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Abstract—This paper addresses the problem of the for-

ward kinematics of cable-driven parallel robots (CDPR)

having elastic or non elastic cables under the assumption

that the cables are submitted to small changes in their

lengths compared to an initial situation at which the pose

is known, a situation that is typical of a real-time forward

kinematics used for control purposes. We show that at the

initial point it is necessary to have not only the pose but also

the cable configuration, i.e. having the knowledge of which

cables are under tension and that the result of the forward

kinematics should be both the pose and the cable configu-

ration after the change in cable lengths. We exhibit a first

algorithm that allows one to determine all possible final

poses and cable configurations. Then a second algorithm

is proposed to determine all possible cable configurations

also during the coiling process which is an important point

as the CDPR state, including the cable tensions, may dras-

tically change at this point. The last algorithm assumes

a model of the coiling process and is able to determine

the unique final pose and cable configuration. These al-

gorithms provide safer real-time forward kinematics which

will improve the CDPR control

Keywords: clear, cable-driven parallel robots,forward kinemat-

ics,cable configurations, real-time

I. Introduction

Cable-driven parallel robot (CDPR) are robots whose

platform are connected to the ground by a set of cables that

can be uncoiled or coiled. The study of CDPR has started

about 30 years ago with the pioneering work of Albus [1]

and Landsberger [2] but there has been recently a renewed

interest in such a robot, both from a theoretical and applica-

tion viewpoint. The kinematics analysis of CDPR is much

more complex than the one of parallel robot with rigid legs

as static equilibrium has to be taken into account [3], [4],

[5], [6] and is still an open issue especially as not all ca-

bles of a robot with m cables may be under tension [7], [8],

[9], [10], [11] and that only stable solutions have to be de-

termined [12]. Numerous applications of CDPRs have been

mentioned e.g. large scale maintenance studied in the Euro-

pean project Cablebot [13], rescue robots [14], [15], large

telescope [16], rehabilitation [17], [18] and transfer robot

for elderly people [19] to name a few.

∗Jean-Pierre.Merlet@inria.fr

The proprioceptive measurement on such a robot is usu-

ally the cable lengths as other physical quantities such as

orientation of the cables or their tensions are difficult to

measure. The kinematic analysis of such robot is drastically

influenced by the cable model that is used. For example a

cable may be supposed mass-less and non elastic, mass-less

but elastic or deformable and elastic. In this paper we con-

sider only mass-less cables and a specific class of CDPR:

suspended CDPR. In this class there is no cable that can

exert a downward force that is larger than its own weight

(figure 1).

Before going on we will introduce some notation. The

output point of the coiling mechanism for cable i will be de-

noted Ai while this cable is attached at point Bi on the plat-

form. We define an absolute frame (O,x,y, z) and we as-

sume that the coordinates of Ai in this frame are known. In

the same manner we define a mobile frame (C,xr,yr, zr)
that is attached to the platform (figure 1). Without lack of

generality C will be assumed to be the center of mass of

the platform with coordinates (xc, yc, zc). We assume that

the coordinates of Bi in the mobile frame are known. Our
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Fig. 1. A suspended CDPR

cable model assume that the cable profile is directed along

the line going through the points A,B as soon as the cable

is under tension. For non elastic cables the length of a ca-

ble will be denoted ρ while for elastic cable ρ will denote

its real length while l0 will denote its length at rest.

A major problem with CDPR is that they have usually

several solutions to the forward kinematic (FK) problem
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(i.e. being given the cable lengths determine the pose of

the platform). This is usually the case for parallel robots

but the situation is even worse for CDPR and is still yet not

fully understood. A major point is that each solution of the

FK leads to a specific set of cable tensions together to a

specific pose. As determining the pose and the tensions are

key factors for safety and control it is essential to be able to

determine the current state of the robot. This problem may

stated as follows: being given a state of the robot (ρ,X) for

non elastic cables or (l0,X) for elastic cables, where X de-

notes the pose of the platform, determine the pose X1 of the

robot when the components of ρ (l0) are changed to ρ+∆ρ

(l0 + ∆l0), where ∆ρ(l0) is a vector of ”small” amount

of changes in the cable lengths that occurs after a ”small”

amount of time ∆t. This is typically the problem we have

to solve for the real-time calculation of the FK: after the

calculation of the current pose based on the cable lengths

measurement a control law will calculate a command for

the actuators that will not be changed during the sampling

time of the controller (we do not consider here other con-

trol schemes that do not use the measurements of the cable

lengths, for example the one using the visual observation of

the direction of the cables [20]).

For robot with rigid legs we have exhibited an algorithm

that first check if ∆ρ is small enough so that there is an

unique X1 that can be reached starting from X and if this

is the case is able to compute X1 with an arbitrary accu-

racy [21].

Unfortunately we will see that such scheme will not work

for CDPR. But first we may summarize the known result

about the FK of CDPR as follow:

• for mass-less and not elastic cables (case 1) for a CDPR

with m cables the FK always amounts to solve a set of

square systems of equations. Indeed we cannot assume that

in the current pose all m cables are under tension and to

find all FK solutions we have to consider all possible com-

binations of cables under tension. Note that if m > 6 there

cannot be more than 6 cables under tension simultaneously.

Still for a given number of cables the minimal FK equa-

tions will be square with 6 equations for 6 cables and m+6
for m < 6 cables (6 parameters for the pose and m cable

tensions). But even with this complexity all the solutions

found by solving the different sets of equations may not all

be valid. Indeed for a given solution Xs we have to ex-

amine first the tensions of the cables that must all be pos-

itive. Then we have to consider the lengths of the cables

that are supposed to be slack: for each of them this length

must be greater than the distance between the A,B points

for the pose Xs. Hence this differs from the FK of parallel

robots with rigid legs where a single square system has to

be solved and all solutions are valid.

• for mass-less but linearly elastic cables (case 2) all cables

may be under tension even if m > 6 but it may also happen

that we have slack cables. The tension τ in the cable is

written as τ = k(ρ− l0) where k is the linear stiffness, ρ is

the real length of the cable and l0 its length at rest that are

supposed to be known. Hence the minimal FK has m + 6
unknowns (6 parameters for the pose and mρ) and m + 6
equations (6 from the statics equilibrium and m equations

that state that the distance between A,B should be ρ). Still

one or more of the cables may be slack (i.e. ρ < l0) and

as in case 1 we have thus to consider all combinations of

cables under tension

• for deformable and elastic cables (case 3) the FK amounts

to solve a single square system of equations that has usually

several solutions [22].

In case 3 the algorithm presented in [21] may be applied to

solve the real-time FK but cannot for case 1 and 2. Indeed

at X we know which cables are under tension and which

one are slack (if any). Unfortunately at X1 the set of ca-

bles under tension may be different from the one at X and

therefore the system of equations of which X1 is a solution

is different from the one at X.

This paper addresses the following topics for CDPR in

case 1 and 2:

• determine if a change (or more than one) in the set of

cables under tension may occur when changing the cable

lengths by ∆ρ(l0)
• if yes determine the new set(s) of cable under tension

• determine the pose X1

II. Solving the real-time FK

A. The statics equations

A suspended CDPR is usually submitted only to gravity

(and possibly to small disturbances that we will neglect).

The wrench applied on the platform will be denoted F and

the equations relating this wrench to the tension τ in the

cables are:

F = J−Tτ (1)

where J−T is the 6 × m jacobian matrix (where m is the

number of cable under tension) whose i-th column is

((
AiBi

ρi

CBi ∧AiBi

ρi
))

B. The cable configuration concept

A cable will be denoted dominant if it exerts an force

on the platform and non dominant if it is slack. A cables

configuration (CC) for a CDPR with m cables is a set of

m booleans whose i-th member is set to 1 if the i-th cable

is dominant and set to 0 otherwise. This concept is quite

important because at a given pose the CDPR may have dif-

ferent cable configurations. For example we have consid-

ered a specific robot with 8 cables that has to move along

an horizontal circle while keeping constant the orientation

of its platform. Figure 2 shows the circular arcs for which

the various CC with 6 cables are valid (the arcs have been

offsetted to make them visible). It may be noticed that this

trajectory cannot be fully completed with the same CC and
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Fig. 2. The possible CC on a circular trajectory. The arc have the same

radius but have been enlarged in order to show the different CC

that there may be up to 4 different CC’s for a pose. The

cable configuration allow to determine what are the cable

tensions (which differ from one CC to another one) but also

the performances of the CDPR at this pose. For example it

is well known that an error ∆ρ on the cable lengths ρ leads

to an error in the platform positioning ∆X such that

∆X = J∆ρ

As J is dependent upon the CC so will be the positioning

accuracy.

C. First algorithm

This algorithm will simply try to determine all the valid

CC to which may lead the change from ρ to ρ + ∆ρ i.e.

to solve the FK for each CC. For non elastic cables and

a CDPR with a total of m cables, n of which are under

tension we have the following equations and inequalities

under the assumption that the numbering of the cables is

such that the cables from 1 to n are under tension:

||AiBi||
2 = (ρi +∆ρi)

2 i ∈ [1, n] (2)

||AiBi||
2 − (ρi +∆ρi)

2 ≤ 0 i ∈ [n+ 1,m] (3)

τ = {τ1, . . . , τn} τi > 0 ∀i ∈ [1, n]

F = J−Tτ (4)

the statics equations being used in the FK solving only if

n < 6 (if n = 6 only the equations (2) are used and the

statics equations are used only a posteriori to eliminate so-

lutions leading to at least one negative τi). To model the

pose of the platform we use a parametrization that depends

upon the number n:

• if 4 ≥ n ≤ 6: we use as parameters the coordinates

of 4 of the B says the coordinates of OB1, . . . ,OB4 that

are called the reference points. It follows that we have

∀j > 4 OBj =
∑m=4

m=1 αmOBm where the αm are known

constants. At the pose X the coordinates of the reference

points Bs
j are known.

• if n = 3: we choose B1, B2, B3 as references points

and we have ∀m > 3 B1Bm = β1B1B2 + β2B1B3 +
β3(B1B2×B1B3) where the β are known constants.

• if n = 2: C,B1, B2 all lie in the same vertical plane

that includes A1, A2 and the location of C may be deduced

from the location of B1, B2 with 2 possible solutions (one

below the line B1B2, one over it). Hence we choose the

coordinates of B1, B2 as unknowns

• if n = 1: A1, B1, C lie on the same vertical line with C

having two possible locations (over or below B1). The z

coordinates of B1 is chosen as unknown

The motivation for using this parametrization will be ex-

plained later on. We will not consider the case n ≤ 2 that

can be trivially solved. Now let us look at the equation

F = J−Tτ τ = {τ1, . . . , τn}

that is used for the FK solving if n < 6with the components

of τ as unknowns. At the opposite of the pose parameters

there is no a-priori rules that allows one to establish bounds

for the elements of τ . However we may extract from these

equations a linear system in τ of size n × n. After solv-

ing this system we may report the result in the remaining

6 − n equations. Hence we always end up with a system

constituted of:

• n equations from the linear system

• 6 equations (n from (2) plus 6 − n remaining after the

solving of the linear system)

• m− n inequalities (3)

In terms of unknowns we have
• the pose parameters (12 if 4 ≥ n ≤ 6, 9 if n = 3)

• the n elements of τ

As we may see we have always more unknowns than equa-

tions. However the parametrization always allow us to end

up with a square system by adding equations stating that the

distance between the reference points Bi, Bj is a known

constant. We will no more mention this additional equa-

tions in the remaining of the paper but they are required to

get a square FK system.

For elastic cables the change in cable lengths affect l0

which will become l0 + ∆l0. The equations are:

||AiBi||
2 = ρ2i (5)

F = J−Tτ τ = {k(ρi − l0i −∆l0i )} (6)

which are valid for all i ∈ [1, n]. We have also the inequal-

ities

l0i +∆l0i − ρi ≤ 0 ∀i ∈ [1, n] (7)

||AiBi||
2 − l0i −∆l0i ≤ 0 ∀i ∈ [n+ 1,m] (8)

but here we have to consider all combination with n ≤ m.

In terms of unknowns we have
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• the pose parameters (12 if 4 ≥ n ≤ m, 9 if n = 3)

• the ρi with i ∈ [1, n]
For this first algorithm we will assume that we may

bound the pose parameters e.g. by assigning a maximal

velocity to the platform from which we will deduce a carte-

sian box that will include the final position of the reference

points. Under that assumption we have bounded variables

(the pose parameters) and unbounded unknowns (the τi for

the non elastic case and the ρi for the elastic case). The

presence of bounded variables lead us to propose an interval

analysis solving method (that requests bounded unknowns)

and we will see later on that the presence of unbounded un-

knowns is not a problem, We will now describe our generic

FK solving method.

C.1 Solving with interval analysis

Interval analysis allows to calculate exactly (i.e. with an

arbitrary accuracy) all solutions of a system of equations

that lie within a bounded region, called the search space.

Without going into the details (that may be found in [23],

[24], [25], [26]) the solving principle is first based on the

interval evaluation of the equations: being given intervals

for the unknowns W (which define a box in the unknowns

space) and a function of these unknowns f(W) the inter-

val evaluation of f is an interval [U, V ] that is guaranteed

to satisfy that for all vectors W whose components all lie

in the corresponding intervals we have U ≤ f(W) ≤ V .

There are several methods for computing such an interval

evaluation, all having the drawback that U may be un-

derestimated (i.e. the minimum of f over the intervals is

larger than U ) and/or V may be overestimated (i.e. the

maximum of f over the intervals is larger than V ). How-

ever the differences between U, V and the minimum, max-

imum decrease with the size of the input intervals. Such an

overestimation occurs when there are several occurrences

of the same variable in f . A typical example of overes-

timation is to consider f = x − x when x ∈ [−1, 1] as

f([−1, 1]) = [−1, 1] − [−1, 1] = [−2, 2] that indeed in-

clude the solution 0 but with a large overestimation.

Clearly if U > 0 or V < 0, then f cannot cancel for

any point in the box. The second component of an inter-

val analysis algorithm is the branch and bound scheme. In

this scheme we have a list L of box(es) which has, at the

start of the algorithm, a single element, the search space

and an index i initialized to 1. The algorithm look at the

i-th box in the list and calculate the interval evaluation of

each equation of the system for this box. If for each of

these evaluations we have U < 0 and V > 0, then we bi-

sect the box in two by selecting one of the unknowns and

splitting its current interval at the mid-point. This process

creates two new boxes that are stored at the end of L and

the index i is incremented. If U > 0 or V < 0 then the

index i is incremented. After each bisection the size of the

box decreases so that we may use the third tool of interval

analysis which is the Kantorovitch theorem. It states that if

some conditions, that may be calculated with interval anal-

ysis, are fulfilled, then the box includes a single solution of

the system and that this solution may be obtained by using

the Newton-Raphson scheme with as initial guess the cen-

ter of the box (see section V). If this theorem is fulfilled for

a given box we have determined a solution of the system

and the index i is incremented. The algorithm completes

when the index i is larger than the number of elements in

L. Such an algorithm cannot miss a solution and will usu-

ally provide all the solutions in the search space unless the

numerical accuracy is not high enough (in this case it is nec-

essary to extend the floating point arithmetic and numerous

packages allow to do it).

This principle may be extended to deal with inequality.

For example if the problem is to check if f(W) ≤ 0 a box

will be deleted from the list L if U > 0 and the inequalities

will always be satisfied for any point of the box if V ≤ 0.

For non elastic cables an objection to the use of interval

analysis for n < 6 is that we don’t have bounds for the

components of τ . However they are not necessary. Indeed

let us consider the linear system extracted from the statics

equations. As the matrix J−T is pose dependent and as

the pose parameters are intervals we have a so-called linear

interval system. Interval analysis allows one to solve such

system i.e. provide ranges for the components of τ that in-

clude all the solutions of all scalar linear system included

in the linear interval system. Without going into the details

this solving may fail for a given box especially because the

linear interval system includes one or several singular sys-

tem, in which case the box will be bisected and as we may

assume that the robot is not in a singular pose a sufficient

number of bisections will always guarantee that the interval

linear system may be solved.

For elastic cables we will distinguish two cases:

• n ≤ 6: we use the interval solving for the linear sys-

tem that may be extracted from (6) to bound the unknowns

ρi together with the interval evaluation of (5) that provide

another mean to evaluate these bounds

• n > 6: we use the interval evaluation of (5) to determine

bounds for the ρi

C.2 Solving the FK

As seen previously the unknowns of our FK problems are

just the pose parameters whose intervals are described by a

box. We now describe the processing of a given box of the

list L for non elastic cables:

1. if n < 6
(a) solve the linear interval system

(b) if the solving fails bisect the box

(c) if one component of τ has a negative upper bound

moves to the next box in the list

2. interval evaluation of the 6 equations (2) and the one re-

maining from (1). If one of this evaluation has a strictly

negative upper bound or a strictly positive lower bound

moves to the next box in the list
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3. apply Kantorovitch theorem with X0 being the center of

the box:

(a) if this test succeed calculate the solution and substitute

the box by this solution

4. interval evaluation of the inequalities (3) for the non

dominant cable(s)

(a) if the lower bound of one evaluation is strictly positive

moves to the next box in the list

5. if the box has been reduced to a solution, then store the

solution and moves to the next box in the list

6. bisect the box

For elastic cables the processing of a given box of the list L
is:

1. if n ≤ 6
(a) solve the linear interval system in ρi derived from (6)

(b) if the solving fails bisect the box

(c) if the upper bound of one ρi is lower than l0i + ∆l0i
moves to the next box in the list

(d) interval evaluation of the equations (5) and of the m−
n remaining equations of (6). If one of this evaluation has

a strictly negative upper bound or a strictly positive lower

bound moves to the next box in the list

2. if n > 6 determine bounds for the ρi by the interval

evaluation of (5)

(a) if the upper bound of one ρi is lower than l0i + ∆l0i
moves to the next box in the list

(b) if the lower bound of one ρi is lower than l0i +∆l0i set

this bound to l0i +∆l0i
(c) interval evaluation of the 6 equations (6). If one of this

evaluation has a strictly negative upper bound or a strictly

positive lower bound moves to the next box in the list

3. apply Kantorovitch theorem on the full system with X0

being the center of the box:

(a) if this test succeeds calculate the solution and substi-

tute the box by this solution

4. interval evaluation of the inequalities (7, 8)

(a) if the lower bound of one evaluation is strictly positive

moves to the next box in the list

5. if the box has been reduced to a solution, then store the

solution and moves to the next box in the list

6. bisect the box

Note that if n > 6 we may possible refine the interval for

the ρi. Indeed (6) may be seen as a linear system in 6 ar-

bitrary ρi. The solving of this system will provide bounds

for these ρi that may used to refine the bounds determined

by using (5). The specific parametrization of the platform

pose that we have used may be explained here. Indeed all

the equations involved in the FK are algebraic and of second

order in terms of the unknowns. This implies that the Hes-

sian matrix of the system will be a constant matrix whose

norm can thus be computed beforehand. As this norm is

used in the Kantorovich theorem having a constant norm

allows one to speed up the Kantorovitch test.

Using this process we are able to find all the solutions of

all FK problems under the assumption that there is no dras-

tic change in the pose of the parameters during the coiling.

If there is a single solution we may have determined the

pose of the platform together with its CC after the change

in the cable lengths. If we have multiple solutions we can-

not determine the current pose and CC.

We will now describe a safe real-time FK method that

takes into account possible CC change during the coiling

process.

D. Second algorithm

In our previous algorithm we have assumed no drastic

change in the platform pose. But unfortunately this as-

sumption may not always hold. For example figure 3 shows

changes of CC for infinitesimal changes of cable lengths

that leads to a significant change in the platform pose. On

the first image the robot has 6 cables under tension and its

pose correspond to one solution of its FK. On the second

image the CDPR moves suddenly to a CC with 4 cables un-

der tension but one which is mechanically unstable which

explain why (third image) it moves to a new pose with 6 ca-

bles under tension but on another kinematic branch of the

FK than the one from which it started, thereby exhibiting a

very different orientation.

Such situation cannot be detected with our first algorithm

and requires to consider not only the final cable lengths but

how these lengths change with respect to time. We will

now consider the CC under the assumption that the cables

lengths may have any value in their ranges [ρ, ρ + ∆ρ] for

non elastic cables or that their lengths at rest may have any

value in [l0, l0 + ∆l0] for elastic cables. Our purpose will

be to determine what are the possible CC of the CDPR un-

der that assumption. We still use the assumption that the

pose of the platform may be bounded and we will check

what are the possible CC in the neighborhood of X. As the

motion of the platform are continuous we will look at spe-

cific time at which the initial CC may co-exist with another

CC. For non elastic cables such a situation may occur if

1. the tension in a dominant cable (or in several cables) part

of the initial CC goes to 0

2. the length of a non dominant cable (or of several cables)

not part of the initial CC becomes exactly the distance be-

tween the A,B

For elastic cables the situation may occur if

1. the real length ρ of one (or several) cable is exactly its

length at rest

We will assume that the initial CC is such that 6 cables are

under tension for non elastic cables and that all cables are

under tension for elastic cables. We consider the full scale

FK equations of the CDPR i.e. equations (2, 4) for non elas-

tic cables and (5, 6) for elastic cables. For fixed values of ρ

or l0 we have a square system of equations but here we as-

sume that ρ, l0 may have interval values i.e. that these con-

straints describe a family of square systems of equations.

Note however that the Kantorovitch theorem (section V)
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Fig. 3. An experiment showing changes of cable configuration for an

infinitesimal change in the cable lengths leading to very different poses

may still be used. Indeed in spite of ρ, l0 having interval

values:

• the Jacobian matrix of the system at X0 is still a scalar

matrix

• F(X0) will have now interval values, leading to intervals

for Γ0F(X0) but whose norm will still be bounded

In consequence the interval values of ρ, l0 will prohibit us

to calculate the solutions but if the Kantorovitch conditions

are fulfilled, then we are sure that there will be a single

solution for any system in the family.

We will now consider separately the non elastic and elas-

tic cables cases.

D.1 Non elastic cables

We will consider as unknowns the pose parameters, the

ρ and the τ of the dominant cables and hence all the un-

knowns are bounded (the bounds for the τ being obtained

with the method described in the first algorithm).

We will consider in sequence all combinations of cases

where

1. one or several cables is (are) such that τj = 0

2. the length of a cable (or of several cables) not part of the

initial CC becomes exactly the distance between the A,B

3. the length of a cable (or of several cables) part of the ini-

tial CC becomes larger than the distance between the A,B

For the first case we will set k τj = 0 into equations (4) and

use as unknowns for an interval analysis algorithm the pose

parameters, the ρ and the remaining components of τ but

only the pose parameters and the ρ will be bisected. Note

that as the ρ have interval values we have a family of square

system of equations. The processing of a given box of the

algorithm is as follows:

1. for all cables in the initial CC interval evaluate the equa-

tion ||AiBi||
2 − ρ2i . If one of the interval evaluation does

not include 0 move to the next box

2. interval evaluate (3) for the cable not part of the CC. If

one of these inequality has a positive lower bound move to

the next box

3. extract an interval linear system of size 6 − k from (4)

and solve it in the 6− k elements of τ :

• if the solving fails bisect the box and move to the next

box in the list

• if one of the τj has a negative upper bound move to the

next box

4. plug the τ in the remaining k equations from (4), inter-

val evaluate them and if one of the interval evaluation does

not include 0 move to the next box

5. if one of the τj has a negative lower bound then bisect

the box and move to the next box in the list

6. we check if the Kantorovitch conditions hold

• if no we bisect the box and move to the next box in the

list

• if yes we have determined that a new solution CC may

be reached by the CDPR

In the second and third case we will assume that any

number k, with k ∈ [1, 6], of cables may be such that

||AiBi||
2 = ρ2i . The full FK system will still be square.

We will use as unknowns for an interval analysis algorithm

the pose parameters and the kρ.

For a given box we use the following steps:

1. for all k cables interval evaluate the equation ||AiBi||
2−

ρ2i . If one of the interval evaluation does not include 0 move

to the next box

2. interval evaluate (3) for the m− k cables not part of the

k cables. If one of these inequalities has a positive lower

bound move to the next box

3. solve the interval linear system of size k extracted from

(4) in the τ :

• if the solving fails we bisect the box and move to the

next box in the list

• if one of the τ has a negative upper bound, then move to

the next box

4. if k < 6 plug the τ in the remaining 6 − k equations

from (4), interval evaluate them and if one of the interval

evaluation does not include 0, then move to the next box

6
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5. check if the Kantorovitch conditions hold

• if no we bisect the box and move to the next box in the

list

• if yes we have determined that a new solution CC may

be reached by the CDPR

If solution CC’s are found then there will be set of ρ’s for

which the CDPR may be submitted to a change of CC.

D.2 Elastic cables

We will consider as unknowns the pose parameters, the

components of ρ and the components of l0 and hence all

the unknowns are bounded (the bounds for the components

of the ρ being obtained with the method described in the

first algorithm).

We will consider in sequence all combinations of cases

where one or several cables is (are) such that ρj = l0j and

use an interval analysis algorithm in each case after having

removed from the equations (5,6) the equation(s) involving

cable(s) j. As we remove as many equations as unknowns

we still end up with a square system. For a given box of the

algorithm:

• we interval evaluate the equations of the new system. If

one interval evaluation does not include 0 we move to the

next box

• if for a cable k the upper bound of ||AkBk|| is lower than

the lower bound of l0k, then we move to the next box

• we check if the Kantorovitch conditions hold

– if no we bisect the box

– if yes we have determined that a new CC may be

reached by the CDPR

After completing the algorithm for all cases we will have

determined all possible CC of the CDPR during the cable

lengths change that are different from the initial CC. If there

is no such CC then the initial CC will be kept during the ca-

ble lengths changes and the possible final pose(s) will be

determined using the first algorithm. If more than one so-

lution is found, then we cannot solve properly the FK prob-

lem.

E. Real time FK with a coiling model

The first FK algorithm is just able to determine if a CC

different from the initial one may be valid at the end of the

cable motion and thus is not completely safe. The second

FK algorithm will detect if a change of CC may occur dur-

ing the cable motion and is therefore fully safe from the

CC view point. However both algorithms are not fully safe

for finding the pose at the end of the cable motion because

they both assume small motion of the platform and still may

provide not a single solution. Furthermore from the CC

viewpoint the second algorithm is ”worst case”: although

a change in CC may occur the real coiling process may be

such that this change will not occur. To take into account

the real coiling we will assume a model for this process.

E.1 Coiling model

A typical coiling model will provide the ρ or l0 as func-

tions of time. Being given the state S of the actuator at time

t0 the cable length at time t > t0 will be obtained as:

ρ(t) = G(S, t) (9)

For example assume that an electrical motor is used to turn

the drum of a winch. If at time t0 the velocity of the motor

is V0 and a control law imposes a desired velocity Vc, then

the velocity of the motor is

V (t) = Vc + (V0 − Vc)e
−

t−t0
U

where U is a known constant. If θ0 is the rotation angle of

the motor at time t0, then the angle at time t is obtained as:

θ(t) = Vct−(V0 − Vc)Ue−
t−t0
U +(V 0−Vc)U−Vct0+θ0

If ρ0 is the cable length at time t0, then the cable length at

time t will be:

ρ(t) = ρ0 +K(θ(t)− θ0)

where K is a constant that depends upon the reduction gear

of the motor and the drum radius.

E.2 FK for non elastic cables

We will assume that at time t0 the CDPR is in the initial

CC at pose X with cable lengths ρ0 and that we are inter-

ested in determining the robot pose and CC at time t0+∆T .

If n is the number of cables under tension at time t0 and if

we assume the CDPR will stay in the same CC the govern-

ing equations of the system are:

||AiBi||
2 = ρi(t) i ∈ [1, n] (10)

||AiBi||
2 − ρi(t)

2 ≤ 0 i ∈ [n+ 1,m] (11)

τ = {τ1, . . . , τn} τi > 0 ∀i ∈ [1, n]

F = J−Tτ (12)

Let us choose a time increment ∆t < ∆T . The coiling

model allows us to determine an interval value for each of

the ρi that will include all possible values of ρi for any time

in the range [t0 + ∆t]. We then apply Kantorovitch theo-

rem on the 6 equations (10) if n = 6 or on the equations

(10,12) if n < 6. If the Kantorovitch conditions do no hold

we divide ∆t by 2 and repeat the process. If they hold we

are able to calculate the robot pose at time t0 +∆t together

with the cable tensions. If the cable tensions are all positive

and the inequalities (11) are verified we have a new starting

pose and we repeat the process from this point until the time

reaches t0 + ∆T . But it may perfectly happen that in the

time interval [t0, t0 +∆t] there is a time such one of the in-

equalities (11) are not satisfied or one of the cable tensions

becomes negative. To determine if one such configuration

exists we will consider the two following problems:

7
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• for each cable j not in the CC find a time t1 in [t0, t0 +
∆t] such that equations (10) are verified together with

||AjBj||
2 = ρj(t). For each j we add an equation and

the unknown t1 and therefore we have a square system of

equations. Interval analysis is used to solve this problem in

t1
• for each cable j in the CC find a time t1 in [t0, t0 +∆t]
such that the solving of equations (12) leads to τj = 0. For

this purpose we set τj = 0 and we solve the system (10,12)

which is still square as we have removed the unknown τj
but have added the unknown t1.

Let define T = {t11, t
2
1, . . . t

p
1} be the set of times t1 or-

dered by increasing value. At any of the time in this set two

different CC coexist: the initial one CC0 and a new one

CC1. We consider each of the time t1 in the set by increas-

ing value and consider the situation at time t
j
1 + ǫ where ǫ

is a small quantity such that t
j
1 + ǫ < t

j+1
1 . At this time

the CC of the CDPR may be either CC0 or CC1. In the

first case at time t
j
1 CC0 and CC1 were equivalent but the

coiling moves the CDPR back to CC0. In the later case the

CDPR has moved to the new CC CC1: a cable configura-

tion change has occurred. We solve the FK system for both

cable configurations and as the CDPR must be in an unique

CC only one of the two FK systems has a valid solution (i.e.

verifying the inequalities (11) and having positive τ ). If the

valid CC is CC0 we move to the time t
j+1
1 and repeat the

process until either we have exhausted the time of T or we

have found a time t1 at which a change of CC occurs. In the

former case we have determined the pose at time t0 + ∆t

together with the CDPR CC and in the later case we have

determined the pose at time t
j
1 + ǫ together with the CC at

this pose. Hence in both cases we have a new starting state

for the robot with known pose and CC and we may repeat

the algorithm until the time reaches t0 +∆T .

E.3 FK for elastic cables

Basically the same algorithm than for non elastic cables

may be applied. The only difference is that a change in CC

will occur only if for a cable j we have at some time t1
ρj = l0j (t1). This constraint adds an equation to the FK

system but t1 is an additional unknown so that we still have

a square system. Solving this system for all j leads to a set

of time T that is used to determine if a CC change occurs

with the same strategy than for non elastic cables.

F. Implementation

The three presented algorithm have been implemented

in C++. All interval calculations are performed using the

PROFIL/BIAS package [27] while the interval analysis

solving algorithms are based on our interval analysis library

ALIAS [28]. The Maple interface of this library allows us

to produce part of the C++ code automatically (e.g. the

code for the equations, the Jacobian and Hessian matrices).

With this implementation all numerical round-off errors are

taken into account. However we have noticed that in some

case the required accuracy from completing the FK algo-

rithms may be higher than the extended floating point accu-

racy. Currently we deal with this problem by using specific

Maple procedures (for example a Newton scheme that al-

lows one to calculate the roots of a system with an arbitrary

number of digits). Clearly this is not compatible with a

real-time algorithm but extended accuracy package such as

MPFR [29] may be used for these special cases.

III. Examples

We have considered a CDPR with 8 cables. The coordi-

nates of the A,B points are provided in tables I,II and are

derived from the robot presented in [30].

A1 A2 A3 A4

x -7.175120 -7.315910 -7.302850 -7.160980

y -5.243980 -5.102960 5.235980 5.372810

z 5.462460 5.472220 5.476150 5.485390

A5 A6 A7 A8

x 7.182060 7.323310 7.301560 7.161290

y 5.347600 5.205840 -5.132550 -5.269460

z 5.488300 5.499030 5.489000 5.497070

TABLE I. Coordinates of the A points (in meter)

B1 B2 B3 B4

x 0.503210 -0.509740 -0.503210 0.496070

y -0.492830 0.350900 -0.269900 0.355620

z 0.000000 0.997530 0.000000 0.999540

B5 B6 B7 B8

x -0.503210 0.499640 0.502090 -0.504540

y 0.492830 -0.340280 0.274900 -0.346290

z 0.000000 0.999180 -0.000620 0.997520

TABLE II. Coordinates of the B points in the mobile frame (in meter)

We have used the third algorithm to fully simulate the

motion of the robot along a horizontal circle centered at

(0,0,2) with radius 1 with an orientation such that the

vectors of the reference and mobile frame were identi-

cal. The velocity of the robot was set to 0.1m/s. It

was supposed that the starting point of the trajectory was

(1,0,2) with the configuration 345678. On this trajectory

11 changes of cable configurations were detected: 2 with

only 5 cables under tension (34678, 13478 that occurred

both twice on the trajectory) and 9 with 6 cables under ten-

sion (345678, 234567, 134678, 134568, 125678, 124578,

123678, 123478, 123456). The CC with only 5 cables un-

der tension occur only for a small amount of time, typically

less than 1 ms. Figure 4 shows the tension of cable 3 during

the trajectory while figure 5 shows the tension of cable 8. In

both figures we can see the large influence of CC changes

on the cable tensions.
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Fig. 4. The tension in cable 3 along the circular trajectory
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Fig. 5. The tension in cable 8 along the circular trajectory

We have timed the first and second algorithms for a max-

imal changes of 2mm in the ρ, l0 on this trajectory and the

computation time is usually less than 1ms which is satisfac-

tory from a real-time point of view.

IV. Conclusions

This paper has addressed the real-time forward kinematic

problem of CDPR i..e determining the pose of the robot af-

ter a small change in its cable lengths, under the assumption

that the cables have no mass but may or not have elasticity.

This problem is more complex than the forward kinematics

of parallel robots with rigid legs as the inverse kinematics

equations that are used to solve the forward kinematics de-

pends upon the cable configuration. Hence a forward kine-

matic solver should take into account the point that the ca-

ble configuration at the final pose may be different from the

one at the initial pose, thereby leading to different equations

and consequently to a different final pose. We have pro-

posed 3 algorithms for that purpose. one compute all pos-

sible pose and cable configurations after completion of the

change in the cable lengths. The second one performs the

same job but also compute changes in cable configurations

during the coiling. The last algorithm assumes a model for

the coiling process and determine the unique pose and cable

configuration at the end of the coiling. All three algorithms

are basically real time in the sense that they complete within

a sampling period of the controller. The results of the FK

solver show that drastic changes in the cable tensions may

occur due to CC changes. As classical simulation tools will

ignore these changes they may underestimate positioning

errors and cable tensions.

An interesting problem will be to determine if the third

algorithm is able to deal with the sequence presented in fig-

ure 3: during the large motion that leads from the CC with

4 cables under tension to a new stable CC with 6 cables

under tension there is most probably no solution to the FK

equations that respect the mechanical equilibrium. In that

case it will be necessary to take into account the dynamics

of the CDPR.

The presented algorithm do not deal with cables having

significant mass and submitted to sagging. However in that

case there is a single set of FK equations and the method

described in [21] may be used after an adaptation to the sag-

ging equations with either a simplified model [30], a mixed

model [31] or a full model [22]. Surprisingly the real-time

inverse kinematics may be more difficult for CDPR with

sagging cables as our preliminary experiments have shown,

but that has to be confirmed, that in some cases this prob-

lem may not have an exact solution, in which case it will

be necessary to determine a solution that is the ”closest” in

some sense to the desired pose.

Another extension that has to be considered is toward non

suspended CDPR. Here the downward pulling cables may

be controlled in tension to ensure that all cables are under

tension using strategies that have been exposed in numer-

ous works [32], [33], [34], [35] but we believe that still

there will be poses in the workspace for which cables may

become slack. Finally it may also be necesseray to incor-

porate interference detection in the real-time FK [36], [37],

[38].

V. Annex: Kantorovitch theorem

Assume that we have a square system of n equations F
in the n unknowns x1, . . . , xn:

F = {Fi(x1, . . . , xn) = 0, i ∈ [1, n]}

Let X0 = {x0
1, . . . , x

0
n} be a vector of specific values for

the unknowns and define a ball U centered at X0 with ra-

dius B0. We denote ||G|| the norm of a vector or a matrix

G of dimension p or p × p. This norm may be arbitrary

but we will use here Max(|Gi|)∀i ∈ [1, p] for vectors and

Max(
∑j=p

j=1 |Gij |)∀i ∈ [1, p]. Let’s assume that the follow-

ing conditions hold:

1. the Jacobian matrix of the system has an inverse Γ0 at

X0 such that ||Γ0|| ≤ A0

2. ||Γ0F(X0)|| ≤ 2B0

3.
∑n

k=1 |
∂2Fi(X
∂xj∂xk

| ≤ C for i, j = 1, . . . , n and ∀X ∈ U

9
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then if 2nA0B0C ≤ 1 there is an unique solution of F in

U and the Newton method used with X0 as initial estimate

of the solution will converge toward this solution.

Note that the last condition may be verified with

interval analysis as soon as the unknowns are all

bounded.
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