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Appearance-based Indoor Navigation by IBVS
using Line Segments

Suman Raj Bistg Paolo Robuffo Giordarfoand Frangois Chaumette

Abstract—This paper presents a method for image-based navi- The nodes of the graph give characteristic features or zones
gation from an image memory using line segments as landmarks. of the environment (locations) obtained using the sensor data,
The entire navigation process is based on 2D image information and arcs give adjacency relations between locations. Such

without using any 3D information at all. The environment built i . fi ) h Navigati
is represented by a set of reference images with overlapping maps are bullt In-a prior of ineé mapping phase. Navigation

landmarks, which are acquired during a prior learning phase. IS then usually performed by computing a similarity score
These reference images de ne the path to follow during the between the view acquired by the camera and the different

navigation. The switching of reference images is done exploiting images of the database, or by using the features extracted
the line segment matching between the current acquired image from previous images via tracking and generating associated

and nearby reference images. Three view matching result is used trol d. This similarit be based lobal
to compute the rotational velocity of a mobile robot during its control command. IS Similarity can be based on gioba

navigation by visual servoing. Real-time navigation has been descriptors, like considering the whole image [8], [9], color
validated inside a corridor and inside a room with a Pioneer histograms [10], or image gradient [11]; or by using local
3DX equipped with an on-board camera. The obtained results descriptors, like photometric invariants [12] or local feature
con rm the viability of our approach, and verify that accurate ,4ints jike corners, Scale-Invariant Feature Transform (SIFT)/
mapping and localization are not necessary for a useful indoor . .
navigation as well as that line segments are better features in the Speeded Up RObUSt_ Features (SURF) points or Maximally
structured indoor environment. Stable Extremal Regions (MSER) [5], [6], [7], [13].

The work in [7] has demonstrated indoor navigation of a
mobile robot using a visual memory for both perspective and
omni-directional cameras. The robot is controlled by visual

|. INTRODUCTION servoing based upon the regulation of successive homogra-

HERE must exist a close relationship between the pashies. In [5], [6], the authors have demonstrated a hybrid

ceived environment and the controller of a robot for itsodel for topological navigation based on a visual memory
autonomous navigation. Such a relationship is often de ned an outdoor environment. Local 3D reconstruction has been
w.r.t. the features extracted from the sensors (e.g. images fraged for verifying the key-point matches and automatic key-
a camera) and associated with the real world landmarks. Feime selection using SIFT, Multi Scale Harris, and MSER
this, we need some internal representation of the environmeaatures. However, the motion control was still based upon 2D
The environment can be represented either in the 3D spacdeitures, in particular, the centroid of matched points. They
in the sensor space. The rst approach relies on the knowledgigo show that it is not necessary to converge towards each
of an accurate and consistent 3D model of the navigatigftermediate position (key frames) as long as it is possible to
space. The navigation is then performed by matching thgach the nal position. Hence, the use of qualitative servoing
global model with a local model deduced from sensor data4] eliminates the necessity of a database accurate enough
Such a model can be computed from different features like get satisfying trajectories regarding the initial and desired
lines, planes, or points [1], or estimated from a learning stgpositions, contrary to [13] where the robot converges to the
Most of the simultaneous localization and mapping (SLAMhtermediary position using visual servoing by minimizing the
methods [2], [3], [4] fall in this category. The second approackrror between the current and successive desired positions of
also known as appearance-based approach, does not requifgdal landmarks.
3D model of the environment, but it has instead the advantageFrom the above literature, one can then conclude that
of working directly in the sensor space. To simplify the procesgcurate mapping and localization are not mandatory for visual
of appearance-based navigation, the navigation environme@atigation. Robots are able to navigate using this approach in
is generally represented topologically in a graph [5], [6], [7lirban environments and in all places where local point based

Manuscript received: August, 31, 2015; Revised November, 25, ZOJfg;atureS are gbundant. In thls. respect, t.he .goal of this .p.aper
Accepted January, 13, 2016. iS to adopt this approach for indoor navigation by exploiting
evlrui:ﬂ%?]pgfr :P::SA;i%OC?;T;eE?j?[grf(e)ll;lguRbIei\(/:ia(—:‘t\i/\(l)enrst‘))i:Ergitrr(l)(;n‘?[isngShan Li updime segmentsas visual landmarks. Indeed, a typical navigation

This work has been supported by the Brittany Council and .Oseo Rome(%\TZSk. n ?‘n indoor enV|ror)ment can be dIVI.ded. mt(.) tWO parts: a)
project. avigation through corridors and b) Navigation inside rooms.

1 s. R. Bista and F. Chaumette are with Inria at Irisa, Rennes, Franeer the latter case, it is more likely to have abundant distinctive
suman-raj bista@inria.fr » francois.chaumette@inria.fr : local features and global features whereas, for the former case,

P. Robuffo Giordano is with the CNRS at lrisa, Rennes, FranGte perceived surface may not give enough features points for

prg@irisa.fr . | ) R
Digital Object Identi er: Not Available Yet navigation. Moreover, similar texture or lack of texture may

Index Terms—Visual-Based Navigation, Visual Servoing.
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result in false matching. However, in indoor environments, linearned path by just using the information provided by the 2D
segments are abundant. In addition to this, line segments kne segments detected in the imagihout need of accurate
more robust to partial occlusions and more resilient to motionapping, localization and robot odometry. To our knowledge,
blur [4], [15]. Also, line segments in the image can be detectdlde closest works to ours that use image memory are [5], [6],
quickly and accurately by line algorithms like Line Segmen#], which, however, still use 3D information for navigation
Detector (LSD) [16] and Edge Drawing Lines (EDLines) [17]based on point features. The approach proposed in this paper
Because of all these reasons, this work will explore the useisfinstead different from the available literature as our method
line segments as visual landmarks. This, however, requiresrdy exploits 2D line segments detected in the image and
suitable modi cation/extension of all the steps that have beelmes not depend upon specic types of lines (e.g. vertical

previously designed for point features. lines or corridor lines). Indeed, we show that the information
obtained from the 2D line segment matching between the
A. Navigation based on line segments current acquired image and nearby reference images is enough

. . . . . . for automatic switching of key images and for robot control
Tracking/matching of multiple line segments is still an . :
ithout 3D reconstruction.

open problem in computer vision. This is due to |naccura¥\e’z_|_he next section describes the complete framework for

locations of line endpoints, fragmentation of lines, lack of . S . .
- . . . . . _“mapping and navigation. Section Ill presents experimental

strongly disambiguating geometric constraints for an image : . .
) 2 . esults with a real robotic system, which demonstrate the
pair, and lack of distinctive appearance in low-texture scengs,. . A
validity of the proposed navigation scheme, and advantage

[18], [19], [20]. Despite these problems, [3], [4], [21] have . : . .
demonstrated line segments-based navigation, but using a\%'f)t' classical point features. Finally, concluding remarks are

model-based approach. In [3], a model-based SLAM usirqge}ported In Section V.
3D lines as landmarks has been presented, where unscented
Kalman Filters are used to initialize new line segments and _
generate a 3D wire-frame model of the scene that can fe Constraints
tracked with a robust model-based tracking algorithm. The We consider a non-holonomic mobile robot of unicycle type
authors of [21] have extended the monocular SLAM usingquipped with a xed perspective camera as the only sensing
points [2] to line segments, where Kalman Iters are used tmodality. The intrinsic parameters of the camera are constant
track the lines. Both methods rely on control points (a sehd coarsely known. The presented framework is concerned
of sample points placed along the line) for tracking, whiclonly with a goal-directed behavior without considering ob-
however, is not suitable when line segments are close to eathcle avoidance, which will be considered in future works.
other because of failure in tracking. Recently [4] has uséthus, in the navigation experiments we assume that other
Nearby Line Tracking to track lines and an Extended Kalmanoving objects will adopt collision-free trajectories, while a
Filter (EKF) is used to predict and update the state of theiman supervisor is responsible for handling the emergency
camera and line landmarks. stop button. The devised control scheme exhibits a qualitative
In [22], [23], [24], a vision-based corridor navigation al-path following behavior, since the learned path in general is not
gorithm has been proposed that uses the vanishing paiicked precisely. It is therefore suitable to prefer the center of
extracted from corridor guidelines for the Nao humanoid robabe free space during the acquisition of the learning sequence.
a wheelchair and a mobile robot respectively. The rst tw®uring navigation, it is assumed that the robot is initially
works are map-less methods. In [24], the vanishing point iisside the mapped environment. The localization outside the
used for the heading control whereas an appearance-basegbped location is out of scope of this paper.
process is used to monitor the robot position along the path.
A set of reference images are acquired manually at relevat| jne Segments Matching
positions along the path which correspond either to areas inF

the workspace where some special action can be undertaken". matching the line segments, there exists a considerable
b P Atmber of works on this topic [18], [19], [20], [25], [26].

(e.'g. do'ors,. elevators, corners, gtc.) or vi'ewpoinFs V\(here VW this work, we use the line matching method proposed by
distinctive images can be acquired. During navigation, theg0 to genérate pairwise matches, which utilizes Line Band
e

reference images are compared with current images using . ; :
. : : scriptors to get candidate matches at rst, and then exploits
Sum of Squared Differences (SSD) metric. The solution in . . . o
ometric constraints and topological Iters to eliminate the

. . . e
[15] not only uses two pairs Of. natural Ime and point, but als% se matches. To detect line segments, EDLines detector [17]
the odometer data (to determine the height of the landmarks
. S has been used. These methods have been selected because of
for the visual localization. L .
their high accuracy and computational speed.
) o For two views, the line segments do not provide strong
B. Main Contribution geometric constraints as opposite to points (epipolar geom-
Our main contribution is a complete method for indooetry). The trifocal tensor provides instead a strong geometric
navigation (automatic construction of a navigation route, initiglonstraint for lines, but it requires line correspondences in
localization that enables the robot to start from any positidhree views. LefT = [Ty;T,; T3] be the3 3 3 trifocal
within the map, successive localization and a control latensor,T1,T, andT; be the individuaB 3 matrices ofT, and
for choosing the rotational velocity) that coarsely follows the $ 1, $ |3 be the line correspondences in three views: these

1. NAVIGATION FRAMEWORK
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are3 1 vectors representing line parameters. By let{inQ)
represent the skew-symmetric matrix associated to vegtor
andl] represent the transpose of vectgrthe trifocal tensor
T can be estimated by the following relationship [1]

(12 [T1; T2; Talla)la] = 0: 1)

The estimation of the trifocal tensor with Random Sample
Consensus (RANSAC) [1] can be used to verify the line
segment correspondences in three views. However, the cost
function associated with the trifocal tensor is computationally
more expensive than in the fundamental matrix case when used
with RANSAC. In addition, at least 13 line correspondences
are required to compute the trifocal tensor (instead of only
6 point correspondences) for three views. Nevertheless, the
number of outliers in three views matching is quite low
compared to two views only, which makes it possible for the
RANSAC-based estimation to converge in few iterations. The
process is described in [1].

In our method, two view matches are used in initial local-
ization, switching of key images and generating three viemiy. 1. Building the map from line segments.
correspondences. Three view matches are used in mapping,
switching of key images and motion control. For three view
matching, the current key image and the two most recently
acquired images are used during the mapping, whereas, the
two key images and the currently acquired image are used
during the navigation. When obtaining the three view cor-
respondences, only the matched lines between the rst two
images are used to match with the third image in order to
reduce the cost of matching (see Fig. 1).

C. Mapping from line segment Fig. 2. The map consists of key images and line segments. Adjacent key

. . . .. images share some line segments with the current image. These corresponding
Mapping or learning a path starts with driving t[he rpbOt ON Bhe segments with the current acquired image are used for motion control with
reference path under manual control. The acquired images teeaim of following the arc de ned in the map.

used to automatically create a map based on matching of the

line segments across the views and organizing them within . :
g g g TLE'G segments of next acquired imaggeandl, are matched

an adjacency graph. A correct mapping is important for . S .
successful navigation. It is not always necessary to perform )Eeget a new set ofMg. This idea is similar to tracking the

mapping in real time. Therefore, it is better to use veri catio ne segments of the key image in successive frames. Then

of the matching using trifocal tensor and RANSAC to get ethpr%ct?[sz contlnglesh. ;_ hle Ie:st;ciqU|r¢_sd |mﬁge ;PS] als% sttohred
better set of key images for representing the environment. In the database, which NEIps 1o determineé when he robot has

The key image selection procedure is sketched in Fig. t]c]> stop :t thebe?\z of tr,:ﬁ nawgatl?rll. Threae wev:; Thatcthmg IS
The rst acquired image is always stored in a database adyays done between the current key imageand the two

key image ( st node in the topological map). Liet ; andl . most recentl_y acquired imagdeg, 1 andlc.. Hence, the output
be the two most recently acquired images apde the most of the mapping process is a set of key images that represents

recent key image. For the case just after the new key ima & arc t_he robqt has to follow during the ngwgahon. The
is set,l ; andl. are the two images acquired successive eighboring key images share some common line segments as

after | .. The detected line segments laf are matched with khOV.V” in Fig. 2, wh.icnbmahkes ditprZSib I.e totﬁonhSier. multiplle
Ic 1 to get the rst set of matched lineSM ¢, g. The lines €y images in a neignbornood for de ning the heading angie

in I, present inf My, g are matched with the detected IineOf the robot.

segments il to get the second set of matched liriéd 9. o o

The common line segments fiM ¢, g andf Mg give three D- Navigation in the map using line segments

view correspondences. If there are not suf cient number of After the mapping phase, a set of key images that represents
lines (for example less than 20) after three view matching, otlae nodes of the adjacency graph of the environment is
low ratio (for example less than 0.5) of inlier to total number dcdivailable. For simplicity, a linear map is considered here. The
matches after trifocal tensor estimation with RANSAE,1 is  havigation process can be divided into two tasks: a) initial
saved in the database as a recent key iniggand| . becomes localization in the map, and b) successive localization in the
the newl. ;. Otherwise,fM.g becomesf M, g and the map and motion control. The topological location corresponds
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to the actual arc of the graph, which determines the twotational velocity is derived from the matched lines between

key-images used for visual servoing. For smooth motion aihg, 1y and Iyn , Whereas the translational velocity is kept

switching of key images, one more key image next to curreacdnstant and reduced to smaller constant value when turning.

key images in the forward direction is also used (see Fig. Buch turnings are automatically detected by looking at the
1) Initial Localization: The navigation starts with the initial commanded rotational velocity.

localization where the rst image acquiredl,j is compared Let us dene a vector of visual features a§ the

with all the images in the database based upon line segmeainera velocity expressed in camera frame was =

matching. Initial localization helps to determine the initia{Vey; Vey; Vez; ! ex; ! oyi ! cz) and the robot velocity ag =

position of the robot in the map. This enables to start the rob@t ; ! ) , wherev is the linear velocity andl is the rotational

from any position in the mapped location. The key image withelocity around the given axes. The velocitysafan be related

the maximum number of matches is selected. Let ithb&hen via an interaction matrixls [27] to u. as

the adjacent key image with second maximum matches is also s = JsUg: (2)

selected. This image can be eithigr; orly ;. If the robot is

assumed to be moving along the same direction as the images

arranged in the databask, is betweenly 1 andly, or I

and ., . For simplicity, we denote the previous key image

aslp and the next key image dg, . Hence, the position of

| 5 in the topological map is in betwedp andly as shown

in Fig. 3.

Fig. 4. Top view of robot (orange) equipped with a perspective camera
(blue) with its optical axis perpendicular to axis of robot rotation, (Left) and
Representation of line in polar form (Right).

Fig. 3. Localization in the map represented by the topological graph. . . . .
For the considered unicycle-like robot (Fig. 4 (leftd)), can

2) Successive Localizatiomfter initial localization in the b€ expresse_d in telrm§ (ﬁ_r ! r)_ as Lo
map, further localizations can be done by just comparing with ue= ( 'v; 0 v; O Yy 0) ©)

few adjacent images in the database. The previous key ima@ere is the distance between the camera center and the

Ip, the next key imagéy and the second next key imag&ohot center of rotation. From (2) and (3), we obtain
Inny are compared with the current acquired imdge Let s=Jyw + 1 4)

n(:::) be the number of lines matched between the images. . , ) )
Then switching of key images is done when at least one WhereJy andJ, are the Jacobian associated withand!
the following criteria is ful lled for two consecutive acquired Fespectively. In order to drive to desired valus , we control

imagesl  and | a+1 'y as [27] .
N(aIn;Inn ) >n(lp;la;ln) or e= 37 ( (s s)+ dywr); (5)
N(la;lun ) >N (la;In) && n(la;lnn ) >0 (1p;la): where is a positive gain, and; is the pseudo-inverse of

J, . The expression al, andJ, can be obtained as follows.

The rst criterion is based on the result of three view matching, 3p, a straight line can be represented by the intersection
between the images inside the brackets, whereas the secgnflyo planes:

criterion is based on two view matching of images. The second ax+hy+cz+d=0;i=1;2 (6)
criterion is essentially useful when there are no three view

matches or very few number of three view correspondencé&xcept for the degenerate cages = d; = 0), a 3D line
Such a condition may sometimes occur with sharp turns ifh @ scene projects onto the image plane as a 2D line. As in
corridors having no texture at all. After switching the image$28], we choose to parameterize line segments with parameters
In becomedp, Iny becomedy, and next key image from (; ) as

In becomeslyy . Then the process repeats. When the end X cos + Y sin =0: (7)

of the database is reachddy will not be available andn  The interaction matrix related toand is given by [28]

will be the last image acquired during the mapping. So, the
navigation needs to be stopped. Otherwise, the robot will bE

- 2 2
moving out of the mapped environment. L ; { g 2 1+ c )s (@ +S )C Ol]];
: 8
E. Motion Control whereC =cos ,S =sin , =(a cos +h sin +

For navigation, the robot is not required to accurately reach)=d and = (& sin b cos )=d. Since we only
each reference image of the path, or to accurately follow tlkentrol! ;, only one feature derived from all line segments is
learned path. In practice, the exact motion of the robot showddf cient. We have chosen the abscissa of the centroid of the
be controlled by an obstacle avoidance module [5], which witloints of intersection of the matched lines and their respective
be the future work. Therefore, Image-Based Visual Servoimgprmal from the origin. For a given line as shown in Fig. 4
(IBVS) [27] is the adequate strategy for such purpose. Tigght), X = cos gives the abscissa of such a point.
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For a set ofn matched lines betweeh,, Iy andlIyn , We resolution in the experiments was 64480. The mapping
de ne: was done of ine, whereas the navigation experiment was per-
X formed online at 6 Hz. The acquisition of images and the high-
Xa = ai COS ai; Xa= 5  Xai; level motion control for the Pioneer were done through the
L interface provided by ViSP [30]. For line segments detection
Ni COS Ni: Xn =2 X (9) and matching, the implementation provided by the MIP group
i=1 1. University of Kiel, has been used with some modi cations
as per our requirements. The image coordinates have been
normalized by the camera intrinsic parameters before deriving

) ) ] _ the rotational velocity. The experiments have been performed
Hence, our visual feature &= X, and the desired feature isiy an indoor environment, i.e., inside a room and a corridor.

XNi

XnNi = nni €OS nni s and Xun = & Xnni ¢
i=1

s = Xn. We thir;@have Even though simple navigation path with linear and curved
S= Xa= - (_aiCOS ai ai SIN ai ai): (10) trajectories have been used in the experlmlent,. the mgthod
n._, can be easily extended for the graphs with intersections

From (4), (8) and (10), we obtain and multiple paths. The qualitative results of mapping and

X0 navigation using different trajectories in corridor and inside
=} (a §sing ai ai COS 4): the room are now presented.
i=1
= 2 2 2 a1 - nsi
J, = @+ ai)0052 ai 2:sin° 4) A. Experiment I: Inside a room
=1 . 1) Mapping: 617 images have been acquired as the learnin
+ (& &SN 4COSa  a COS 4)): ) Mapping Y N J

sequence. 18 images shown in Fig. 5 have been selected
Neglecting with respect tod; (distance of line from image automatically from the mapping algorithm described in Sect.
plane), and assuming the camera optical axis is orthogonallt&€ as key frames. The trajectory obtained from the odometry
the axis of robot rotation and that the centroid stays near tiseshown by a red curve in Figs. 6 and 7, where the red
image plane center, (11) can be approximated as symbol represents the location of the key images. The
X obtained key images are able to represent the learned path.
There are more key images over a small distance in case of
(12) quick displacements of features like in turnings or when line

Since visual servoing is known to be robust against modeli§§9Ments cannot be successively matched over the sequence
errors [29], such approximations are reasonable. Thus, fréff#e to changes in illumination.
(5) and (12) we nally obtain the following expression for the
rotational velocity:
by = Ja Xa  Xn); (13)
where is a small constant to prevent possible division by zero.
In order to smooth the rapid steering actions when switching
between frames, a feed-forward command is also added to
I .. The calculation of the feed-forward term is based on the
difference of the centroids between the shared linds, afith
In andlyn . The nal equation is given as follows

I, = (hi(Xa Xn)+ ha(Xa Xnn));  (14) 2) Navigation: The robot was placed inside the mapped
Ja environment with the camera facing towards the mapped

whereh; andh, are positive weights such thhai + h, = 1: direction (initial position shown by green dot). The forward
Thus, our complete framework uses only gi2information velocity was set to 0.2 m/s. During navigation, the robot was
obtained from thdine segmentsnatching, without requiring able to follow the learned trajectory as shown by the blue curve
any 3D information, which was not the case in previous works Figs. 6 and 7, with automatic switching of the reference
From this 2D information, we derive the required rotationamages. Figure 6 shows the navigation of the Pioneer in the
velocity using IBVS which makes the robot to follow the map without any change in environment from the time of
learned path successfully without any need of the accurat@pping.The navigation in presence of obstacles is shown in

J,' Oand J, ' % (cos? & 2 cos(24)) = Ja:
i=1

Fig. 5. Key images of the robotics room.

mapping or localization. Fig. 7 (left). Even during a continuously obstructed view by
walking in front of the camera (as shown in Fig. 8 (left)), the
I1l. EXPERIMENTAL RESULTS robot was still able to follow the desired path. Fig. 7 (middle)

§(hows the navigation with some changes in the room as shown

The experiments were performed with a Pioneer 3DX _. :
equipped with an AVT Pike 032C camera module. Al comn Fig. 8 (third column), where the table was moved from the

pUtationS* e_xcept for the IOW'Ieve_I control, were performed Onlhttp://www.mip.informatik.uni-kiel.de/tiki-downloa_dle.php? leld=1965
a laptop with 3-GHz Intel Core i7-3540M CPU. The imag@Accessed: August 24,2015].
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end to the middle of the room and replaced by a chair afthe distribution of key images concentrated at the turnings
the stool was pushed further from the time of mapping. Fignd when line segments of key images cannot be successively
matched over the sequence.

Initial Localization Navigation

— + Key Images -
.
- I e Wapped Path s
—H_‘ — Navigated Path #
.
[ RS IESSTSS E S—-—

8

Number of Matches

] 2 4

Key Image Index
Initial Localization

¥ (em)

Current image (middle) is between two key images

Input to controller

nw«wfﬁmww\

2 w0 e £l 100 120

cauirod Image Indor s 5 » w w w» = = Fig. 9. Odd key images £434,5" ) of the corridor.

X (cm)

Rotational Velocity (w)

Fig. 6. Initial localization and navigation inside the robotics room.

Navigation with obstacle Navigation with change in scene Navigation after long time (change in scene)

s0

s w0 2 a0 -

EEEEE I 0 w0 0w
X (cm) X (em)

s
X (em)

Fig. 10. Odd key images §43,5M,..) of the corridor from reverse direction.

Fig. 7. Navigation inside the robotics room in presence of people (left) and E— L .
changes in mapped scene (middle and right). 2) Navigation: Figures 11 and 12 show navigation in the

corridor. The robot was placed inside the mapped location (ini-
tial position shown by green dot). The forward velocity was set
to 0.15m/s and reduced to 0.075m/s when turning, whereas the
rotational velocity was controlled by the navigation algorithm.
Even with the open doors, people walking in the corridor and
blur in some images as shown in Fig. 13, the robot was still
able to navigate successfully with turning whenever it was
required. Right angle turning is a challenging task, in the

Fig. 8. Obstruction in view (left), mapped scene (second column) and changes
in scene (third column, right).

7 (right) shows navigation in the room performed 6 months
later than the mapping stage with many changes and dynamic
objects in the scene like a table, chairs, boxes, etc (Fig. 8
(right)). The successful navigation in these latter cases was
possible due to the presence of suf ciently large number of
line matches from the static objects like ceilings, oor tiles,
posters, and pillars. In all cases, the drift was within 3cm from
mapped position.

B. Experiment 2: In a Corridor

1) Mapping: Out of 1208 images acquired in th_e corrldoerg. 11. Navigation in the corridor.
45 have been selected automatically as the key images (Fig.
9). Similarly, 53 key images have been obtained from 10&&nse that there are few lines with fast changes. However,
images of the same corridor taken from a reverse directitie key images obtained from the mapping part were still able
(Fig. 10). The mapping has been done with all doors closéal handle such situations. The lateral drift when navigating
except one. This was meant to ensure that illumination frothrough 32 meters in the corridor is within 5 cm from the
the room and outside windows has negligible effects. Theapped position, thus con rming the accuracy of the visual
obtained key images represent a path of length 32 metessrvoing control law.
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Fig. 15. Navigation in the corridor and the room.

Fig. 12. Navigation in the corridor in reverse direction. D. Discussions
The presented results show the viability of our approach
in many different scenarios and constraints. The robot has
been able to navigate autonomously in the learned path from
the start position. Our framework does not depend upon any
particular type of line segment, and the key images selected
by our approach proved to be good enough for the navigation.
. _ o _ Our navigation algorithm is based on the idea that the key
Fig. 13. Changes in the navigation environment from the mapped one: peom?ages around the immediate neighborhood of the robot have
passing by, opening of the doors, change in the local illumination due to a . .
dead bulb and blur in the image. more matches than others. The bar graphs in Figs. 6, 11
and 12 con rm this idea. The adjacent key images that have
maximum common lines give the initial location in the map.
C. Experiment 3: Navigation in room and corridor Based upon line matching resul'_ts, the key images are swltched
automatically and the appropriate rotational velocity is set

Two experiments have been performed in which the robitat allows the robot to foIIow_th_e learned path. IBVS has
moves between a corridor and a room. Some key images ofﬁf'éan able to keep the error within small bounds. The robot
learned paths are shown in Fig. 14. In the rst experiment, tfid not exactly follow the learned path because neither 3D
robot navigated a 40m path from corridor to inside the roorififormation nor any 3D motion estimation to correct the pose
Out of 7745 images acquired during mapping, 105 imag@@s used, as this is not our objective of the navigation to be
have been automatically selected as reference images. IndfEUrate, but to be successful and robust. The other reason
second experiment, the robot navigated inside the room dig@!SO due to approximation of the path by straight lines.
then into the corridor in a 22m path. Out of 4291 imagedoWever, neglecting 3D information also results in some
acquired, 73 images were selected as reference images. ngatlons like more lateral deviation especially after sharp

navigation path consists of straight line and multiple turns 44nings. Nevertheless, based on 2D information only, a useful
shown in Fig. 15. navigation could be performed in the corridors and inside the

Fig. 15 presents the navigation of the robot. The robcr)?om as visual servoing is robust enough to handle such errors.

successfully followed the learned path with turning whenever . . .
required. There are more deviations in turnings especially inComparlng with point based method [5], [6], our method

case of turning in large angle (semi-circular turnings) becauggr:{r?rg]szcitrt_ﬁ;:rsgﬁg'iar:l_y rzséorﬁ;%ﬁtumrsgoﬁnglll:?g?;:?é ?as I'g
of approximation of the arcs as straight lines and few Iinég gr motion hown ?n Fig. 16. where reliabl int b P d
detected with fast changes between the frames. Even thoq €ra motion as sho 9. 16, Where refiable po ase

a large drift is present while doing circular turn in the seconaneg[u;%s r(é?:g:g:r:;igfte\/t/:iﬁ%u:ej;Ir:mge;?e:r?glu:i f(;?n;{;?i((:)lﬂglg
experiment, the navigation was still successful. ( 9

from sensors like IMU). Our framework performs better in
the environments like those in Figs. 13 and 16 because line
segments are abundant in a structured indoor environment,
and they are also more resilient to motion blur and partial
occlusions. However, our framework also has some limitations
that are mainly due to the line matching algorithm, which
is not still a mature eld in computer vision unlike points,
especially in the cases where there are very few line segments
Fig. 14. Some key images from the navigation paths. Top row represents figtected in the images. Initial localization might produce
40m navigation path. Bottom row represents the 22m navigation path.
false results when there are few matches (say less than 10)
by using just two view matching. In such cases, 3 view
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