build the synchronization sequence
and concatenate it with the message to be encrypted yielding a binary se-
quence my, . ..,My4¢—1. Lhe first n symbols are those of the synchronization
sequence, and the other ones are those of the message to be encrypted.

3. For each symbol at instant ¢t > 0,

(a) Compute the keystream symbol as z; = fi(2¢).

(b) Compute the ciphertext symbol as ¢; = m; @ z;.

(¢) Update the shift register state by shifting its components and feeding it
by the computed ciphertext symbol ¢; to obtain the next state z;11.

2.2.3 Decryption For decrypting the cryptogram consisting in n + ¢ binary
symbols, the steps are the following:

1. Initialize the shift register state to any arbitrary value, for example the n-
dimensional zero vector Zy = 0.

2. For each symbol at instant ¢t > 0,
(a) Compute the keystream symbol as z; = fi.(Z¢).
(b) Compute the plaintext symbol as m; = ¢; ® ;.
(¢) Update the shift register state by shifting its components and feeding it

by the computed ciphertext symbol ¢; to obtain the next state Z;11.

3. The first n decrypted symbols correspond to the synchronization sequence
and are ignored. The decrypted message consists of the ¢ last decrypted
symbols.

3 Security proof of the canonical SSSC

3.1 Indistinguishability

The framework used here to assess the security of SSSC is the one defined in
[BRO5] for symmetric encryption schemes. The notions of security games is used
within this framework. They are based on security concepts introduced by Gold-
wasser and Micali [GM82IGMS84]. The first concept is the semantic security,
which is a computational analogue to the Shannon perfect secrecy. However, the
semantic security does not allow to fluently deal with security proof. This leads
the authors in [GM82JGM84] to define another concept known as indistinguisha-
bility which better facilitates proving the security of practical cryptosystems.

A cryptographic scheme is said to be secure, in the sense of indistinguishabil-
ity, if a polynomial complexity algorithm has a negligible advantage in guessing
from which of both messages mg and m; it has provided, emanates the cryp-
togram returned to it. This is formalized by the so called IND-game.



IND-game. This game involves two players: an algorithm A called adversary or
challenger, and an oracle. The game consists of the following steps:

1. The challenger chooses two messages my and m; and provides the oracle
with them.

2. The oracle randomly chooses a binary digit b € {0, 1}, encrypts the message
my and returns the cryptogram to the challenger.

3. The challenger is challenged to guess the value of b, that is which of the two
messages has been encrypted. The answer of the challenger is a binary value
b. The challenger wins if b = b.

Before giving its answer, the challenger can be supported by the oracle to
decrypt ciphertexts the challenger chooses (Chosen Ciphertext Attack, CCA) or
to encrypt plaintexts the challenger chooses (Chosen Plaintext Attack, CPA). Of
course, in a CCA attack, the challenger is not allowed to request the decryption
of the challenge it has received. R

For any b and b in the set {0, 1}, let Prob,,, (A = b) be the probability that
the challenger A answers b when the ciphertext corresponds to the encryption
of the message my. The advantage of A in this IND-game is by definition:

Adv(A) =

Proby,, (A = 0) — Prob,,, (A = 0)‘

As mg and m; are randomly chosen with the same probability 1/2, it holds that

~

Adv(A) = ‘2Prob(b —) -1

)

~

where Prob(b = b) denotes the probability that A wins.

If the challenger answers at random, then its advantage is null. If it always
wins, or always looses, then its advantage equals 1.

A cryptographic scheme is defined by a security parameter, which is for
example the key size. Such a scheme is said to be IND-secure if the advantage
of the challenger is negligible. A function of the real number z is said to be
negligible if it decreases faster that the inverse of any polynomial in z as x
grows to infinity. A cryptographic algorithm is said to be IND-CCA if it is IND-
secure during a CCA attack. It is said to be IND-CPA if it is IND-secure during
a CPA attack.

For the canonical SSSC, the security parameters are the size of the shift
register which equals the number of inputs of the filtering function and the size
of the secret key.

3.2 IND-CCA security

The ideal case for a canonical SSSC is when the filtering function is randomly
chosen among all the 22" Boolean functions. This ideal case is not realistic as
it would imply an exponential key size. However, even in this situation, the
following property holds:



Proposition 1 The canonical SSSC cannot reach the IND-CCA security

Proof. Consider the special situation when the challenger provides mg =0---0,
the message that only involves symbols 0, and m; = 1---1, the message that
only involves symbols 1. It receives a cryptogram c. It modifies only the last
symbol of the cryptogram and asks the oracle to decrypt. If the answer of the
oracle starts with a sequence of 0, then c is the encryption of my and if it starts
with a sequence of 1, then c¢ is the encryption of m;. Following this strategy, the
challenger always wins. That suffices to complete the proof.

Actually, this is due to the fact that the cryptograms produced by an SSSC are
malleable. Indeed, they can be modified at their end without any impact on the
beginning of the plaintext.

The only security level that can be expected for the canonical SSSC is the
IND-CPA as shown in next section.

3.3 IND-CPA security of the canonical SSSC

The main result of this section is to prove that, when the filtering function is a
so called Pseudo Random Function (PRF), then the canonical SSSC reaches the
IND-CPA security. Let us first recall what a Pseudo Random Function is.

3.3.1 Pseudo Random Functions. A Pseudo Random Function is an ele-
ment randomly chosen in a family of Pseudo Random Functions. And a family
of functions is said to be Pseudo Random if it is computationally undistinguish-
able from the set of all the functions. This means that for polynomial complexity
adversaries, a Pseudo Random Function behaves as if it was a true randomly
chosen function.

The pseudo random property is assessed by the so called PRF-game that
involves an adversary B, challenged to guess whether a given function is either
a true random function, randomly chosen in the set of all the functions, or is an
element of the family. The entries of the algorithm B are an integer n together
with an oracle that, on request for an n-dimensional vector, returns the value of
the function.

PRF-game. The element of the game for the parameter n is a family of functions
frx :{0,1}™ — {0,1}. The steps of the game are the followings:

1. The oracle chooses a random bit b € {rf,prf}. If b = prf (pseudo random
world) then it randomly chooses a function f = f, in the family of pseudo
random functions. If b = rf (random world), it randomly chooses a Boolean
function f in the set of all 22" Boolean functions {0,1}" — {0, 1}.

2. The challenger asks the oracle for the values of f(z;) for inputs 1, ..., z,.
The number ¢ of queries the challenger is allowed to perform is bounded by
a polynomial in n.



3. After the ¢ queries, the challenger must answer a binary value b that means
that the challenger guesses that the chosen function was pseudo random
(b = prf) or was purely random (b =rf). If b = b then the challenger wins.

The adversary B does not know in which world it plays, pseudo random or
random world? Let Proby,¢(B = prf) be the probability that B answers prf when
it plays in the pseudo random world and let Prob,¢(B = prf) be the probability
that B answers prf when it plays in the random world. In the first case, the
answer of B is correct, and in the second case, it is wrong. The advantage of B
in the PRF-game is by definition:

Adv(B) = |Probp(B = prf) — Proby(B = prf)

A family of Boolean functions is said to be pseudo random (PRF) if the max-
imum advantage of any adversary is negligible. N.B. For a family of functions

to be PRF, it is necessary that its number of elements increases faster than any
polynomial in the security parameter n. If not, the exhaustive search algorithm
has polynomial complexity. In cryptographic context, the secret key selects an
element of the family. So, the key size must be greater that the logarithm of any
power of n. In practice, an n-bit long key is admissible.

3.3.2 Main result. Let us first state our main result.

Proposition 2 If the filtering function of a canonical SSSC' is a Pseudo Ran-
dom Function, then it reaches the IND-CPA security.

Before proceeding to the detailed proof, we explain the main lines of the reason-
ing which are, by the way, usual for security proof. It must be shown that any
adversary A against the SSSC has a negligible advantage. Let F be the family
where the filtering function is chosen. This family is assumed to be PRF. Then,
an adversary B against the family F is constructed, using the adversary A as
a subroutine. In orther words, B orchestrates the IND-game of A against the
SSSC. The game played by B is the PRF-game. The advantage of B is evaluated
and lower bounded by the advantage of A, up to a negligible function n +— e(n):

Adv(A) < 2Adv(B) +e(n). (2)

As the family F is assumed to be pseudo random, the advantage of B is negligible,
and so is the advantage of A. Thus, the canonical SSSC reaches the IND-CPA
security. We are now able to proceed to the detailed proof of Proposition [2}

Proof. The proof involves two main steps.

Step 1: Construction of an adversary B against F. Let A be an IND-CPA adver-
sary against the SSSC. Let us introduce a PRF adversary B. The adversary B will
act as an oracle for A and will call upon the function oracle to produce cipher-
texts on request. If A distinguishes correctly which message has been encrypted,



then it may be supposed that the ciphertexts produced by B are correctly built
with the pseudo-random function and it returns prf, otherwise it returns rf. The
precise definition of algorithm B is the following:

1. Algorithms B receives from A two plaintexts mg and my. It picks up a
random bit b € {0,1}. If b = 0, then it encrypts my, otherwise it encrypts
my. The result ¢ is returned to A.

2. For each message encryption, B uses the equation of the SSSC and calls for
the function oracle to get the value of the keystream symbol and thus, the
value of the ciphertext symbol. R

3. After a polynomial time, A returns the value b. If b = b, that is A answers
correctly, then B returns prf, else, if b # b, that is A answers wrongly, then
it returns rf.

Step 2: Bound for the advantage of A. We aim at proving the inequality ,
where € is a negigible function n — e(n).

By definition of the advantage of an adversary in the PRF-game and from the
above definition of the algorithm B, one has:

Adv(B) = ’Probprf(B = prf) — Prob.¢(B = prf)‘

PI‘Obprf(b = ) - Probrf(b = )

In the prf world, the algorithms B acts exactly as a true SSSC cipher and thus,
the probability that A wins is exactly the probability that A answers the value
chosen by algorithm B:

= ~ ~ 3
< |2Probpye(b = b) — 2Probye(b = b)’ n ‘2Probrf(b —B) -1 ®)

Adv(A) = |2Probp(b = b) — 1
b

The first term of the righthandside of the above inequality is twice the advantage
of B. It remains to prove that the second term is negligible. While the algorithm
B runs, two situations may happen. Either all the inputs x; in the queries to
the function oracle are different or there exists one or several collisions in those
inputs. Let us denote with E' the former event, that is there is no collision in the
queries to the function oracle. The converse event is denoted by E. As E and F
are disjoint, one has:

Proby¢(b = b) = Proby¢(b = b and E) + Prob,¢(b = b and E) (4)

When the event F occurs, in the rf world, the answers of the function oracle are
purely random and independent. The ciphertexts that B returns to A are merely
random and in this case, A cannot have any advantage. It results that:

~ 1
Prob,s(b="0and E) = 5 (5)



From and , it is straightforward to see that
‘2Probrf(b =) — 1| = 2|Probye(b = b and ) (6)

Regarding the event E, i.e. if there exist collisions in the queries of B, then the
ciphertexts provided to A cannot be considered as purely random. One has:

Proby¢(b = b and E) = Prob,s(b = b | E) x Prob(E). (7)

Finally, it suffices to prove that the probability of the event E is negligible. Let
q be the number of messages that the algorithm B encrypts, and ¢ be the largest
length of a message. Thus, the number of queries of B to the function oracle is
upper bounded by ¢ x /.

During the encryption of a single message, the inputs sent to the function
oracle are the internal state of the n dimensional shift register. They follow a
path in the so called De Bruijn graph. Let us denote by X = (x1,...,x) and
Y = (y1,...,y¢), two paths of length ¢ in this graph. As the initial state of
the shift register is random, the states of paths X and Y are random (but not
independent). We have that

4
Prob(X NY # ) < Prob(y; € X)

i=1
This sum involves ¢ terms, all of them being less than or equal to £/2", thus

62
Prob(X NY # () < o0
The probability of event F is the probability that there exist at least two paths
among the g paths that correspond to the encryption of the ¢ messages which
collide. Thus, one has:

_ 2
-1 &

2 2n

As g and { are bounded by a polynomial in n, this probability is negligible
and is fulfilled. That completes the proof.

Prob(E) <

4 Concluding remarks

The cryptological complexity of the canonical form of the Self-Synchronizing
Stream Cipher lies in the filtering function. The maximum security is achieved
when this function is a pure random function. It has been shown in this paper
that, even in this ideal case, this kind of cipher cannot reach the IND-CCA
security. This is due to the fact that the ciphertexts are malleable. Thus, the
maximum expected security is IND-CPA. In realistic implementation, the filter-
ing is a pseudo random function, for example a single output of a block cipher
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primitive. We have proved that the IND-CPA security is reached. The interest
of the result lies in that it guarantees the existence of SSSC that can be IND-
CPA secure although till now, the SSSC proposed in the open literature had be
broken against IND-CPA attacks.

Future work will aim at relaxing the pseudo randomness assumption. Indeed,
it is not mandatory. For example, clearly, functions built from a class of pseudo
random functions where every element f satisfies f(0) = 0 does not define a
class of pseudo random functions. And yet, for an SSSC built from this class,
the IND-CPA security is guaranteed. The same holds if a polynomial number
of values are fixed in each element of the class. As a result, checking minimal
properties for the filtering function to guarantee IND-CPA security is still chal-
lenging.
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