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Abstract

Since interference is the main performance-limiting factor in most wireless networks,

it is crucial to characterize the interference statistics. The two main determinants of the

interference are the network geometry (spatial distribution of concurrently transmitting

nodes) and the path loss law (signal attenuation). In order to explain the above, the main

purpose of this thesis is of study the path-loss with respect to the serving base stations

(BS) and the interference factor, defined as the ratio of the sum of the path-gains from

interfering BS to the path-gain from the serving BS. In this thesis, the locations of nodes

are modeled as a random Poisson process. Regarding the signal propagation model, we

consider a random shadowing that characterizes in a statistical manner the effect of var-

ious obstacles. We provide results on the probability distribution function of both the

path-loss and the interference factors.

Keywords : Wireless cellular networks, Point Poisson process, Shadowing,

Path-loss, Interference, Path-loss exponent.
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Introduction

Stochastic geometry is the study of a random process whose outcomes are geometrical

objects or spatial patterns, that is, random subsets on the plane or in higher dimensions;

it is intrinsically related to the theory of point processes. It has applications to biology,

astronomy and material sciences. Nowadays, it is also used in telecommunications which

allows to capture the non-regular and variable geometry of the network and variability

of radio channel conditions in probabilistic manner primarily offering various averaging

methods.

Modeling of the attenuation of an electromagnetic wave as it propagates in space is

a major component in the analysis and design of wireless system. This phenomenon,

also called propagation loss, is caused by the decay of the signal power with the distance

from the emitter, existing even in the free space propagations models, and due to various

obstacles between emitters and receivers, trees, buildings, hills, etc., present in real net-

work profiles. The propagation loss is typically modeled by the product of a deterministic

function of the distance, which represents average path-loss on the given distance in the

network and a random variable, called shadowing.

There are two key ingredients in the analysis of wireless cellular networks and thus

their values can be considered as some important requirements to the study of QoS. The

first one is the path-loss to the serving BS, which is the one received with the strongest

signal and not necessarily the closet one. The second is the so called interference factor

defined as the ratio of the sum of the path-gains from interfering BS to the path-gain

from the serving BS.

The remaining part of this thesis is organized as follows. In the first chapter, we

introduce the theoretical framework by presenting the so known tools in the stochastic

geometry which are the point Poisson process and the so called Palm distributions. In the
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second chapter, we describe our model which is based on the consideration of a Poisson

point process. Finally, we study some mathematical results of the distributions of the

path-loss and the interference factors which are two ingredients in the analysis of the

quality of service (QoS) for a wireless cellular networks.



Chapter 1

Theoretical Framework

The aim of this chapter is to introduce the basic tools and structures of some classical

results of stochastic geometry and thus to lay the foundations of for much of this thesis.

Our main reference for this chapter is [BB09, vol.I].

1.1 Point Processes

1.1.1 General Notation

A point process is a counting process that represents a random set of points in a space.

The usual spaces are the real line, the plane, the multi-dimensional Euclidean space Rd,

or, more generally, a complete, separable metric space (a Polish space). Following the

standard convention we will discuss point processes on a polish space E. We let B(E) be

the family of Borel sets of E and let B̂(E) denote the family of bounded Borel sets (a

set is bounded if it is contained in a compact set). We refer to E simply as a space, and

denote other spaces of this type by E′, Ẽ, etc.

We begin with an informal description of a point process. A random set of points on E

is a countable set of E-valued random elements Xn such that only a finite number of the

points are in any bounded set. Thus,

Φ(B) =

Φ(E)∑
n=1

εXn(B), B ∈ B(E)

denotes the number of points in B, where εX(B) = 1 if X ∈ B and 0 otherwise (a Dirac

measure with unit mass at X). This counting measure Φ, as we will define below, is a

point process in E with point locations Xn.

Note that Φ takes values in the set M of all measures ν on (E,B(E)) that are locally finite
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(ν(B) <∞, for all B ∈ B̂(E)). Each measure in M has the form

ν(B) =

ν(E)∑
n=1

εXn(B), B ∈ B(E),

The set M is endowed with the σ-field M generated by the sets {M 3 ν 7→ ν(B)} (in

other words by the mappings {M 3 ν 7→ ν(B)}), for B ∈ B(E). We are now ready for a

formal definition.

1.1.2 Definitions and Classical Results

Definition 1.1.1 A point process on a space E is a measurable map Φ from a probability

space (Ω,F,P) to the space (M,M). The quantity Φ(B) is the number of points in the set

B ∈ B(E). Hence,

Φ(B) =

Φ(E)∑
n=1

εXn(B), B ∈ B(E),

where Xn denotes the locations of the points of Φ.

One can think of Φ as a counting process of E = Rd that is locally finite (Φ(B) <∞ a.s.

for the bounded sets B). The probability distribution of the point process Φ i.e., P(Φ ∈ ·)

is determined by its finite-dimensional distributions

P[Φ(B1) = n1, ...,Φ(Bn) = nk], B1, ..., Bk ∈ B̂(E).

In other words, two point processes Φ and Φ′ in E are equals in distribution, denotes by

Φ
D
= Φ′, if their finite dimensional distributions are equals :

P[Φ(B1) = n1, ...,Φ(Bn) = nk] = P[Φ′(B1) = n1, ...,Φ
′(Bn) = nk], B1, ..., Bk ∈ B̂(E).

In construction a point process, it suffices to define the probabilities on sets Bi that

generate B(E).

Definition 1.1.2 One says that the point process Φ is simple if

P
(

Φ({x}) = 0 or 1, ∀x
)

= 1,

i.e., with probability 1, Φ =
∑
n

εXn, the points {Xn} are pairwise different.

Definition 1.1.3 (Mean Measure) The mean measure of the point process Φ is the

measure Mon (E,B(E)) defined by

M(B) := E[Φ(B)], B ∈ B(E).
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The mean measure M is also known as the first moment measure. Higher moment can be

introduced in a similar way.

Note that M(B) may be infinte, even if B is bounded. When E = Rd, the intensity

measure is sometimes of the form M(B) =

∫
B

λ(x)dx, where λ(x) is the rate of Φ at the

location x and dx denotes the Lebesgue measure.

Theorem 1.1.1 (Campbell’s Theorem)

Let Φ be a point process and consider a measurable function f : E→ [0,∞). Then∫
E
f(x) Φ(dx) ≡

∑
x∈Φ

f(x)

is a random variable and

E
[ ∫

E
f(x) Φ(dx)

]
=

∫
E
f(x) M(dx), (1.1)

where M is the intensity measure of Φ.

Proof. For B ∈ B(E),

Φ(B) =

∫
E
1B dΦ,

this is a nonnegative measurable function, and

E[

∫
E
1B dΦ] = E[Φ(B)] = M(B) =

∫
E
1B dM.

Thus, the assertion holds for indicator functions of Borel sets and therefore also for linear

combinations of such functions. By a standard argument of integration theory, it holds

for nonnegative measurable functions.

Remark 1.1.1 We have formulated Campbell’s theorem only for nonnegative measurable

functions, but it is clear that it holds also for M−integrable functions. The same remark

refers to the subsequent relatives of Campbell’s theorem, they will later tacitly be applied

to integrable functions.

For a simple point process Φ, Campbell’s theorem can be written in the form

E
[∑
x∈Φ

f(x)
]

=

∫
E
fdM.

A Laplace transform is a tool for characterizing the distribution and the moments of a

nonnegative random variable. This transform is also useful for establishing convergence

in distribution of random variables. The analogous tool for point processes is Laplace

functional.
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Definition 1.1.4 (Laplace Functional of Point Process) The Laplace functional of

the point process Φ is defined by

LΦ(f) := E
[

exp
(
−
∫
E
f(x) Φ(dx)

)]
, (1.2)

where, f : E→ [0,∞) is a measurable function.

The Laplace functional of a point process uniquely determines its distribution. Also

Laplace functionals are often more convient to use than finite-dimentionnel distributions

in deriving the distribution of a point process constructed as a function of random variables

or point process. Our main focus hereafter will be on the Poisson point processes.

1.2 Poisson Point Processes

Poisson point processes can be introduced in quite general measurable spaces with addi-

tional structures. Here we restrict ourselves, as in the previous sections, to a Polish space

E. We first introduce the two characteristic properties of Poisson point processes.

Definition 1.2.1 A point process Φ on a space E is Poisson with intensity measure Λ

that is locally finite if the following conditions are satisfied.

a) Φ has independent increments; i.e, the random variables Φ(B1), ...,Φ(Bn) are stochas-

tically independent for pairwise disjoint B1, ..., Bn ∈ B̂(E).

b) For each B ∈ B̂(E), the quantity Φ(B) is a Poisson random variable with mean

Λ(B), i.e.,

P(Φ(B) = k) =
Λ(B)k

k!
e−Λ(B).

Note that Φ(B) = 0 a.s. when Λ(B) = 0. Note that the number of points Φ(x) exactly at

x has the poisson distribution with mean Λ(x), so Φ(x) = 0 a.s. when Λ(x) = 0. From the

definition, it follows that the finite-dimensional distributions of a Poisson point process

are uniquely determined by its intensity measure, and vice versa.

Theorem 1.2.1 (Poisson Laplace Functional) For a Poisson point process on E with

intensity measure Λ, and a measurable function f : E→ [0,∞)

LΦ(f) = exp
(
−
∫
E

(1− e−f(x)) Λ(dx)
)
. (1.3)

Moreover, Φ is a simple point process if and only if Λ is diffuse.
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Proof. It is sufficient to consider simple functions of the form

f =
n∑
i=1

ci1Bi ,

where ci are nonnegative and the Bi are disjoint Borelian subsets of E. The Laplace

functional of Φ at f is given by

E
[

exp
(
−
∫
E
f(x) Φ(dx)

)]
= E

[
exp

(
−

n∑
1

ci Φ(Bi)
)]
,

by independence Assumption a) it can be written as

E
[

exp
(
−
∫
E
f(x) Φ(dx)

)]
=

n∏
1

E[exp(−ci Φ(Bi))] =
n∏
1

exp[−Λ(Bi)(1− e−ci)]

because the distribution of Φ(Bi) is a Poisson according to b), finally

E
[

exp
(
−
∫
E
f(x) Φ(dx)

)]
= exp

[
−

n∑
1

Λ(Bi)(1−e−ci)
]

= exp
[
−
∫

(1−e−f(x)) Λ(dx)
]
.

Now, if the measure Λ has a mass λ({x}) > 0 on x ∈ E, the variable Φ({x}) is Poisson

with parameter Λ({x}), in particular P(Φ({x}) = 2) > 0, hence Φ cannot be simple.

Conversely, if Λ is diffuse, let B a bounded element of B(E) then,

P{Φ is simple on B} =

=
∞∑
n=2

P{Φ(B) = n}P{∀ n points ofΦ are distincts |Φ(B) = n}

=
∞∑
n=2

e−Λ(B) (Λ(B))n

n!

1

(Λ(B))n

∫
...

∫
Bn

1{xj distincts}Λ(dx1)...Λ(dxn)

= 1.

Whence the desired result.

As we will see, many point processes involving complex phenomena or systems can

be represented by functions of Poisson point processes. In these settings a Poisson point

process is typically the basic data that defines or initializes a system, and various charac-

teristics of the system are deterministic or random function of the Poisson point process.

A basic issue in this regard is; if the point locations of a Poisson point processes are

mapped to some space by a deterministic or random mapping, then do the resulting

new points also form a Poisson point process? This issue on a variety of contexts is the

underlying theme for the next section.
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1.2.1 Operations Preserving the Poisson Law

a) Superposition

Lemma 1.2.1 Let Φ1, ...,Φn denote independent Poisson point processes on E with re-

spective intensity measures Λ1, ...,Λn. Then the sum (or superposition) Φ =
n∑
i=1

Φi is a

Poisson point process with intensity measure Λ =
n∑
i=1

Λi. This is also true for n = ∞

provided Λ is locally finite.

Proof. It is sufficient to see that for n ≥ 1, the Laplace functional of the point process

Φ1 + ...+ Φn at f is given by

exp
[
−
∫

(1− e−f(x))(Λ1 + ...+ Λn)(dx)
]
,

therefore, this point process is a Poisson with intensity measure Λ1 + ...+ Λn.

b) Transformation of Space

Suppose Φ is a Poisson point process on E with intensity measure Λ. Consider a trans-

formation of Φ in which its points in E are mapped to a space E′ (possibly E) by the rule

that a point of Φ located at x ∈ E is mapped to the location G(x) ∈ E′, where G : E→ E′

is a given map. We represent this transformation of Φ by the point process N on E× E′

defined by

N(B ×B′) ≡
∑
n

1
(

(Xn, G(Xn)) ∈ B ×B′
)

= Φ(B ∩G−1(B′)), B ∈ B(E), B′ ∈ B(E′).

Keep in mind that
∑
n

=

Φ(E)∑
n=1

. The quantity N(B × B′) denotes the number of points

of Φ in B ∈ B(E) that are mapped into B′ ∈ B(E′). Then the transformed points in the

space E′ are represented by the point process Φ′ defined by

Φ′(B) = N(E×B′) =
∑
n

εG(Xn)(B) = Φ(G−1(B)), B ∈ E′.

Lemma 1.2.2 Under the preceding assumptions, the transformation process N is a Pois-

son with mean measure

E[N(B ×B′)] = Λ(B ∩G−1(B′)), B ∈ B(E), B′ ∈ B(E′).

Hence, the process Φ′ is a Poisson point process with intensity measure E[Φ′(B′)] =

Λ(G−1(B′)), B′ ∈ B(E′), provided this measure is finite for each compact B′.
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Proof. We will show that N satisfies the two conditions in the definitions of a Poisson

point process. Since Φ is a Poisson point process, N(B × B′) = Φ(B ∩G−1(B′)) has the

Poisson distribution with mean Λ(B ∩G−1(B′)). This intensity is finite for any B′ when

B is a compact. It remains to verify that N has independent increments. It suffices to

show that N(Bi × B′i), i = 1, ..., k, are independent for disjoint B1, ..., Bk in B(E) and

disjoint B′1, ..., B′k in B(E). This independence follows since Bi ∩ G−1(B′i), i = 1, ..., k,

are disjoint and Φ has independent increments. Thus, N has independent increments and

hence is a Poisson point process.

Next, note that process Φ′(B′) = N(E × B′) has independent increments since N does,

and Φ′(B′) has a Poisson distribution with E[Φ′(B′)] = Λ(G−1(B′)). Thus, Φ′ is a Poisson

process when Λ(G−1(B′)) is finite for each compact B′.

We are now ready to consider random transformation of Poisson point processes.

c) Random Transformation of Points

The focus of this section is on a transformation of a Poisson point process on the space

E in which each of its points is independently assigned a random mark on a space K

depending only on the particular point location. The distribution of the marks will be

determined by probability kernels.

A mark assigned to a point at x ∈ E, will take value in a set B ∈ K according the

probability kernel p(x,B) from E → K. Such a kernel is a function p : E × K → [0, 1]

such that p(., B) is a measurable function on E and p(x, .) is a probability measure on K.

Our interest will on modelling the initial points as well as the marks by a marked point

process on E×K. The formal definition is as follows.

Definition 1.2.2 Let Φ =
∑
n

εXn be a Poisson point process on E with intensity Λ. Let

Φ̃ =
∑
n

ε(Xn,Sn) be a point process on E×K such that

P(Sn ∈ K
∣∣∣Φ) = p(Xn, K), K ⊂ K, n ≤ Φ(E),

where p(x,K) is a probability kernel from E to K. The Sn are p-marks of the Xn, and

the point process Φ̃ of the initial points and their marks is a p-marked Poisson process

associated with Φ.

The Laplace functional of the marked point process Φ̃ is related to that of Φ as follows. this

relation is useful for deriving properties of Φ̃, when Φ has a tractable Laplace functional.
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Proposition 1.2.1 The Laplace functional of the marked point process Φ̃ associated with

Φ is

LΦ̃(f) = E
{

exp
[ ∫

E
log[

∫
K
e−f(x,s) p(x, ds)] Φ(dx)

]
.

}
(1.4)

That is LΦ̃(f) = LΦ(h), where h(x) = −log[

∫
K
e−f(x,s) p(x, ds)].

Proof. Conditioning on Φ and using the property that the Sn are conditionally inde-

pendent given Φ, we have

LΦ̃(f) = E
{
E
[
e−

∑
n f(Xn,Sn)

]∣∣∣Φ}
= E

{∏
n

E
[
e−f(Xn,Sn)

]}

= E

{∏
n

∫
K

e−f(Xn,s)p(Xn, ds)

}

= E

{
exp

[∑
n

log

∫
K

e−f(Xn,s)p(Xn, ds)
]}

.

Using the property
∑

n g(Xn) =
∫
E g(x)Φ(dx), for g : E→ R, the last expectation equals

to the right side of (1.4), whence the desired result.

The following is the major result that random transformations of Poisson processes are

also Poisson.

Theorem 1.2.2 (Displacement Theorem) The point process Φ̃ =
∑
n

ε(Xn,Sn) in Defi-

nition 1.2.2 is a Poisson point process on E×K with intensity measure ΛΦ̃ defined by

ΛΦ̃(B ×K) =

∫
B

p(x,K)Λ(dx), B ⊂ E, K ⊂ K. (1.5)

Hence, the point process of marks values Φ′ =
∑
n

εSn is a Poisson point process on K

with intensity measure Λ′(K) =

∫
E
p(x,K)Λ(dx), K ∈ K, provided this measure is locally

finite.

Proof. From Proposition 1.2.1, we know that LΦ̃(f) = LΦ(h), where LΦ(h) is a Poisson

Laplace functional of the form given by the Theorem 1.2.1. Then

LΦ̃(f) = exp
[
−
∫
E
(1− e−h(x))Λ(dx)

]
= exp

[
−
∫
E×K

(1− e−f(x,s))p(x, ds)Λ(dx)
]
.

But this is the Laplace functional of a Poisson point process with mean given by (1.5).

This proves the first assertion of the theorem. The second assertion that Φ′(·) = Φ̃(E× ·)
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is a Poisson process follows since it is the Poisson process Φ̃ on a subset of its space E×K.

1.3 Palm Theory

In the study of a point process we are often interested in properties relating to a typical

point of the process. This requires the calculation of conditional probabilities of events

given that there is a point in the process at a specified location. It leads to the concept

of the Palm distribution of the point process, and the related Campbell-Mecke formula.

These tools allow us to define new characteristics of a point process, such as the nearest

neighbor distance distribution function.One simple question about a point process Φ is:

what is the probability distribution of the distance from a point of Φ to its nearest

neighbour (the nearest other point of Φ).

If x is known to be a point of Φ, then the nearest neighbour distance is Rx = dist(x,Φ \

{x}), and we seek the ”conditional probability” P(Rx ≤ r|x ∈ Φ). The problem is that

this is not a conditional probability in the elementary sense, because the event {x ∈

Φ} typically has probability zero. In this section, we consider point processes on Rd

and introduce the Palm calculus, a powerful tool to describe conditional distributions of

point processes. In the probability theory, it is possible under suitable assumptions to

introduce conditional probabilities, which are not defined in an elementary way, by means

of desintegration procedures. A somewhat similar procedure is possible for point processes

and leads to the notion of Palm distribution Px with respect to a given point x ∈ Rd.

1.3.1 Palm Distributions in a General Setting

Definition 1.3.1 For a point process on Rd, define the reduced Campbell measure C ! on

Rd ×M by

C !(B × Γ) := E
[ ∫

Rd
1(x ∈ B)1(Φ\εx ∈ Γ)Φ(dx)

]
. (1.6)

The Campbell measure C is defined by

C(B × Γ) := E
[ ∫

Rd
1(x ∈ B)1(Φ ∈ Γ)Φ(dx)

]
. (1.7)

The measure C !(B × Γ) is a refinement of the mean measure M . It gives the expected

number of points of Φ in B such that when removing a particular point from Φ. We have
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an extension of the Campbell theorem

E
[ ∫

Rd
f(x,Φ) Φ(dx)

]
=

∫
Rd

∫
M
f(x, η) C(d(x, η)), (1.8)

also

E
[ ∫

Rd
f(x,Φ\εx) Φ(dx)

]
=

∫
Rd

∫
M
f(x, η) C !(d(x, η)), (1.9)

for a nonnegative measurable function f : Rd ×M→ R.

For each Γ ∈M, C !(·×Γ) << M(·), so C !(·×Γ) is absolutely continuous with respect

to M . Then by the Radon-Nikodym theorem, there exists a M−almost surely density

x→ P !
x(Γ) so that

C !(B × Γ) =

∫
B

P !
xM(dx), for all B ∈ Rd. (1.10)

The function P !
x = P !

x(Γ) depends on Γ. Moreover, if M(·) is a locally finite measure, P !
x

can be chosen as a probability distribution on M for each given x.

Definition 1.3.2 Given a point process with a locally finite mean measure, the distribu-

tion P !
x(·) is called the reduced Palm distribution of Φ given at a point x.

Theorem 1.3.1 (Reduced Campbell-Little-Mecke Formula) Let Φ be a point process

on Rd with finite mean measure M and let f : Rd ×M→ R be a nonnegative measurable

function. Then

E
[ ∫

Rd
f(x,Φ\εx)Φ(dx)

]
=

∫
Rd

∫
M
f(x, η)Px(dη)M(dx). (1.11)

The family {Px : x ∈ Rd} is a disintegration of the Campbell measure C with respect

to the mean mesure. It is plausible to interpret Px as the distribution of Φ, given that x

is a point in Φ. For simple point process Φ this intuitive meaning becomes clearer since

we can interpret Px as the conditional distribution P(Φ ∈ ·|x ∈ Φ).

For a Poisson point process Φ, the Palm distribution Px is closely related to the distribu-

tion of Φ as showing in the following theorem.

Theorem 1.3.2 (Slivnyak’s Theorem) Let Φ be a Poisson point process on Rd with

intensity measure Λ. For almost all x ∈ Rd,

P !
x(·) = PΦ(·) = P(Φ ∈ ·),

that is the reduced Palm distribution of the Poisson point process is equal to its original

distribution.
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Proof. The proof is based on a direct verification of the integral formula

C !(B × Γ) =

∫
B

P(Φ ∈ Γ)M(dx) = Λ(B)P(Φ ∈ Γ).

It is enough to prove this formula for all Γ of the form {ν : ν(A) = n}, for all A a Borel

bounded and n ≥ 0. For all Γ

C !(B × Γ) = E
[ ∑
Xi∈B

1
(
Φ\εXi(A) = n

)]
.

If A ∩B = ∅, then it yields

E
[ ∑
Xi∈B

1
(
(Φ\εXi(A) = n

)]
= E[Φ(B)1(Φ(A) = n)] = Λ(B)P{Φ(A) = n}.

Now, if A ∩B 6= ∅,

E
[ ∑
Xi∈B

1
(
(Φ\εXi(A) = n)

)]
= E[Φ(B\A)1(Φ(A) = n)] + E[Φ(B ∩ A)1(Φ(A) = n+ 1)]

= Λ(B\A)P{Φ(A) = n}+ E[Φ(B ∩ A)1(Φ(A\B) = n− Φ(B ∩ A) + 1)].

In the other hand we have,

E[Φ(B ∩ A)1(Φ(A\B) = n− Φ(B ∩ A) + 1)]

= e−Λ(B∩A)

n+1∑
k=0

((Λ(B ∩ A))k

k!
ke−Λ(A\B) (Λ(A\B))n−k+1

(nk + 1)!

)
= e−Λ(A)

n+1∑
k=0

((Λ(B ∩ A))k

(k − 1)!
ke−Λ(A\B) (Λ(B\A))n−k+1

(n− (k − 1))!

)
= e−Λ(A) (Λ(B ∩ A))

n!

n∑
k=0

( n!

k!(n− k)!
(Λ(B ∩ A))kΛ(A\B))n−k

)
= Λ(B ∩ A)e−Λ(A) (Λ(A))n

n!

= Λ(A ∩B)P{Φ(A) = n}.

Remark 1.3.1 We remark that it is often to see Px(·) and P !
x as the distributions of some

point processes Φx and Φ!
x called, respectively the Palm and the reduced Palm version of

Φ. For Poisson point process one can take Φ!
x = Φ and Φx = Φ + εx for all x. Using

this convention, wa can rewrite the reduced Campbell formula for Poisson point process,

Φ = {xi}i, as following

E
[∑
xi∈Φ

f(xi,Φ\xi)
]

=

∫
Rd

E[f(x,Φ)]M(dx).
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We next deduce a characterization of Poisson point process by using the property ex-

pressed in Slivnyak’s theorem.

Theorem 1.3.3 (Mecke’s Theorem) Let Φ be a point process with a mean measure M

locally finite. Then Φ is the Poisson point process with intensity measure Λ = M if and

only if

P !
x(·) = P(Φ ∈ ·).

Proof. Necessary: it is deduced from the result in Slivnyak’s theorem.

Sufficiency: It is enough to prove that for any bounded B

P{Φ(B) = n} = P{Φ(B) = 0}(M(B))n

n!
. (1.12)

Using the definition of the reduced Palm distribution with Γ = {ν : ν(B) = n},

C !(B × {ν : ν(B) = n}) = E
[ ∑
xi∈B

1(Φ(B) = n+ 1)
]

= (n+ 1)P{Φ(B) = n+ 1}.

Taking account the assumption that P !
x(Γ) = P{Φ ∈ Γ}, for all Γ it follows

C !(B × Γ) =

∫
B

P(Φ ∈ Γ)M(dx) = M(B)P(Φ ∈ Γ).

Thus

(n+ 1)P{Φ(B) = n+ 1} = M(B)P{Φ(B) = n},

from which (1.12) follows.

1.3.2 Palm Distributions in the Stationary Case

The Palm distribution Px of a point process Φ on Rd, which we introduced in the previous

section, is a probability measure on (M,M) where we can define a translation operator of

vector x ∈ Rdo r some others can call it a shift Sx given as following

Sxµ(B) = µ(B + x),

here B + x := {y + x ∈ Rd : y ∈ B}.

Note that if µ =
∑
i

εxi then Sxµ =
∑
i

ε(xi−x).

We now assume that the basic probability space (Ω,F,P) is supplied with an additional

structure. For each x ∈ Rd, suppose θx : Ω → Ω is a bijection such that the map

(t, w) → θx(w) is measurable and θs(θt(w)) = θx+y(w), w ∈ Ω, x, y ∈ Rd. In particular
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θ0(w) = w and θx−1 = θ−x.

θ ≡ {θx : x ∈ Rd} is called a flow on (Ω,F,P) (parameterized by Rd), and the quadruple

(Ω,F,P, θ)is named a dynamical system.

Definition 1.3.3 A point process Φ on Rd is called stationary if:

• the probability measure P on Ω is invariant under θ in the sense that P(θx ∈ A) =

P(A), A ∈ F, x ∈ Rd.

• Φ is adapted to the flow θ, i.e.,

Φ(θx(w))(B) = SxΦ(w)(B) forw ∈ Ω, x ∈ Rd, B ∈ B(Rd).

Given a stationary point process Φ, its mean measure is a multiple of Lebesgue measure:

M(dx) = λ dx. Obviously λ = E[Φ(B)] for any set B ∈ Rd of lebesgue measure 1.

One can define the Campbell-Matthes measure of the stationary point process Φ as the

following measure on Rd ×M :

C(B × Γ) := E
[ ∫

B

1(Sx(Φ) ∈ Γ)Φ(dx)
]
.

Definition 1.3.4 For a stationary point process Φ, we call the constant λ described above

the intensity parameter of Φ. For an arbitrary Borel set A ∈ B(Rd) with |A| = 1 and for

Γ ∈M, let

Po(Γ) =
1

λ
E
[ ∫

Rd
1(x ∈ A)1(Sx(Φ) ∈ Γ)Φ(dx)

]
. (1.13)

The distribution Po is called the Palm -Matthes distribution of the stationary point process

Φ.

Let coming back to the notation of the shift operator Φ(θx(w)) = SxΦ(w), one defines the

Campbell-Matthes measure on Rd × Ω, such that

C(B × F ) := E
[ ∫

Rd

∫
Ω

1(x ∈ B) 1(θxw ∈ F )Φ(dx)
]
, for all F ∈ F.

Now, using this notation of the shift we can also state an equivalent to the Theorem 1.3.1

for a stationary point process.

Theorem 1.3.4 (Campbell-Little-Mecke-Matthes)

Consider a stationary point process Φ on Rd with intensity λ > 0, and let f : Rd×Ω→ R

be a nonnegative measurable function. Then,

E
[ ∫

Rd
f(x, θx(w))Φ(dx)

]
= λ

∫
Rd

∫
Ω

f(x,w)Po(dw)dx = λ

∫
Rd

Eo[f(x,Φ)]dx, (1.14)

where Eo is the expectation under the distribution Po.
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The aim of the following lemma is to clarify the relationships between P o and Px which

are two probability measures on M.

Lemma 1.3.1 For almost all x ∈ Rd and for all Γ ∈M,

Px ◦ S−1
x (·) = PoΦ(·).

Proof. let B a Borel bounded and Γ ∈M,

λ

∫
B

(Px ◦ S−1
x (Γ)− Po(Γ))dx = λ

∫
Rd
1(x ∈ B)

∫
M
1(Sx(µ ∈ Γ)Px(dµ)

−λ
∫
Rd
1(x ∈ B)

∫
Ω

1(Φ(w) ∈ Γ)Po(dw).

Using the Campbell-Little-Mecke-Matthes Theorem, it follows

λ

∫
B

(Px ◦ S−1
x (Γ)− Po(Γ))dx = E

[ ∫
Rd
1(SxΦ ∈ Γ)Φ(dx)

]
− E

[ ∫
Rd
1(Φ(θx(w))φ(dx)

]
= 0.

Whence the desired result.

Remark 1.3.2 The distribution Po is often interpreted as that of the point process "seen

from a typical point" or seen from a "randomly chosen point" of Φ. It should not be

surprising that in the case of a stationary point process we actually define one conditional

distribution given a point at the origin o. This is motivated by the stationarity of the

original distribution. Furthermore, the distribution P x is then obtained as the image txPo

of Po under the translation by the vector x. This means that the conditional distribution

of points of Φ seen from the origin given Φ has a point there is exactly the same as the

conditional distribution of points of Φ seen from an arbitrary location x given Φ has a

point at x. Henceforth, note by Slivnyak Theorem 1.3.2 that for a stationary Poisson

point process Φ, Po corresponds to the law of Φ + εo under the original distribution.



Chapter 2

Model Description

2.1 Necessity of the Modelling

Optimisation of the network’s architecture is one of the principal ways for telecommuni-

cation operators to increase the effectiveness of their system. The strategy is based on an

economical analysis of statistical data and aims to find an architecture that best meets the

future service demand. The current planning methods require the complete knowledge

of the network and the traffic together with prediction for the future service demand.

Therefore the corresponding optimisation programs use a very large number of param-

eters whose values are not all known exactly, and due to their specifity and complexity

can not be applied to other networks. Moreover, the complete description does not give a

transparent functional relation between the performance characteristics and the descrip-

tion of the network’s topology. Therefore the development of reliable models possessing

a few number of structuring parameters and taking into account spatial characteristics of

the network opens new possibilities.

2.2 System Model

We assume that the base stations (BS) are located at the points of a stationary Poisson

point process Φ := {Xn, n ∈ N} of intensity λ BS per km2 on the plane R2. The path-loss

over a wireless link is modeled by distance component and a shadowing component. It

is usually assumed that the distance part is deterministic while the shadowing part is

random.

For a given BS X ∈ Φ and a given a location y ∈ R2 on the plane we denote by LX(y)

17
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and PX(y) respectively the propagation-loss and gain between BS X and the location y.

In what following we will always assume that

PX(y) =
SX(y)

l(|X − y|)
(2.1)

LX(y) =
l(|X − y|)
SX(y)

. (2.2)

where l(.) is a non-decreasing, deterministic function of the distance between an emitter

and a receiver, and SX(.) is a random shadowing field related to the BS X. In what follows

we will always assume that the locations of BS {Xn, n ∈ N} ≡ Φ and their respective

shadowing fields SX(.) form an independently marked version Φ̃ = (X,SX(.))X∈Φ of the

point process Φ. Regarding the distribution of the marks (shadowing fields) of this process,

they are assumed to have the same distribution for all y ∈ R2.

For the deterministic path-loss function l(.) the following particular model is often used

and will be our default hypothesis in this thesis:

[H1]

 l(r) = (Kr)β, where K > 0 and β > 2 are constants ,

β is called the path-loss exponent (PLE).

[H2]

 For all y,SX(y) is a log-normal random variablewhich can be expressed as em+σZ ,

where Z is a standard Gaussian random varaible (with mean 0 and variance 1 ).

Note that if the shadowing is log-normal then the path-loss (at a given location) expressed

in dB is a Gaussian random variable.

2.3 Path-gain Factor

In what follows we will assume that each given location y ∈ R2 is served by the BS X∗y ∈ Φ

with respect to which it has the highest propagation gain PX∗y (y), so in other words, the

strongest received signal, given all BS emit with the same power, i.e., such that

PX∗y (y) = max
n∈N

SXn(y)

l(|Xn − y|)
, (2.3)

Consequently we have,

PX∗y (y) ≥ PX(y), ∀X ∈ Φ.

We notice that PX∗y (y) is the propagation gain experienced by a user located at y with

respect to its serving BS. Obviously it effects the quality of service of this user. In this

context we will call path-gain factor of a user y and denote by PX∗y (y). It depends on the

location y but also on the path-gain conditions of this location with respect to all BS in

the network.
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2.4 Interference Modeling

In wireless networks, interference is one of the central elements in system design, since

network performance is often limited by competition of users for common resources. For

a given location y ∈ R2 the interference factor f(y) is defined as

f(y) = f(y, Φ̃) =
∑

X∈Φ, X 6=X∗y

PX(y)

PX∗y (y)
, (2.4)

provided X∗y is well defined. Note that , f(y) = f̃(y)− 1 where f̃(y) =
∑
X∈Φ

PX(y)

PX∗y (y)
.

Without loss of generality, since the network is homogenous, the interference measure at

the origin f(o) is representative of the interference seen by all the other receiver nodes in

the network. It is given by,

f ≡ f(o) =
∑

X∈Φ, X 6=X∗o

PX(o)

PX∗o (o)
= f̃(o)− 1 =

1

PX∗

∑
Xn∈Φ

SXn
l(|Xn|)

− 1,

where PX∗ = PX∗o (o).

The interference power seen by the receiver at the origin can be viewed as a shot noise

process described as

I ≡ I(o) :=
∑
n∈N

SXn
l(|Xn|)

. (2.5)

If we define

L ≡ L(o) := min
n∈N

LXn(o), (2.6)

then we can express the interference factor in terms of L and the shot noise I as following

f = I × L− 1. (2.7)

Study of the path-loss and interference factors, which are relatively simple objects, can

give an important insight into more involved quality of service indicators. That is the

goal of the next chapter.



Chapter 3

Mathematical Results

3.1 Analysis of the Path-gain Factor

The main goal of this section is to provide an explicit expression of the distributions of

the path-gain factor PX∗ for an infinite Poisson point process modeling the locations of

the BS.

Theorem 3.1.1 Consider an infinite Poisson process Φ model of the BS, with arbitrary

shadowing whose marginal distribution has finite moment of order 2
β
and any deterministic

path-loss function 0 < l(r) <∞. Then, the distribution of PX∗ has the following form

P
(
PX∗ ≤ r

)
= exp

(
− λ

∫
R2

(
1− FSX

(
rl(|X|)

))
dX

)
. (3.1)

Proof. We will show two methods to prove this theorem, the first one is based on the

Laplace functional of the Poisson point process (Theorem 1.2.1), whereas the second one

on the Displacement theorem (Theorem 1.2.2). Let us now focus on the first point by

calculating immediately the probability distribution function of PX∗

P
(
PX∗ ≤ r

)
= P

(
max
n

SXn
l(|Xn|)

≤ r
)

= P
(
∀n, Sn

l(|Xn|)
≤ r
)

= P
(
∀n, Sn ≤ rl(|Xn|)

)
.

20
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Since the marks Sn are independently distributed, it yields

P
(
PX∗ ≤ r

)
= E

[
E
[ ∏
Xn∈ Φ

1
(
Sn ≤ rl(|Xn|)

)
| Φ
]]

= E
[ ∏
Xn∈ Φ

E
[
1
(
Sn ≤ rl(|Xn|)

)
| Φ
]]

= E
[ ∏
Xn∈ Φ

FS

(
rl(|Xn|)

)]
= E

[
exp

∑
Xn∈ Φ

logFS

(
rl(|Xn|)

)]
= LΦ

(
− logFS

(
rl(|X|)

))

Using Theorem 1.2.1 we obtain the desired result (3.1). Now we will develop the second

method. Let us consider the Poisson point process Φ̃ on R2 × R+, with the intensity

measure Λ̃(.). Namely we have,
Φ̃ :=

∑
n∈N

ε(Xn,Sn)

Λ̃(d(x, s)) = λFS(ds) dx.

Here, the couple (x, s) is a generic element. Therefore,

P
(
P ∗X ≤ r

)
= P

(
{∀n, SXn ≤ r l(|Xn|)}

)
= P

(
Φ̃
(
{(X,S) :

S

l(|X|)
> r}

)
= 0

)

Let us consider the following set

C := {(X,S) :
S

l(|X|)
> r}.

Henceforth the cumulate distribution function of P ∗X verifies,

P
(
P ∗X ≤ r

)
= P

(
Φ̃(C) = 0

)
= exp(−Λ̃(C))

= exp
(
− λ

∫
R3

1
(

(x, s) ∈ C
)
FS(ds) dx

)
= exp

(
− λ

∫
R2

[ ∫
R+

1
( s

l(|x|)
> r
)
FS(ds)

]
dx
)

= exp
(
− λ

∫
R2

(
1− FS

(
r l(|x|)

))
dx
)
,

which establishes (3.1).
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Corollary 3.1.2 Assume the hypothesis [H1] of the previous chapter, we have remarked

that the distribution function of PX∗ depends only on the moment E[S
2
β ] of the shadowing

as such

P
(
PX∗ ≤ r

)
= exp

(
− π λ

K2r
2
β

E[S
2
β ]
)
. (3.2)

Proof. From Theorem 3.1.1, we have P
(
PX∗ ≤ r

)
= exp

(
−λ
∫
R2

(
1−FSx

(
rl(|x|)

))
dx
)
.

Taking l(r) = (Kr)β, it follows

P
(
PX∗ ≤ r

)
= exp

(
− λ

∫
R2

P
(
S > r(K|x|)β

)
dx
)

= exp
(
− 2π λ

∫ ∞
0

ρP
(
S > r(Kρ)β

)
dρ
)

t:=r(Kρ)β

= exp
(
− π λ

K2r
2
β

∫ ∞
0

t
2
β
−1P(S > t)dt

)
= exp

(
− π λ

K2r
2
β

E[S
2
β ]
)
.

This is the Fréchet distribution with shape 2
β
and scale parameter

(
2λπ
K2β

E[S
2
β ]
)β

2
.

Example 3.1.1 Assume an infinite Poisson model Φ of BS locations satisfying the hy-

pothesis [H1] and [H2] (log-normal shadowing). Using Corollary 3.1.2 we can get an

explicit expression of the cumulate distribution function of the path-gain,

P
(
PX∗ ≤ r

)
= exp

(
− λπ

K2r
2
β

e
2σ2

β2
+ 2m

β

)
. (3.3)

3.2 Analysis of the Interference Factor

We will prove a general result. Let us consider point process Ψ := { l(|Xn|)
SXn

, Xn ∈ Φ} on

R+. As we see Ψ IS constructed from the Poisson point process Φ. The following lemma

shows .

Lemma 3.2.1 Assume [H1], Ψ is a non-homogeneous Poisson point process on R+ with

intensity measure given by

ΛΨ([0, t]) =
πλt

2
β

K2
E[S

2
β ]. (3.4)
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Proof. By the displacement theorem Ψ is a Poisson point process on R+ of intensity

measure given by

ΛΨ([0, t]) = E[Ψ([0, t])]

= λ

∫
R2

P
(

(
l(|x|)
S

) < t
)
dx

= 2πλ

∫ ∞
0

P(
l(r)

S
< t)rdr

=
πλt

2
β

K2
E[S

2
β ].

Whence the desired result.

Remark 3.2.1 Lemma 3.2.1 says that the distribution of any functional of Ψ does not

depend on the distribution of the shadowing S but only on its moment E[S
2
β ]. Observe that

the path-gain factor P ∗X and the interference factor f̃ are examples of such functionals.

Consequently, Lemma 3.2.1 confirms Corollary 3.1.2 and extends it to the interference

factor f . This latter result will be useful on the proof of Proposition 3.3.1.

Lemma 3.2.2 Taking into account the previous hypothesis [H1], the distribution of the

interference factor f does not depend on the intensity λ of the Poisson point process Φ.

Proof. Let us construct a new point process Φ′ = {Yn, n ∈ N} by taking Xn =

Yn√
λ
. Lemma 1.2.1 shows that Φ′ is Poisson point process of intensity 1. Using the new

expression of PX∗ is now

PX∗ = max
n

SXn
l(| Yn√

λ
|)

= λ
β
2 max

n

SXn
l(|Yn|)

.

The expression of the interference factor is given by

f(o) = f̃(o)− 1

=
∑
X∈Φ

PX
PX∗
− 1

=
∑
Y ∈Φ′

P Y√
λ

P Y√
λ

∗
− 1

=
(
λ
β
2 max

n

SXn
l(|Yn|)

)−1 ∑
Yn∈Φ′

λ
β
2
SXn
l(|Yn|)

− 1

=
(

max
n

SXn
l(|Yn|)

)−1 ∑
Yn∈Φ′

SXn
l(|Yn|)

− 1.

Whence the desired result.

Now we derive a general expression for the mean interference in networks whose nodes

are distributed as a stationary point process Φ = {X1, X2, ...} ⊂ R2 of intensity λ.
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Proposition 3.2.1 Assume Poisson network with hypothesis [H1]. The interference fac-

tor f(o) does not depend on the marginal distribution of shadowing field SX(·) even not

on its moments , provided E[S
2
β ] <∞. Moreover, we have E[f(o)] = 2

β−2
.

Proof. By Lemma 3.2.2 the distribution of the interference factor f does not depend

on the intensity λ of the Poisson point process Φ. Using this observation and taking

into account that E[S
2
β ] < ∞, we can show that the distribution of interference factor

does not depend, not only on the distribution of the shadowing, but also on the moment

E[S
2
β ] of the shadowing. To see this note that the intensity measure of the process Ψ is

ΛΨ([0, t]) = πλt
2
β

K2 E[S
2
β ]. We can now consider a new intensity λ′ = λ

E[S
2
β ]

of Φ. Henceforth,

the new intensity measure Λ′Ψ([0, t]) = πλ
K2 t

2
β of the interference factor f does not depends

on the shadowing S.

The above observations show that in the infinite Poisson network the existence of the

shadowing has no impact on the interference factor, thus that we can assume that S ≡ 1.

Hence,

E[f(o)] = E[f̃(o)]− 1

= E
[ 1

PX∗

∑
Xi∈Φ

1

l(|Xi|)

]
− 1

= E
[ ∫

R2

1

l(|X|)
1

PX∗
Φ(dX)

]
− 1

= E
[ ∫

R2

θX ◦ θ−X(w)

l(|X|)
1

PX∗(θX ◦ θ−X(w))
Φ(dX)

]
− 1

= E
[ ∫

R2

θX ◦ θ−X(w)

l(|X|)
1

l(θX ◦ θ−X(w))
Φ(dX)

]
− 1.

By using Slivnyak’s theorem, we obtain

E[f̃(o)] =

∫
R2

E◦
[θX(w)

l(|X|)
1

l(θ−X(w))

]
dX − 1 =

∫
R2

E◦
[ 1

l(|X|)
1

l(θ−X(w))

]
dX − 1.

Consequently, it follows

E[f̃(o)] =

∫
R2

E
[ 1

l(|X|)
inf

Xj∈ Φ+δ0
l(|Xj +X|)

]
dX − 1

=

∫
R2

E
[ 1

l(|X|)
min

(
l(|Y |), inf

Xj∈ Φ
l(|Xj +X|)

)]
dX − 1

=

∫
R2

E
[

min
(

1, l(|Y |) inf
Xj∈ Φ

l(|Xj +X|)
)]
dX − 1

=

∫
R2

∫ 1

0

P
(
l(|Y |) inf

Xj∈ Φ
l(|Xj +X|) > t

)
dt dX − 1

=

∫
R2

∫ 1

0

P
(

inf
Xj∈ Φ

l(|Xj +X|) > tl(|X|)
)
dt dX − 1
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=

∫
R2

∫ 1

0

exp
(
−
∫
R2

[
1− 1

( l(|Y |)
t l(|X|)

)]
dY
)
dt dX − 1

=

∫
R2

∫ 1

0

exp
(
− π

(
l−1(t l(|Y |))

)2)
dt dX − 1

= 2π

∫ +∞

0

u du

∫ 1

0

dt exp
(
− (l−1(t l(u)))2

)
− 1

= 2π

∫ +∞

0

u du

∫ 1

0

dt exp(−πt
2
β u2)− 1

= π

∫ +∞

0

dv

∫ 1

0

dt exp(−πt
2
β v

2
β ))− 1

= π

∫ 1

0

dt
1

πt
2
β

− 1

=

∫ 1

0

dt
1

t
2
β

− 1

=
β

β − 2
− 1

=
2

β − 2
.

Now we focus on the characterization of the distribution function of the interference factor

f by calculating its Laplace function.

Lemma 3.2.3 The Laplace transform of the shot noise I =
∑
n∈N

Sn
l(|Xn|)

is given by

LI = exp
(
− 2πλ

∫ ∞
0

(
1− LS(

t

l(r)

)
rdr
)
,

where LS(t) = E[e−t S].

Proof. Using Campbell theorem, it follows that

LI(t) = E[−tI] = exp
(
− λ

∫
R2

∫
R+

(
1− e−t

s
l(|x|)

)
FS(d s)dx

)
= exp

(
− λ

∫
R2

∫
R+

(
1− e−t

s
l(|x|)

)
FS(dρ) dx

)
= exp

(
− 2πλ

∫
R2

∫
R+

(
1− e−t

s
l(|x|)

)
FS(dρ) r dr

)
= exp

(
− 2πλ

∫
R+

(
1− LS(

t

l(r)
)
)
r dr

)
.

which is the desired expression.

Corollary 3.2.1 Assume the hypothesis [H1] then the Laplace functional LI(t) of the

shot noise I verifies,

LI(t) = exp
(
− 2πλ

βK2
Γ(− 2

β
)E[S

2
β ] t

2
β

)
. (3.5)
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Proof. The proof is based on the exponential formula of the Poisson point process Ψ

defined in the beginning of this section. I =
∑
n∈N

1

LXn
=

∫
ϕ(x)Ψ(dx) where ϕ(x) = 1

x
.

By the exponential formula, it yields

E[e−tI ] = exp
[ ∫

R+

(
etϕ(s) − 1

)
ΛΨ(ds)

]
= exp

[ ∫
R+

(
e−

t
s − 1

)λπE[S
2
β ]

K2

2

β
s

2
β
−1ds

]
= exp

[ 2πλ

K2β
E[S

2
β ]

∫
R+

(e−
t
s − 1) ds

]
= exp

(
− 2πλ

βK2
Γ(− 2

β
)E[S

2
β ] t

2
β

)
.

The next results are more characterized the distribution of the interference factor and

showed the dependence of this latter with the path-gain. They are inspired by [Ka11] and

[Ng11].

Proposition 3.2.2 (Karray 2011) Assume [H1], the Laplace functional of the inter-

ference factor f is given by

E[e−zf ] =
1

e−z + z
2
β

(
Γ(1− 2

β
)− Γ(1− 2

β
, z)
) . (3.6)

where Γ(a) =
∫∞

0
ta−1e−adt is the gamma function and Γ(a, x) =

∫∞
x
ta−1e−adt is the

upper incomplete gamma function.

Proof. By Proposition 3.2.1, we can take S ≡ 1. We have f = I × L− 1 where L was

given by (2.6) thus the Laplace transform of f is

E[e−z f ] =

∫ ∞
0

E[e−z f
∣∣L = s]PL(ds).

where PL is the distribution of L. Moreover, we can easily calculate this probability as

following.

P(L ≥ t) = P(LXn(0) ≥ t,∀n ∈ N) = P(Ψ([0, t]) = 0)

= exp
(
− ΛΨ([0, t])

)
= exp

(
− πλt

2
β

K2

)
= exp

(
− a t

2
β

)
,

where a := πλ
K2 .

Returning to the calculus of the Laplace transform of f it follows,

E[e−zf ] =

∫ ∞
0

E[e−z(Is−1)
∣∣L = s]︸ ︷︷ ︸

:=E[e−zsI′ ]

PL(ds), where I ′ is an additive shot noise I ′ =
∑
n∈N

1

L̃Xn
,
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and {L̃Xn , n ∈ N} is a restriction of the Poisson point process Ψ on the interval ]t,∞),

having the same intensity measure of Ψ on ]t,∞). On the one hand, by Campbell and

Laplace functional theorems, we have also

E[e−zsI
′
] = exp

[ ∫ ∞
s

(e−
zs
t − 1)a

2

β
t
2
β
−1dt

]
= exp

[
− a 2

β

∫ ∞
s

(1− e−
zs
t ) a t

2
β
−1 dt

]
Now we aim to calculate the following integral

∫ ∞
s

(1−e−
zs
t ) a t

2
β
−1dt by making a change

of variables, namely, u := zs
t
. Therefore, it yields∫ ∞

s

(1− e−
zs
t )at

2
β
−1dt =

∫ z

0

(1− e−u)(zs
u

)
2
β
−1 zs

u2
du

= (zs)
2
β

{[
(1− e−u)u

− 2
β

− 2
β

]z
0
−
∫ z

0

e−u
u−

2
β

− 2
β

du

}
= s

2
β
β

2

(
− 1 + e−z + z

2
β

(
Γ(1− 2

β
)− Γ(1− 2

β
, z)
))

Let us consider the following function which we denote

h(z) = e−z + z
2
β

(
Γ(1− 2

β
)− Γ(1− 2

β
, z)
)
,

then we obtain

E[e−zf ] =

∫ ∞
0

exp
(
− a (h(z)− 1) s

2
β

) 2

β
a s

2
β
−1 e−as

2
β
ds

=
2

β
a

∫ ∞
0

s
2
β
−1e−ah(z)s

2
β
ds

=
1

h(z)

∫ ∞
0

a h(z)
2

β
s

2
β
−1 e−a h(z) s

2
β
ds

=
1

h(z)

[
− e−a h(z) s

2
β
]∞

0
=

1

h(z)
.

Finally, we get our desired result E[e−zf ] = 1

e−z+ z
2
β

(
Γ
(

1− 2
β

)
−Γ
(

1− 2
β
,z
)) .

Remark 3.2.2 We can verify that the mean of the interference factor f ,which was cal-

culated in Proposition 3.2.1, can be deduced from its Laplace transform. Indeed, h′(z) =

2
β

∫ 1

0

e−zvv−
2
β dv, for z = 0, h′(0) = 2

β−2
. It follows that E[f ] = 2

β−2

3.3 Joint Distribution Path-gain Interference Factors

Proposition 3.3.1 (Karray 2011) Assume [H1], the joint distribution of the path-gain

interference factors is given by

E
[
1{PX∗ ≤ u} e−zI

]
= exp

(
− 2πλ

β K2
E[S

2
β ] z

2
β

[
Γ(− 2

β
) + Γ(− 2

β
, u z)

])
. (3.7)
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Proof.

E
[
1{P ≤ u} e−zI

]
= E

[∏
n

1{PXn ≤ u} e−zI
]

= E
[
exp

∑
n

{
log
(
1{PXn ≤ u}

)
− zPXn

}]
= exp

{
− λ

∫
R2

(1− E
[
1{ S

l(|x|)
≤ u} e−z

S
l(|x|)
]
)
}

= LI(z) exp
{
− λ

∫
R2

E
[
1{ S

l(|x|)
> u} e−z

S
l(|x|) dx

]}
= LI(z) exp

{
− 2πλ

∫
R+

E
[
1{ S

(Kr)β
> u} e−z

S
l(r)

]
)rdr

}
= LI(z) exp

{
− 2πλE

[ ∫ 1
K

(S
u

)
1
β

0

e
−z S

(Kr)β r dr
]}

v:= z S

(K r)β

= LI(z) exp
{
− 2πλE[S

2
β ]

∫ ∞
u z

e−v

v
2
β

+1

z
2
β

βK2
dv
}

= LI(z) exp
{
− 2πλ

β K2
E[S

2
β ] z

2
β

∫ ∞
uz

e−v

v
2
β

+1
dv
}

Using corollary 3.3.1 we obtain

E
[
1{PX∗ ≤ u} e−zI

]
= exp

{
− 2πλ

β K2
E[S

2
β ] z

2
β

(
Γ(− 2

β
) +

∫ ∞
u z

e−v

v
2
β

+1
dv
)

= exp
{
− 2πλ

β K2
E[S

2
β ] z

2
β

(
Γ(− 2

β
) + Γ(− 2

β
, uz)

)}
.

Corollary 3.3.1 The path-loss and the interference factors are not independent random

variables.

Proof. Let us calculate

E
[
1
{
L ≥ u

}
e−zf

]
=

∫ ∞
u

E[e−zf
∣∣L = s]PL(ds) =

1

h(z)

(
1− e−a u

2
β h(z)

)
.

We observe that, E
[
1
{
L ≥ u

}
e−zf

]
6= P (L ≥ u)E[e−zf ]. Whence the path-loss and the

interferecne factor are not independent random variables.

3.4 Path-loss Exponent Estimation

In wireless channels, the path loss exponent β has a strong impact on the quality of the

links, and hence, it needs to be accurately estimated for the efficient design and operation
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of wireless networks. In this section we propose a statistical technique for the estimation

of β from the measurements of PX∗ . Consider our model with the hypothesis [H1] , from

equation (3.2) we have the cumulate distribution function of the path-gain factor PX∗ as

following,

P
(
PX∗ ≤ r

)
= exp

(
− π λ

K2r
2
β

E[S
2
β ]
)
.

Thus

− log
[
P
(
PX∗ ≤ r

)]
=

π λ

K2r
2
β

E[S
2
β ].

Then it follows,

log
(
− log

[
P
(
PX∗ ≤ r

)])
= log

( π λ

K2r
2
β

E[S
2
β ]
)

= log(
πλ

K2
)− 2

β
log(r) + log

(
E[S

2
β ]
)
.

Therefore,

log
(
− log

[
P
(
PX∗ ≤ r

)])
= log(

πλ

K2
)− 2

β
log(r) + log

(
E[S

2
β ]
)
.

Making the change of the variable t := log(r), which corresponds to the expression of PX∗

in dB, it yields

log
(
− log

[
P
(
PX∗ ≤ et

)])
= − 2

β
t+
[

log(
πλ

K2
) + log

(
E[S

2
β ]
)]
.

Hence,

log
(
− log

[
P
(
PX∗ ≤ et

)])
= A t+B

where,  A = − 2
β

B = log( πλ
K2 ) + log

(
E[S

2
β ]
)
.

Finally, we can use linear regression model (see [SL03]) to estimate the path-loss exponent

β from the constant A.
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