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BendFields: Regularized Curvature Fields
from Rough Concept Sketches
Emmanuel Iarussi1, David Bommes1,2, Adrien Bousseau1

1Inria, 2RWTH Aachen University

Designers frequently draw curvature lines to convey bending of smooth
surfaces in concept sketches. We present a method to extrapolate curvature
lines in a rough concept sketch, recovering the intended 3D curvature field
and surface normal at each pixel of the sketch. This 3D information allows
us to enrich the sketch with 3D-looking shading and texturing.

We first introduce the concept of regularized curvature lines that model
the lines designers draw over curved surfaces, encompassing curvature lines
and their extension as geodesics over flat or umbilical regions. We build on
this concept to define the orthogonal cross field that assigns two regularized
curvature lines to each point of a 3D surface. Our algorithm first estimates
the projection of this cross field in the drawing, which is non-orthogonal
due to foreshortening. We formulate this estimation as a scattered interpo-
lation of the strokes drawn in the sketch, which makes our method robust
to sketchy lines that are typical for design sketches. Our interpolation relies
on a novel smoothness energy that we derive from our definition of regular-
ized curvature lines. Optimizing this energy subject to the stroke constraints
produces a dense non-orthogonal 2D cross field, which we then lift to 3D
by imposing orthogonality. Thus, one central concept of our approach is the
generalization of existing cross field algorithms to the non-orthogonal case.

We demonstrate our algorithm on a variety of concept sketches with vari-
ous levels of sketchiness. We also compare our approach with existing work
that takes clean vector drawings as input.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object
representations

Additional Key Words and Phrases: cross field, non-orthogonal cross field,
regularized curvature line, sketch-based modeling, sketch editing, line
drawing interpretation

1. INTRODUCTION

Designers frequently draw curvature lines to convey bending over
smooth surfaces in concept sketches [Eissen and Steur 2011] (Fig-
ure 1(a)). We introduce a method to extrapolate strokes in a sketch
to form a dense cross field that assigns two curvature lines to each
pixel of the drawing while extending smoothly over flat and um-
bilical regions, where the lines of curvature are ill-defined (Fig-
ure 1(b)). By estimating this curvature information, our method en-
ables the application of several 3D curvature-based algorithms to
2D drawings. For example, curvature lines have been used to guide
parameterization [Ray et al. 2006], texture synthesis [Lefebvre and
Hoppe 2006], cross-hatching [Hertzmann and Zorin 2000], and can
also provide surface normals for local shading. By applying these
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(a) Input sketch (b) Estimated curvature lines

(c) Estimated normals (d) Shaded sketch

Fig. 1: Designers commonly draw curvature lines to emphasize surface
bending in concept sketches (a, red lines). We extrapolate these lines in a
bitmap to form a dense cross field, from which we estimate the 3D curvature
directions and the surface normal at each pixel (b,c). We use this informa-
tion to compute shading, greatly enhancing the 3D look of the sketch (d).
Note that this sketch is composed of several layers to represent the main
body, handle and nozzle of the vacuum cleaner.

algorithms directly in the sketch, our approach allows designers to
enhance the 3D look of their drawing during the early stages of
design (Figure 1(d)), when 3D modeling is often distracting and
time-consuming [Pipes 2007; Bae et al. 2008; Shao et al. 2012].

Our method takes as input rough bitmap sketches drawn on pa-
per or with painting software, with lines often made of sketchy
overlapping strokes. Our algorithm copes with such unorganized
rough inputs in two steps. We first express the 2D projection of the
two lines of curvature at each pixel as a scattered interpolation of
the nearby lines. This interpolation results in a 2D non-orthogonal
cross field, as the two projected curvature lines are not orthogonal
due to foreshortening. We then lift this cross field to 3D by leverag-
ing the fact that the lines of curvature should be orthogonal in 3D.
We call the resulting 3D cross field over the image a BendField. We
finally compute surface normals as the cross-product of the two 3D
directions at each pixel.

While expressing our problem as a scattered interpolation makes
our method robust to sketchy inputs, it requires us to address two
challenges. First, each stroke in the sketch can only constrain one of
the two lines of the cross field. Thus, for each pair of strokes there
is a discrete choice of making them either parallel or transversal in

ACM Transactions on Graphics, Vol. XX, No. X, Article XXX, Publication date: August XXXX.



2 • E. Iarussi et al.

the interpolation. Existing work in the context of orthogonal cross
fields over 3D surfaces tackles this ambiguity either by nonlinear
formulations that exploit orthogonality to map the lines into a space
where they become equal [Ray et al. 2009; Knöppel et al. 2013]
or by discrete variables that are part of the optimization [Bommes
et al. 2009]. We extend the second formulation to our context by
introducing a new representation for non-orthogonal cross fields,
using one angle to encode the orientation of an orthogonal cross
and a second angle to encode the deviation from orthogonality.

The second challenge we address is the design of an interpola-
tion energy that produces plausible lines of curvature at each pixel,
subject to the constraints provided by the sketch. To do so, we con-
duct a mathematical analysis of curvature lines over smooth sur-
faces. We deduce the concept of regularized curvature lines that
model the way lines in a sketch align with curvature directions
when these directions are well defined, and become geodesic, i.e.
shortest path, in flat or umbilical regions. We then derive that, under
parallel projection, the two families of regularized curvature lines
that compose the 2D cross field are smooth along each-other. We
use this specifically-designed measure of smoothness to extrapo-
late the lines over the sketch. The resulting cross field provides a
vivid sense of the 3D shape, smoothly interpolating the prescribed
curvature lines without introducing extraneous surface variations.
We use our cross fields to enrich a variety of concept sketches with
3D-looking shading and texturing.

In summary, we introduce three contributions:

• A method to estimate 3D consistent curvature and normal fields
from rough 2D concept sketches. In contrast to existing methods
that require clean vectorial curves, our approach is able to handle
sketchy drawings provided in bitmap form.

• A representation and optimization algorithm for non-orthogonal
cross fields.

• The mathematical formulation of regularized curvature lines,
from which we derive a novel smoothness energy to extrapolate
curvature lines.

2. RELATED WORK

Sketch editing. Designers commonly use line drawings to quickly
explore 3D concepts without the burden of CAD modeling [Pipes
2007; Bae et al. 2008]. While rough ideation sketches are often
only made of lines (Figure 2(a)), shading and textures are subse-
quently painted to produce presentation sketches (Figure 2(b)) that
better communicate 3D appearance to the clients and decision mak-
ers [Eissen and Steur 2011].

(a) Rough ideation sketch (b) Shaded presentation sketch

Fig. 2: Typical design sketches by Spencer Nugent on sketch-a-day.com c©.
(a) Designers draw rough ideation sketches to explore early concepts. (b)
Shading is subsequently painted for presentation to decision makers.

Several sketch-editing tools have been proposed to facilitate col-
orization, shading and texturing of line drawings. Scribble-based
interfaces propagate colors in empty or uniformly-textured regions
[Qu et al. 2006; Sýkora et al. 2009]. Inspired by modeling systems
based on shape inflation [Igarashi et al. 1999; Nealen et al. 2007],
Lumo and subsequent algorithms consider that the lines in a draw-
ing delineate an inflatable proxy on which they compute shading
and texturing [Johnston 2002; Joshi and Carr 2008; Winnemöller
et al. 2009; Sýkora et al. 2011]. Inflated normal maps have also
been used to generate stylized shading that mimics artistic guide-
lines [Lopez-Moreno et al. 2013] or that follows plausible shading
flows [Vergne et al. 2012]. Sýkora et al. [2014] further improve
realism by generating a bas-relief proxy with consistent depth or-
dering that they use to compute global illumination effects. Finally,
Cole et al. [2012] adopt an example-based approach to estimate
normal fields from contour drawings of smooth abstract shapes.
The above methods produce convincing results on cartoon blobby
shapes solely defined by contours. In contrast, we target man-made
shapes from concept sketches and leverage interior curvature lines
to control the shape away from contours. To do so, we propose a
novel smoothness energy that better preserves curvature lines than
the harmonic energies used in shape inflation.

Closer to our work are the CrossShade and True2Form algo-
rithms [Shao et al. 2012; Xu et al. 2014] which generate normal
maps and 3D curve networks from concept sketches. Both meth-
ods work with vector drawings and estimate 3D information from
intersecting curves locally aligned with curvature directions. Our
method targets a similar application domain as CrossShade but
handles rough bitmap drawings rather than clean vector art. De-
signers often produce rough preliminary sketches in a bitmap form,
either from scanned pen-on-paper drawings or from painting soft-
ware, which requires less precision than vector tracing. Working
with bitmaps requires us to formulate the extrapolation of curva-
ture lines as a scattered data interpolation rather than the parametric
Coons interpolation used by CrossShade.

While vectorization algorithms could be used to convert bitmaps
into vectorial curves, state-of-the-art algorithms remain challenged
by sketchy drawings [Noris et al. 2013], or require the temporal
information provided by digital sketching [Orbay and Kara 2011].
When applied on a rough sketch, the recent method by Noris et
al. [2013] produces multiple curves in the presence of overlapping
strokes (Figure 3(a,b)). While filtering the sketch can group over-
lapping strokes [Bartolo et al. 2007], curve segments cannot be au-
tomatically merged at junctions because of ambiguous configura-
tions (Figure 3(c,d)). As a result, vectorized segments should be
manually edited and merged to form suitable input for CrossShade,
which assumes that each curvature line is formed by a single curve.
We designed our approach to bypass vectorization and avoid all
these shortcomings (Figure 3(e,f)).

Line fields in images. Kass and Witkin first proposed to an-
alyze oriented patterns by computing a smooth line field (i.e. 2-
direction vector field) perpendicular to the strong gradients in an
image [Kass and Witkin 1987]. Similar image-guided line and vec-
tor fields have been used for image filtering [Weickert 1999; Kang
et al. 2009; Kyprianidis and Kang 2011], edge detection [Kang
et al. 2007], painterly rendering [Haeberli 1990]. While we take
inspiration from this body of work, our goal is to estimate a cross
field rather than a line field, which requires us to assign the strong
gradients in the image to one of two lines. The structure tensor
[Harris and Stephens 1988; Aach et al. 2006] and streerable filters
[Freeman and Adelson 1991] can be used to estimate multiple ori-
entations at corners and junctions but their response vanishes away
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(a) Input sketch (b) Noris et al. 2013
vectorization

(c) Gabor-�ltered 
input

(d) Noris et al. 2013
vectorization (Gabor)

(e) Our cross�eld (f ) Our normals

Fig. 3: Limitations of vectorization. Rough sketches are made of many overlapping strokes (a) that vectorization algorithms [Noris et al. 2013]
interpret as multiple short curves (b). The Gabor filter of [Bartolo et al. 2007] groups many strokes together but also tends to smooth junctions
between intersecting strokes (c). As a result, junctions form ambiguous configurations (d, inset) that prevent the merging of segments into
continuous curves suitable for CrossShade [Shao et al. 2012]. We propose an alternative approach to directly estimate curvature information
and normals from the rough sketch (e,f), alleviating the need for vectorization and manual cleanup. The results of [Noris et al. 2013] were
produced with default parameters.

from the image contours. In addition, notice that line fields are dif-
ferent mathematical objects than cross fields. Since line fields can-
not represent the quarter-index singularities of cross fields, they are
inappropriate in our context (cf. [Ray et al. 2008]).

Line fields and cross fields on surfaces. Many surface-
processing algorithms rely on the definition of smooth line fields
or cross fields over 3D objects [Knöppel et al. 2013]. These fields
have been used to guide parameterizations [Ray et al. 2006], tex-
ture synthesis [Praun et al. 2000; Lefebvre and Hoppe 2006; Fisher
et al. 2007], cross-hatching strokes [Hertzmann and Zorin 2000],
quad remeshing [Alliez et al. 2003; Bommes et al. 2013]. Most of
these methods work with orthogonal cross fields aligned with the
principal directions of curvature of a known 3D surface. Our goal
is to allow the use of this family of algorithms directly in the 2D
drawing of an unknown surface by estimating an orthogonal cross
field from a sparse set of projected curvature lines. To achieve this
goal, our algorithm first generates the non-orthogonal cross field
which results from projection into the 2D drawing plane.

Liu et al. [2011] describe an algorithm to compute conjugate
cross fields over 3D surfaces, which are non-orthogonal. Their ap-
proach generalizes the orthogonal cross field approach of Hertz-
mann and Zorin [2000], which due to its nonlinear and non con-
vex energy functional has the tendency to produce non-optimal
additional singularities. We instead adopt a mixed-integer formu-
lation which overcomes such problems using an iterative opti-
mizer [Bommes et al. 2009], where in each step a convex linear
problem is solved.

Concurrently to our work, two alternatives to handle non-
orthogonal cross fields were developed. Panozzo et al. [2014] in-
troduce the concept of frame fields, which are non-orthogonal and
non-unit-length generalization of cross fields. They model a frame
field as a combination of an orthogonal cross field – generated with
a mixed-integer algorithm [Bommes et al. 2009] – and a harmonic
deformation field that captures scaling and skewness. Instead of
splitting the optimization into two subsequent parts, we directly
generalize [Bommes et al. 2009] to determine skewness and unit-
length cross field in one combined step.

Diamanti et al. [2014] propose the powerful idea of polyvector
fields, which encode arbitrary sets of vectors as roots of complex
polynomials, and thus can handle non-orthogonal cross fields as a
special case. This method also performs a single combined opti-

mization but the harmonic interpolation of boundary constraints is
done in the space of polynomial coefficients while we interpolate
rotations in the more natural space of angles.

One major difference between the two concurrent approaches
and ours is that both frame fields and polyvector fields are inter-
polated from sparse frame constraints, i.e. they require local con-
straints on both lines of the cross field. In contrast, our method
needs to handle partial constraints since sketched strokes only con-
strain one of the directions of the field while leaving the trans-
verse direction free for optimization. Another difference is that
our angle-space parametrization enables the optimization of unit-
length fields, which prevents undesired field shrinkage experienced
by Diamanti et al. (see Figure 14 in their paper).

All the aforementioned methods use a harmonic energy to gen-
erate smooth fields. We show that applying a harmonic energy in
our context does not produce plausible curvature lines as it does
not account for the way such lines behave on a surface in 3D.

3. OVERVIEW

Designers extensively use free-hand sketches to quickly visualize
the shape they envision [Eissen and Steur 2011]. Figure 2 shows a
real-world example of a projector. In such sketches, skilled artists
capture all surface information by drawing two types of lines:

• Discontinuity lines mark the sharp creases and silhouettes that
delineate smooth surface patches (Figure 1a, black lines).

• Curvature lines convey bending within the surface patches and
extend smoothly in flat or umbilical regions (Figure 1a, red lines).

While concept sketches are typically made of a sparse set of
lines, they prove to be sufficient to describe 3D shapes since view-
ers mentally extrapolate the curvature lines to form a dense network
on the imagined surface, assuming that the geometry of a curve is
representative of the geometry of the surface in its vicinity [Stevens
1981; Bessmeltsev et al. 2012]. Mathematically speaking, this net-
work corresponds to a smooth cross field, which associates two or-
thogonal lines to each point of the surface. Our goal is to mimic
viewers’ inference to recover the cross field over the visible 3D
surface conveyed by a concept sketch.

Figure 4 illustrates the main steps of our algorithm. We take as
input a bitmap line drawing, as commonly drawn on paper or with
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(a) Input sketch (b) Local orientation (c) Non -orthogonal 
2D cross�eld

(d) Orthogonal
3D cross�eld

(e) Normals (f ) Texture

Fig. 4: Our algorithm takes as input a bitmap sketch (a) from which we estimate the local orientation of the strokes (b). Assuming that the
strokes represent curvature lines on an imaginary surface, our formulation extrapolates them as a non-orthogonal cross field that mimics the
behavior of a projected curvature field (c). We then lift the cross field to 3D by imposing orthogonality constraints (d). We finally compute
normals and texture parameterization from the 3D cross field (e,f).

painting tools like Adobe Photoshop and Autodesk SketchBook,
and a binary mask to identify pixels that belong to the object (Fig-
ure 4a). We additionally assume that users draw discontinuity and
curvature lines in a different color and decompose complex models
by drawing independent parts in different layers. Since designers
draw in 2D, the curvature lines in the sketch only provide us with
constraints on the projected cross field, which is non-orthogonal
due to foreshortening. The first part of our algorithm consists in
estimating this smooth non-orthogonal cross field from the local
orientation of the lines in the sketch (Figure 4b,c). In a second
step, we lift the cross field to 3D by assuming parallel projection
and constraining the 3D lines to be orthogonal (Figure 4d). This
3D information allows us to apply several geometry-processing al-
gorithms over the drawing, including the computation of surface
normals for shading (Figure 4e) and parameterization for texture
mapping (Figure 4f).

Our two main technical contributions are described in
Sections 5 and 6. Section 5 introduces the concept of
regularized curvature lines that encompass the curvature
lines in a sketch and their extension as geodesics over
flat or umbilical regions. From this concept we deduce a
variational formulation for the non-orthogonal cross field.

u

v

In a nutshell, our energy encourages the two
families of lines that compose the cross field
to be smooth along each other, as illustrated
in the inset where the lines of the family u
are smooth along the family v and vice-versa.
We derive this property from the fact that cur-
vature lines on a surface are free of geodesic
torsion.

Section 6 then describes how to solve for the cross field that min-
imizes our energy subject to the stroke constraints. The main chal-
lenge we face is that, while each stroke constrains one of the two
lines (u,v) in the cross field, we don’t know which of the four di-
rections {u,−u,v,−v} is constrained a priori. We handle these
discrete degrees of freedom using a mixed-integer formulation that
jointly solves for the smooth cross field and the assignment of each
constraint to one direction. Our mixed-integer formulation is also
necessary to handle singularities in the cross field, in which case the
surface needs to be split into charts related by discrete permutations
of the directions that form the cross field.

4. STROKE CONSTRAINTS

Given a rough bitmap sketch, we first need to estimate the tangent
of the strokes which will then act as constraints to align the cross
field (Figure 4b). We obtain this information from the structure ten-
sor, a popular tool to estimate local orientation in images [Kypri-
anidis and Kang 2011]. The structure tensor of an image I(x, y)
is expressed by means of the partial derivatives Ix = ∂I/∂x and
Iy = ∂I/∂y as

S(I) =

„
Ix · Ix Ix · Iy
Ix · Iy Iy · Iy

«
.

Its major and minor eigenvectors provide the directions of maxi-
mum and minimum change in the image. The tangent along a stroke
is thus given by the minor eigenvector, except at corners and junc-
tions where the presence of two orientations make the two eigen-
values almost equal. We use the magnitude of the minor eigenvalue
to attenuate the influence of these unstable corners and junctions
in the cross field estimation. In practice, we normalize the minor
eigenvalue λ2 at each pixel i by the maximum minor eigenvalue of
the image to obtain a weight wi = 1 − λ2(i)

max(λ2)
∈ [0, 1] that we

apply on the orientation constraints.
We found that applying a bilateral filter on the structure tensor

produces smoother estimates while preserving abrupt changes of
direction. We used the same range parameter σr = 2 for all in-
puts, and different presets for the spatial extent σs to account for
various levels of sketchiness, as discussed in Section 9. Figure 5
illustrates the local orientations and the attenuation weight at cor-

(a) Input sketch (c) Constraint weight(b) Local orientation

Fig. 5: We use the structure tensor to estimate the local orientation of the
strokes in a sketch (b). We attenuate the strength of the orientation con-
straints near corners and junctions, where the estimation is unstable (c).
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ners and junctions. Note that while we visualize the orientations as
a wide strip around all strokes, we only apply constraints on the
pixels covered by curvature strokes.

5. ESTIMATING CURVATURE FIELDS

The 2D strokes in the sketch correspond to the projection of a
subset of the curvature lines. The goal of this section is to derive
a proper way of smoothly extrapolating the sparse strokes to the
dense curvature network of the intended surface. This step, which
results in a dense (non-orthogonal) cross field, is illustrated in Fig-
ure 4c. We first provide an intuitive motivation for our 2D smooth-
ness energy and its relation to interpolants used in prior work (Sec-
tion 5.1). We then provide a formal derivation of this energy from
properties of curvature lines and fields (Section 5.2) and extend the
energy to lift the cross field to 3D (Section 5.3).

5.1 Motivation for the BendField energy

For clarity, we assume for now that each stroke constraint has been
assigned to one of the two lines (u,v) of the cross field. Our goal
is to generate a smooth field aligned with these constraints. Prior
work on the design of line fields [Fisher et al. 2007], cross fields
[Knöppel et al. 2013] and normal fields [Johnston 2002] use an
harmonic energy to measure the smoothness of a field. In our con-
text, the harmonic energy independently penalizes strong gradients
in the u and v fields

Eh =

Z
||∇u||2 + ||∇v||2.

Figure 6(a) illustrates the behavior of this energy, that tends to flat-
ten the surface away from the constraints. To prevent such flat-
tening, Shao et al. [2012], Biard et al. [2010] and Bessmeltsev et
al. [2012] interpolate normals and surfaces over quads bounded by
curvature lines using parametric Coons patches [Farin and Hans-
ford 1999]. Since Coons patches interpolate the boundary segments
linearly, they naturally align the (u,v) iso-lines to these boundaries,
as shown in Figure 6(b). This alignment corresponds well to viewer
expectation that a given curve is representative of other curves in
its vicinity [Stevens 1981]. We designed our smoothness energy
to produce a similar alignment in a scattered interpolation fash-
ion. More precisely, our BendField energy relies on the covariant
derivatives ∇uv and ∇vu to measures the smoothness of the vec-
tor field u along the streamlines of v, and vice versa

Ebend2D =

Z
||∇uv||2 + ||∇vu||2

where v = (vx, vy)
T and

∇uv =

„
∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

«
u.

Note that the covariant derivatives couple the two vector fields,
which harmonic and biharmonic energies cannot do. While ad-
ditional work is needed to formalize the connection between our
energy and Coons patches, Figure 6(c) shows that they behave
similarly, even though our algorithm and CrossShade [Shao et al.
2012] do not produce strictly identical normals on such a complex
freeform surface patch (see Section 9 for additional comparisons).

5.2 Formal derivation of the BendField energy from
properties of curvature lines and fields

Curvature lines. Given a parameterized surface S(u, v) em-
bedded in R3, all curves on this surface can be described by

(a) Harmonic cross �eld
and normals

(b) Iso-lines of Coons patch
and CrossShade normals

(c) Our cross �eld
and normals

Fig. 6: The harmonic energy produces a flat surface patch that does not
preserve curvature away from the strokes (a). Prior work uses Coons patches
to better capture the directionality of the boundary curves (b) [Shao et al.
2012]. Our energy produces a similar interpolation by making the u and v
vector fields smooth along each-other (c).

κg = 0/0/∗
τg = 0/0/0

κg = 0/0/∗
τg = 0/∗/∗

(a) (b)

Fig. 7: The geodesic curvature κg and geodesic torsion τg of three curves
are listed from left to right with ∗ indicating nonzero. In the plane, only
straight curves are geodesics (κg = 0) while every curve has τg = 0 since
the Darboux frame cannot rotate around T without changing the tangent
plane. In (b) the plane is deformed to a cylinder. Now the second curve,
although being geodesic, has a nonzero τg . Notice the implied rotation ofB
and N around T which results from misalignment to the bending direction
and accordingly vanishes for the curvature-aligned leftmost curve.

univariate functions C(s) := S(u(s), v(s)). For simplicity in
the following we assume an arc length parametrization such
that s ∈ [0, L] with L being the length of C. The curvature

T B

N

C(s) S(u, v)

properties of such a curve w.r.t. to its sur-
face are characterized by the behavior of the
so called Darboux frame. This orthonormal
frame (T,B,N) ∈ R3×3 consists of the unit
tangent T = dC

ds
, the surface normal N and

the tangent normal B = N × T. While
traversing the curve, this orthonormal frame
undergoes rotations. The rotational speed around the axes of the
frame are known as geodesic torsion τg = N · dB

ds
, normal curva-

ture κn = N· dT
ds

and geodesic curvature κg = T· dB
ds

for rotations
around T, B and N respectively. Figure 7 illustrates the geometric
intuition behind these notions.

Important in our context is the observation that curvature lines
are characterized by vanishing geodesic torsion. More precisely, a
curve is a curvature line if and only if τg = 0 [do Carmo 1976;
Biard et al. 2010]. The name curvature line reflects the fact that
such a curve is always tangent to one of the principal curvature
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directions of the surface. Intuitively, a surface curve has non-zero
geodesic torsion if the surface bends most in a direction that is not
T nor B (Figure 7b), which contradicts the definition of curvature
lines.

In each point of the surface where the two principal curvatures
κ1 and κ2 are different (κ1 6= κ2), exactly two unique curvature
lines intersect. However, in flat and umbilical regions with κ1 = κ2

we have the ambiguity that every curve through these regions is a
curvature line. This is also reflected by the fact that the geodesic
torsion can be computed as τg = 0.5(κ2 − κ1)sin(2θ) where θ is
the angle between T and the direction of minimal curvature K1.
Note that τg is proportional to the curvature anisotropy κ2 − κ1

and thus linearly vanishes in isotropically curved regions, indepen-
dently of the tangent direction. We conjecture that designers avoid
such ambiguity of curvature lines by sketching what we call regu-
larized curvature lines, which we define more precisely next.

Regularized curvature lines. In areas of high curvature
anisotropy, i.e. where |κ2 − κ1| is large, designers sketch smooth
curves that strictly follow principal curvature directions. How-
ever, the more isotropic the curvature gets, the more geodesic the
sketched curves tend to be. Geodesic curves are characterized by
vanishing geodesic curvature κg = 0, i.e. the curve does not bend
within the tangent plane. Therefore sketch curves behave like min-
imizers of the functional

Eα =

Z
C

τ2
g + ακ2

gds (1)

The geodesic curvature κg behaves like a regularizer for τg since
it becomes dominant in regions of isotropic curvature κ1 ≈ κ2,
where τg vanishes. We refer to this family of curves as regularized
curvature lines, where α controls the strength of the regularization.

We hypothesize that designers apply a similar regularization
when sketching because the trajectory of curvature lines is hard
to predict in near-isotropic regions. This regularization toward
geodesics is also supported by prior observations that designers
draw curves aligned with curvature and geodesic lines [Shao et al.
2012]. Similarly, perceptual studies suggest that people interpret
intersecting curves in a drawing as aligned with principal direc-
tions of curvature [Stevens 1981; Mamassian and Landy 1998] and
geodesics [Knill 1992]. This concept also provides a mathematical
definition to the notion of flowlines mentioned in prior work [Bess-
meltsev et al. 2012; Zhuang et al. 2013]. Finally, notice the closely
related approach of modern quad meshing algorithms [Bommes
et al. 2013] that align the quad mesh solely in anisotropic curva-
ture regions while preferring smoothness everywhere else.

Regularized curvature cross field. Ultimately we are searching
for the full (regularized) curvature network that extends the sketch
curves to a dense orthogonal cross field. Therefore we have to ex-
tend the previous concept from curves on a surface S to cross fields
that are tangent to S. As an intermediate step first observe that the
generalization to a unit-length tangent vector field T, which is now
defined for each point on S, yields the functional

Eα(T) =

Z
S

τ2
g +ακ2

gdA =

Z
S

(N · ∇TB)2 +α(T · ∇TB)2dA

where∇T is the derivative along the streamline tangent to T. This
(extrinsic) directional derivative is necessary since the curves are
now only implicitly defined as the streamlines of T. Since a cross
field is nothing more than a vector field on a 4-sheeted covering

[Kälberer et al. 2007] that can locally be parameterized by two vec-
tor fields U and V, we end up with

Eα(U,V) =

Z
S

(N · ∇UV)2 + (N · ∇VU)2

+ α((U · ∇UV)2 + (V · ∇VU)2)dA.

(2)

Notice that in case of cross field singularities it is not possible to
globally represent a smooth cross field by two smooth representa-
tive vector fields U and V. This technical problem, however, can
be easily handled by splitting the surface into coordinate charts that
are related by discrete transition functions that permute the vectors
of the cross field to align a cross in one chart to a cross in another
chart [Ray et al. 2006; Bommes et al. 2009]. We explain the concept
of transition functions in detail in Section 6.

Difficulty of sketch reconstruction. Equipped with the math-
ematical description of the 3D curvature network that is intended
by the given 2D strokes we are now ready to state the optimiza-
tion problem of sketch reconstruction. We are searching for a min-
imizer of Eα(U,V) subject to local unit length and orthogonality
constraints ||U|| = ||V|| = 1, U · V = 0 and N = U × V,
where we additionally require that the 2D strokes locally align to
the 2D projection of U or V. This is a very hard nonlinear mixed-
integer problem since both the surface S and its tangent cross field
(U,V) ∈ R3×2, including discrete transition functions between
charts, are unknown. Instead of optimizing it directly, we aim at
first optimizing for its 2D projection which can then be used to es-
timate an appropriate initial solution for the 3D problem.

2D projection of curvature cross field. By parallel projection
P ((x, y, z)T ) = (x, y)T , the unknown surface S becomes a known
part of the Euclidean plane. However, this simplification comes at
the cost of a distorted metric. Due to foreshortening the projection
heavily affects dot and cross products such that Eα(U,V) is use-
less for our 2D setting. However, by restricting to the case α = 1
it is possible to obtain a suitable formulation with a stable behavior
under projection.

First notice that for curves we have
R
C
|| dB
ds
||2ds = Eα=1. This

can be verified by projecting dB
ds

on the orthonormal basis T,B,N

and exploiting dB
ds
·B = 0 since B is unit length. This means that

for α = 1, Equation (1) becomes

E1 =

Z
C

||dB
ds
||2ds =

Z
C

||∇TB||2ds

or equivalently for the cross field case

E1(U,V) =

Z
S

||∇UV||2 + ||∇VU||2dA.

Intuitively, our BendField energy favors parallelism of one vector
field along the streamlines of the other one, which is consistent with
the fact that non-parallelism can only be introduced by a non-zero
geodesic torsion or geodesic curvature of the streamlines. Since
parallelism is preserved by parallel projection, we can measure ex-
actly the same quantity in a 2D projection, leading to

Ebend2D(u,v) =

Z
I

||∇uv||2 + ||∇vu||2dA (3)
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where I is the image plane, u = P (U) and v = P (V) are 2D
projections of U and V,∇uv and ∇vu are covariant derivatives

∇uv =

„
∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y

«
u

where v = (vx, vy)
T . The optimization of Equation (3) is based

on our novel non-orthogonal cross field representation, which is
the topic of Section 6. Since lengths and angles are not preserved
by parallel projection, the unit-length and orthogonality constraints
can be omitted for the 2D optimization. However, they will be rein-
jected in the following step, which lifts the 2D minimizer of Equa-
tion (3) to 3D. Note also that we ultimately minimizeEbend2D sub-
ject to the stroke constraints, which prevents the trivial solution of
a null cross-field.

5.3 Lifting the cross field to 3D.

Solving the previous optimization problem provides us with a
good estimate of the 2D projection of U and V. We obtain a lo-
cal 3D estimate based on the knowledge that, in 3D, U · V =
uxvx + uyvy + uzvz = 0 due to orthogonality, and the additional
assumption that designers favor viewpoints that minimize overall
foreshortening [Eissen and Steur 2011; Shao et al. 2012]. The min-
imal foreshortening tells us that uz = −vz if the u and v vec-
tors form an angle of less than π

2
, while we have uz = vz oth-

erwise. Combining both constraints leads to a quadratic equation
with two potential solutions uz = ±

p
|u · v|. These two solutions

reflect the global ambiguity between a convex and a concave sur-
face patch, which cannot be resolved from the sketch alone [Shao
et al. 2012]. We obtain a globally-consistent solution by selecting
for each pixel the candidate that produces the smoothest uz field
overall, subject to a few user indications to distinguish between
the convex and concave interpretation (Section 8). We express this
problem as a binary labeling, which we solve with [Kolmogorov
2006] as described in the Appendix.

Finally we use the globally consistent and normalized estimates
U = (ux, uy, uz)

T and V = (vx, vy, vz)
T as an initial solution

for optimizing energy (2). While in theory we should constrain U
and V to have unit length, we found that the optimization can be
greatly simplified by ignoring this constraint and by solely opti-
mizing for uz and vz while keeping the 2D components constant.
As a positive side effect, this choice not only regularizes the result-
ing cross field in length but also in direction. Therefore in addition
we can safely simplify the functional by dropping the non-linear
geodesic terms belonging to α. We still don’t know the surface S
such that we again approximate the energy over the image domain
I , leading to

Ebend3D(uz, vz) =Z
I

(N · ∇uV)2 + (N · ∇vU)2 + εf (u
2
z + v2

z)dA
(4)

where the last term is weighted by εf = 0.005 to weakly regular-
ize the solution towards minimal foreshortening, as in [Shao et al.
2012]. This is a hybrid formulation, where we compute a 3D cross
field over the 2D image domain. Accordingly, the covariant deriva-
tives are given by

∇uV =

0@ ∂vx/∂x ∂vx/∂y
∂vy/∂x ∂vy/∂y
∂vz/∂x ∂vz/∂y

1Au

with V = (vx, vy, vz)
T . Note that thanks to our simplifications

this energy is quadratic in the unknown z components, which can
be verified by considering that N = U × V and that u and v
are constant. We optimize this functional subject to nonlinear or-
thogonality constraints U ·V = 0 by an interior point method as
described in more detail in Section 8. We finally normalize the re-
sulting U and V vectors and compute the surface normal from their
cross product.

5.4 Algorithm Overview

The ultimate goal of our algorithm is to extrapolate the given
2D strokes into a 3D BendField. Since 3D BendFields behave
strongly nonlinearly it is necessary to split the overall task into
smaller steps that enable mathematical formulations where poor
local minima can be avoided. The idea is to start with convex
approximations that reliably lead to good initial solutions for
the subsequent nonlinear steps. The following overview, which
gives a preview to Section 6, clarifies how we split the optimization:

BendField Algorithm

(1) Estimate stroke constraints - Section 4
(2) Optimize 2D BendField - Eqn. (3)

(i) optimize unit-length harmonic cross field - Eqn. (5)
(ii) refine to free-length 2D BendField - Eqn. (6)

(3) Optimize 3D BendField - Eqn. (4)
(i) local 3D estimate - Section 5.3

(ii) refine to 3D BendField - Eqn. (4)
(iii) compute normal field from N = U×V

6. NON-ORTHOGONAL 2D CROSS FIELDS

We now describe our representation of non-orthogonal 2D cross
fields and their optimization subject to the user constraints. The
goal of this step is to find a free-length non-orthogonal 2D cross
field that minimizes the complicated nonlinear energy (3) while
avoiding local minima. Therefore, we first generate a suitable ini-
tial guess by solving for a unit-length non-orthogonal cross field
that minimizes a harmonic smoothness energy, which is convex up
to integer variables. We adopt the established greedy strategy of
[Bommes et al. 2009] to solve for the integer unknowns, which are
then kept fixed during the subsequent nonlinear optimization. No-
tice that only the non-linear optimization is specifically tailored for
our application, while the rest is a novel generalization of [Bommes
et al. 2009] to non-orthogonal cross fields and as such useful for
many other applications.

w0

w1

w2

w3
Vector representation. A unit-length non-

orthogonal cross corresponds to four unit-
length vectors w0, w1, w2 and w3 with the
anti-symmetry conditions w0 = −w2 and
w1 = −w3. Due to this anti-symmetry, an
ordered tuple [w0,w1] ∈ R2×2 is locally suf-

ficient to uniquely represent a non-orthogonal cross. However, in
the presence of singularities a smooth cross field cannot be glob-
ally represented by two smooth vector fields as illustrated in Fig-
ure 8(a). In addition, the lines in the sketch are unoriented, which
prevents us from knowing which of the four vectors they should
locally constrain (Figure 8(b)).

In order to handle such cases, we split the surface into
charts which are connected by integer transition functions Ti→j

ACM Transactions on Graphics, Vol. XX, No. X, Article XXX, Publication date: August XXXX.
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(a) Singularity

=
=

(b) Constraint direction

?

?

=

Unknown Arbitrary Arbitrary 
with transition

Fig. 8: In the presence of a singularity, a smooth cross field cannot be glob-
ally represented by two smooth vector fields (a). The transition function
permutes the vectors to best align them. Similarly, assigning the constraints
to an arbitrary direction can produce unnecessary variation in a smooth vec-
tor field (b), which can be prevented by optimizing the transition functions.
Note that while we illustrate the constraint assignment on a vector field,
the same principle extends to cross fields where each constraint needs to be
assigned to one of four directions.

w0w1

w2
w3

Ti→j

pij = 1

Ti→j(w0) = w1

Ti→j(w1) = w2

v0

v1

v3

v2

Tj→i(v0) = v3

Tj→i(v1) = v0

Tj→i

pji = 3

Chart i Chart j

Fig. 9: The transition function permutes the vectors of a cross in one chart
to align it with a cross in another chart. The integer variable pij encodes
the number of permutations to align a cross from chart i to chart j.

[Ray et al. 2006; Bommes et al. 2009], which cyclically per-
mute the four vector fields pij times when moving from chart
i to chart j, as illustrated in Figure 9. Formally this means
Ti→j([w0,w1]) = [wpij

,wpij+1] with pij ∈ Z and wi = wi+4

for all i ∈ Z.

If we want to measure the similarity of two crosses [w0,w1] and
[v0,v1] that are expressed w.r.t. charts i and j respectively, we need
to consider the corresponding transition function. A fixed transition
function enables the following convex similarity measure based on
the Frobenius norm of matrices

||Ti→j([w0,w1])− [v0,v1]||22 = ||[wpij
− v0,wpij+1 − v1]||22

Angle representation. For unit-length cross fields it is often
preferable to optimize in the space of polar coordinates (r, ϕ),
where the unit-length constraint is simply r = 1. Consequently,
a cross can be uniquely represented by two angles [ϕ0, ϕ1]. How-
ever in case of transition functions it is advantageous to choose a
different parametrization of the two angles. We express a cross by
the tuple [α, β], which is related to ϕ by

ϕi = α+ (−1)iβ + i · π
2

As illustrated in Figure 10, β describes the deviation from orthog-
onality while α can be understood as the closest orthogonal cross.
One nice property is that for β = 0, our representation is exactly

(a) Polar representation (a) Our representation

ϕ0

ϕ1

α
β

β

Fig. 10: A non-orthogonal cross can be represented by two angles [ϕ0, ϕ1]

in polar coordinates (a). To simplify formulas, we instead use one angle α
to encode the global orientation of the cross (dashed lines) and one angle β
to encode the deviation from orthogonality (b).

the same as the one used in [Ray et al. 2008; Bommes et al. 2009].

Similarly to the vector case we can define a smoothness measure
between crosses [αi, βi] and [αj , βj ] in different charts

Eijsmooth = ||Ti→j [ϕi0, ϕi1]− [ϕj0, ϕ
j
1]||2

= ||[ϕipij
, ϕipij+1]− [ϕj0, ϕ

j
1]||2

= (αi + (−1)pijβi + pij
π

2
− αj − βj)2

+(αi − (−1)pijβi + pij
π

2
− αj + βj)

2

= 2
h
(αi + pij

π

2
− αj)2 + ((−1)pijβi − βj)2

i
Unit-length non-orthogonal cross fields in Images. In the im-

age grid we assign one cross [αi, βi] per pixel pi and assume that
it is expressed w.r.t. its own chart Ci. We obtain a finite difference
approximation of the harmonic energy

Eh =

Z
I

||∇ϕ0||2 + ||∇ϕ1||2dA

on the regular image grid by summing the smoothness measure
over all pixels i

Esmooth =
X
i

X
j∈Ni

Eijsmooth

with Ni containing the upper and right neighbors of pixel i. Ini-
tially all transition functions are unknown. Thus, for an image with
n = w × h pixels, we end up with an optimization problem of
2n continuous variables (α, β ∈ R) and 2n − w − h − 4 discrete
variables (pij ∈ Z).

Furthermore, for a subset of pixels Sc ⊂ I we have stroke con-
straints θ that can be incorporated by means of a penalty energy

Estrokes =
X
i∈Sc

wi((αi + βi)− θi)2

withwi being the weight of the constraint as described in Section 4.
Notice that thanks to the transition functions we can always simply
constrain ϕ0 = α + β without worrying about the combinatorial
relation between constraints (cf. Figure 8(b)). Depending on the
application we want to penalize the deviation from orthogonality
which in our representation is simply expressed as

Eβ =
X
i

(βi)
2.
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Thus in total we optimize

Eangle = Esmooth + wstrokesEstrokes + wβEβ . (5)

In our application we use a very small weight wβ = 10−6 to just
regularize underdetermined cases, in combination with a weight
wstrokes = 1 to equally balance smoothness and stroke constraints.
Other applications such as quad remeshing may benefit from a
higher wβ to favor orthogonal crosses away from constraints.

Greedy mixed-integer optimization. In order to efficiently find
good solutions for the mixed-integer problem (5) we exploit the fol-
lowing three observations. First, if the integer transition variables
pij are known, Eijsmooth is a convex quadratic function. We exploit
this by solving a series of quadratic problems which result from the
slight modification

Esmooth =
X
i

X
j∈Ni

aijE
ij
smooth

with additional boolean variables aij ∈ {0, 1}. Such an aij is ac-
tivated, i.e. aij = 1, only if the corresponding pij is a known con-
stant, while otherwise aij = 0.

We fix the pij in a greedy order. For each non-activated term
we estimate the activation cost as Aij = minpij

Eijsmooth, where
this time α and β are kept constant. The best candidate with the
smallest cost arg minij Aij is then activated by setting aij = 1
and fixing the corresponding pij . Subsequently we update the
current solution to capture the change due to the newly activated
term. We iterate this process until all aij are activated, i.e. all
transition functions are fixed.

Second, determining the pij that minimizes a Aij can be done
by explicitly checking two candidates. Investigating Eijsmooth
we see that the first term (αi + pij

π
2
− αj)

2 is minimized at
p∗ij = 2

π
(αj − αi) ∈ R. Since the second term ((−1)pijβi − βj)2

only changes depending on whether pij is even or odd, we
conclude that the optimal value for pij can only be either dp∗ije or
bp∗ijc. In the special case of p∗ij ∈ Z it is sufficient to check the
two candidates {p∗ij , p∗ij + 1} since both integer neighbors of p∗ij
are equally good, i.e. Aij(p∗ij + 1) = Aij(p

∗
ij − 1).

Third, the solution of an unconstrained pixel i /∈ Sc is un-
derdetermined if there is no path of activated aij to one of the
constraints. Therefore in order to obtain a unique minimizer, for
each pixel we can arbitrarily activate a path of aij to its closest
constraint by fixing the corresponding pij . This results in a forest,
where the root of each spanning tree belongs to a constraint as
shown in Figure 11(b). Notice that fixing pij = 0 at the spanning
tree edges does not restrict the solution space but induces a
good initialization for the subsequent greedy integer estimation
(Figure 11(c)).

Figure 6(a) shows an example computation of the greedy mixed-
integer optimization. We don’t observe undesired singularities in
the field, which is a good indicator that our approach effectively
avoids local minima. However, the cross field tends to ”flatten”
away from the strokes, which is a result of optimizing a harmonic
energy. We next describe how to optimize for the desired nonlinear
energy Ebend2D which better mimics the behavior of 3D curvature
lines.

(a) Stroke constraints (b) Initialization (c) Greedy optimization

Fig. 11: Main steps of the greedy optimization. Each stroke provides con-
straints on one of the two representative vectors of a cross (a, outlined pix-
els). We initialize the cross of each unconstrained pixel to the cross of the
closest constraint (b, colors correspond to the closest constraint). We also
set pij = 0 between pixels initialized with the same constraint (b, red
links). The greedy optimization solves for the remaining pij (c, blue links)
and updates the solution subject to the smoothness energy.

Nonlinear optimization. Since the covariant derivative of
Ebend2D has a mathematically better behaved expression in vector
coefficients, we now switch from the angle representation (α, β) to
the vector representation (u,v). The solution of Eangle is used as
a starting point for the nonlinear optimization of Ebend2D. This
refinement is of geometric nature and does not require topolog-
ical changes. Therefore, we keep the transition functions fixed
when discretizing the covariant derivatives with finite differences.
The resulting functional can be optimized by a standard Newton
method. However, we observed that iterating the optimization of
the quadratic approximation

(u(i+1),v(i+1))← min
u,v

Z
I

||∇uv
(i)||2 + ||∇vu

(i)||2dA

where (u(i),v(i)) is the solution of iteration i, is sufficient and
converges even faster. During this optimization the alignment to
strokes is maintained by an additional penalty energy Estrokes. We
also found that because our smoothness measure is strongly direc-
tional, areas away from the flow induced by the constraints can
become unstable. We easily cope with such situations by adding a
weak harmonic regularization εhEh to the functional, resulting in
the following energy, which is iteratively optimized

Evector = Ebend2D + wstrokesEstrokes + εhEh (6)

where Estrokes and Eh are now expressed in vector coefficients
instead of angles. Specifically,

Estrokes =
X
i∈Sc

wi||u− (cos θi, sin θi)||2

Eh =

Z
I

||∇u||2 + ||∇v||2dA.

We used εh = 0.1 for all our results and adjust wstrokes according
to the sketchiness of the drawing, as discussed in Section 9. In prac-
tice we use the binary mask provided as input to optimize Equa-
tion 6 only within the region of interest. On the border of the mask
we set Neumann boundary conditions ∇u = 0 and ∇v = 0. In-
terestingly, restricting to the mask does not change the result in the
region of interest but significantly speeds up the overall computa-
tion. This happens because the optimizer converges only slowly in
the unimportant boundary regions which are far away from sketch
constraints, when applied to the whole image.
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Figure 6c shows that our nonlinear energy effectively improves
the curvature lines by inflating the surface parts that appeared to be
flat before. This Figure also shows the normal field we obtain after
optimizing Ebend3D. Figure 12 shows the behavior of our method
on the sketch of a non-quad patch. The algorithm generates a sin-
gularity in the middle of the patch to form a cubic corner.

(a) Input (b) 3D Cross�eld (c) Normals

Fig. 12: This drawing of a non-quad surface patch results in a singularity in
the cross field. The corresponding normal field forms a cubic corner.

7. RELATION TO PREVIOUS CROSS FIELD
APPROACHES

In this section we clarify the relation of our cross field approach
w.r.t. other methods.

Comparison to [Bommes et al. 2009; 2012]. Our unit-length
harmonic optimization is a generalization of [Bommes et al. 2009;
2012], which is restricted to orthogonal cross fields and relies on
continuous relaxation with iterative rounding to solve for integer
variables. Nevertheless, our greedy optimizer proceeds in a similar
way. In the following we show that for the orthogonal case of
β = 0, the algorithms are identical. The additional difficulty
in our case is that the integers pij contribute nonlinearly due to
expressions (−1)pij , which additionally make continuous relax-
ation impossible without switching to complex numbers. Thus,
instead of optimizing the continuous relaxation, we deactivate all
terms with unknown pij . At a first glance this appears suboptimal
compared to the continuous relaxation. However, by considering
that in the orthogonal case each pij contributes only to one term
(αi + pij

π
2
− αj)

2, we see that the continuously relaxed terms
also always vanish by the choice pij = 2/π(αj − αi). Thus,
for β = 0 our greedy approach based on activation variables is
identical to the relaxation method of [Bommes et al. 2009; 2012].
Consequently we also benefit from all performance optimizations
that were proposed in [Bommes et al. 2012], including a hierarchy
of solvers and multiple activations.

Comparison to CDFs. Since the handling of non-orthogonal
cross fields in the context of conjugate direction fields (CDFs) [Liu
et al. 2011] is related to our approach, we discuss the differences
in more detail. Similarly to us, Liu et al. use an angle-based repre-
sentation (θ, α), which in our notation corresponds to θ = ϕ0 and
α = ϕ1 − ϕ0. The transition functions are handled by p1, p2 ∈ Z
and q ∈ {0, 1} while in our case a single p ∈ Z is sufficient.
Apart from these notational subtleties, which mostly affect the sim-
plicity of formulas, the most important difference is the chosen
smoothness measure and the corresponding optimization strategy.
The smoothness measure of [Liu et al. 2011] exploits the periodic-
ity of the cos function to eliminate all integer degrees of freedom

(DOFs) and it is shown that the resulting functional is a generaliza-
tion of the one proposed in [Hertzmann and Zorin 2000] for orthog-
onal cross fields. As discussed in [Liu et al. 2011] these nonlinear
functionals induce a tendency to end up in local minima with unsat-
isfactory additional singularities (cf. Figure 4 in [Liu et al. 2011]),
even in case of a good initialization.

On the contrary our smoothness measure contains integer DOFs
and is a generalization of Bommes et al. [2009]. Since every step
in the greedy integer estimation solves a simple linear problem,
similarly to [Bommes et al. 2009], unsatisfactory additional singu-
larities are effectively prevented. Consequently, we believe that our
novel non-orthogonal cross field representation and optimization is
a valuable general tool with numerous applications apart from con-
cept sketching, such as surface meshing.

8. ADDITIONAL DETAILS

User interface. The accompanying video illustrates a typical in-
teractive session with our tool. Users first load an existing bitmap
sketch and its mask and paint over curvature and discontinuity
strokes in different colors. Design literature explains that “cross-
sections on a surface explain or emphasize its curvature” [Eissen
and Steur 2008], which suggests that designers know the difference
between lines that convey curvature and other discontinuity lines.
In addition to the stroke annotations, we also ask users to select one
of the two possible consistent solutions of each surface patch nor-
mal field (Section 5.3, Figure 13). We implemented these user in-
dications as unary constraints in the labeling problem (Appendix).
In practice, several indications are sometimes necessary to obtain
a consistent result over complex patches. Finally, we also provide
users the ability to combine layers when sketching complex objects
made of independent parts.

(b) Local estimate (c) User indications (d) Optimized result(a) Input

Fig. 13: Curvature lines can be interpreted as running over a convex or a
concave surface patch. Based on our local guess (b), the user clicks on in-
consistent patches (c, red dots) to flip their orientation. The local guess is
then refined by the 3D BendField energy (d).

Pixels on discontinuity strokes do not constrain the orientation
and smoothness of the cross field and are also not considered when
solving for the globally consistent 3D solution. As a result, regions
bounded by discontinuity strokes form isolated patches in the solu-
tion and discontinuity strokes do not receive values. We assign nor-
mals to discontinuity pixels as a post-process by diffusing nearby
normals [Winnemöller et al. 2009].

Sketch pre-processing. We apply a few simple image process-
ing operations on the input image before running our algorithm. We
found that applying a small Gaussian blur to remove noise produces
a more accurate estimation of local orientations. We also observe
that artists draw strokes with varying strength, darker strokes de-
noting more confidence. We apply a permissive threshold to select
dark and lighter strokes (0.8 in our implementation). The constraint
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weightwi then implicitly accounts for the strength of the strokes as
darker ones have a smaller minor eigenvalue.

Texture Mapping. For texture mapping we adapt the
parametrization step of [Bommes et al. 2009] to non-orthogonal
cross fields with anisotropic sizing. In order to get the desired
parametrization (s, t) of our surface we optimize

Eparam =

Z
I

“
[∇s,∇t]T [u,v]− I2

”2

dA

with I2 being the two dimensional identity matrix and

[∇s,∇t]T =

„
∂s/∂x ∂s/∂y
∂t/∂x ∂t/∂y

«
, [u,v] =

„
ux vx
uy vy

«
being the differential which transforms vectors from image space to
texture space. Intuitively this energy states how well the given u,v
vectors map to the Cartesian s, t axes in texture space. Thus the
inverse mapping tries to aligns the texture with the non-orthogonal
cross field. The length distortion due to foreshortening is encoded
into the length of u and v. While our cross field is not guaranteed
to be integrable, we didn’t observe significant distortions of the pa-
rameterization in practice.

Optimization. For the greedy mixed-integer optimization we
use a hierarchy of solvers, i.e. local Gauss Seidel, Conjugate Gra-
dient and Sparse Cholesky, as explained in [Bommes et al. 2012].
The Conjugate Gradient and Sparse Cholesky is taken from Eigen3
[Guennebaud et al. 2010], which is also used for the optimization of
all quadratic energy functionals. For the nonlinear optimization of
Section 5.3 we apply the interior point method of IPOPT [Wächter
and Biegler 2006]. We provide source code as supplemental mate-
rials to facilitate reproduction.

Table I details the time spent by our implementation on each
step of the optimization, for two sketches. The current bottleneck
resides in the nonlinear optimization of the 2D and 3D BendField
energies (Equations 4 and 6). However, we note that our cross fields
are piece-wise smooth, which makes our problem an ideal candi-
date for hierarchical algorithms like multigrid [Briggs et al. 2000],
although care should be taken to properly handle transition func-
tions between levels of the hierarchy [Bommes et al. 2013].

Sketch Resolution Harmonic 2D BendField 3D BendField
Kettle 900× 800 1 min. 30 sec. 32 min. 9 min.
Vacuum 900× 700 2 min. 17 sec. 21 min. 24 min.

Table I. : Detailed timing for the main steps of our method for a simple
sketch (water kettle, Figure 17) and a complex one (vacuum cleaner, Fig-
ure 1). We used 10 iterations to optimize the 2D BendField with Eqn. (6),
although we observed that the energy decreases quickly during the first 3
iterations, then converges to a plateau value.

9. RESULTS AND EVALUATION

Figure 1, 3, 13, 16, 17, 21, 20 illustrate the results of our method on
a range of concept sketches. A major advantage of our method is its
ability to process existing sketches. We produced all our inputs by
reproducing drawings from design books and websites that are rep-
resentative of the distortions and inaccuracy found in real sketches.
We reproduced these drawings to avoid copyright issues and to re-
move decorative lines (cross-hatching and texture) that users would
not draw in our context. We provide links to the original drawings

as supplemental material. In theory, our algorithm requires at least
two intersecting curvature lines per isolated surface patch, although
users can draw more lines to refine bending over complex surfaces.

We visualize our cross-fields with hatching [Hertzmann and
Zorin 2000] and provide a color-coded visualization of the surface
normals estimated by our algorithm. The cross-fields and normals
provide a vivid sense of the 3D shapes depicted by the sketches,
capturing the overall orientation of the surfaces as well as subtle
bending, such as the folding shape of the stool (Figure 3) and the
wavy handle of the bag (Figure 21). Figure 21 additionally shows
the use of our normals and cross-fields for shading and texture map-
ping. Figure 14 shows how a harmonic smoothness energy does not
capture surface bending as well as our BendField energy.

(a) Harmonic energy (b) Our energy

Fig. 14: Comparison between a harmonic energy and our energy on the
same input as Figure 1. A harmonic energy tends to flatten the shape away
from user strokes, producing “tent” artifacts at stroke intersections (a). Our
energy better captures the bending of the surface (b). We used the same
weights for the two versions of the algorithm.

Limitations. Because our approach works on bitmaps, the accu-
racy of the result is dependent of the image resolution. Fine details,
such as the thin legs of the chair in Figure 21, are not well captured
by the structure tensor. While we added these details with decora-
tive strokes, an alternative would have been to sketch them at higher
resolution in a separate layer and then composite them in the final
image.

Our algorithm infers the directions of the cross-field from the lo-
cal orientation of the strokes. As a result, our approach sometimes
fails to distinguish a strongly foreshortened crossing between two
lines from a bend on a single line, since the two configurations
locally form a similar wide angle. In theory, our algorithm will al-
ways interpret intersecting lines as two different directions if they
deviate by less than 45◦ from orthogonality, while greater devia-
tions can be compensated for by the transition function and be in-
terpreted as a bending over a single direction. In practice the global
configuration of the cross-field can sometimes result in angles that
deviate more than this lower bound. Figure 15(a) illustrates the be-
havior of our algorithm on a strongly foreshortened cube, where
the curvature lines on the top face are interpreted as constraints on
one of the two directions of the cross-field, the other direction be-
ing free. Figure 15(b) shows a cube from a less foreshortened view
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where the crossing lines form an angle closer to 90◦ and as such are
better captured by our approach. Fortunately, designers are trained
to draw objects from informative viewpoints that minimize fore-
shortening over most surfaces [Eissen and Steur 2011; Shao et al.
2012], as demonstrated by our results over typical sketches.

(b) Proper foreshortening(a) Too foreshortened

Fig. 15: In the presence of strong foreshortening, such as on the top face
of the cube in (a), intersecting curvature lines form the same local config-
uration as overlapping strokes on a curvy line. As a result, our algorithm
interpret these lines as constraints on only one of the two directions of the
cross-field. Designers usually avoid strong foreshortening to maximize in-
formation, providing proper constraints for our algorithm (b).

Effect of parameters. Figure 16 illustrates the effect of the two
main parameters of our algorithm. These parameters offer a trade-
off between fidelity to the input strokes and smoothness of the solu-
tion. In particular, sketchy lines can result in wiggles in the normal
field, which can be removed by increasing the spatial extent σs of
the bilateral filter during orientation estimation (Section 4) and by
reducing the constraint weightwstrokes in Equation 6. However, too
much filtering can result in a loss of detail, while too much smooth-
ing tends to flatten the surface. We used the same preset of σs = 13
and wstrokes = 0.25 for most sketches, except for the very sketchy
drawings (Figure 3 and 17) for which we use σs = 23 and the clean
CrossShade curves (Figure 20) for which we used wstrokes = 0.1.

Robustness to sketchy lines. We designed our method to be
robust to the sketchy lines typical of concept drawings. Figure
17 evaluates this robustness on four versions of the same sketch,
with an increasing density of strokes. Our method produces simi-
lar cross-fields and normals for the various levels of sketchiness,
although fine details are lost for very sketchy drawings. While
our scattered interpolation handles sparse and incomplete curva-
ture constraints, holes in discontinuity lines can result in smooth
transitions across surface patches.

Comparison to ground truth. We derived our BendField en-
ergy from properties of curvature lines. Figure 18 compares our
interpolated cross fields to ground truth curvature lines generated
from 3D surfaces. We chose these surfaces to have no umbilical
points and to be perfect minimizers of the BendFields energy since
their lines of curvature are also geodesics. We applied our complete
pipeline to the rasterised sparse curvature lines using a small stroke
smoothness σs = 3 and wstrokes = 0.1.

Our cross-field closely matches the projected curvature lines
with a mean error of 2.49 degrees on the directions (standard de-
viation of 4.52 degrees), resulting in visually similar normals with
a mean error of less than 1.12 degrees (standard deviation of 2.09
degrees). Small wiggles are noticeable in the normal field, which
can be removed by increasing σs at the cost of flattening the shape.

Stroke constraint weight (ωstrokes)
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Fig. 16: The stroke smoothness and constrain weights offer a trade-off be-
tween fidelity to the input drawing and smoothness of the normal field.
While a range of parameters produce similar results, too much smoothing
removes details and flatten the surface (top left corner), while too strong
constraints produce wiggles because of the sketchy strokes (right column).
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Fig. 17: Our approach is robust to different levels of sketchiness, from
sparse strokes with holes (left) to many overlapping strokes (right). De-
spite these drastic differences in input style, our method produces consistent
cross-fields and normals.
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(b) GT dense
curvature lines

(c) GT normals (d) Our dense
cross�eld from (a)

(f ) Our normals
from (a)

g) Normal error

0°

17°

0°

50°

0°

9°

0°

18°

(e) Cross�eld error(a) GT sparse
curvature lines

Fig. 18: Comparison with ground truth curvature lines and normals. Our cross field aligns with the ground truth dense curvature field
(b,d), producing normals that closely match the ones of the ground truth surface (c,e). Our cross field and normals are less accurate near
boundaries and silhouettes where junctions make the estimation of orientation of curvature lines less accurate and regularization penalizes
strong foreshortening and non-orthogonality. The cylinder has a mean error on cross field directions of 2.86◦ and standard deviation of 5.43◦

and on normals of 1.26◦ and standard deviation of 2.4◦, the wave has a mean error of 2.00◦ and standard deviation of 2.43◦ on directions and
of 0.85◦ and standard deviation of 1.64◦ on normals.

(a) GT sparse
curvature lines

(b) GT dense
curvature lines

(c) Our dense
cross �eld from (a)

(d) Surface cross �eld
[Bommes et al. 09]

Fig. 19: Comparison with ground truth curvature lines in the presence of
umbilical points. Our regularized cross field deviates from the non-geodesic
curvature lines (b,c) and positions singularities similarly to the surface cross
field of [Bommes et al. 2009] (d).

We provide as supplemental materials the results of the same ex-
periment using ground truth 2D constraints as input to bypass the
initial estimation of stroke orientation. The errors in this experiment
are lower than when running the complete pipeline, yet distributed
similarly with a mean error of 1.87 degrees on the cross field di-
rections (standard deviation of 3.94 degrees) and 1.06 degrees on
the normals (standard deviation of 1.97 degrees). Most errors occur
near discontinuity lines and silhouettes where the estimation of lo-
cal orientation is less accurate and our regularizers penalize strong
foreshortening and non-orthogonal crosses (Equation 4 and 5). An
interesting direction for future research would consist in combining
our approach with inflation methods [Johnston 2002] in order to
leverage both the 3D cues provided by curvature lines and smooth
silhouettes.

Figure 19 provides an evaluation against a more complex sur-
face with umbilical points. Our regularized cross field positions a
singularity in the center of the triangular face of the sketch, while
the ground truth singular points lie on the great circles of the ellip-
soid. Figure 19(d) shows that our algorithm actually behaves simi-
larly to the surface cross field algorithm of Bommes et al. [2009],
which favors smooth geodesic curves away from regions with high
anisotropic curvature.

Comparison to prior work. Figure 20 provides a comparison
of our normal fields and shading with the ones generated by the
CrossShade algorithm [Shao et al. 2012]. While both algorithms es-
timate normals by leveraging orthogonality of curvature lines, they
target different input and perform data interpolation in a different
order. CrossShade requires clean vectorial curves as input, which
provide a high degree of precision and smoothness. In contrast,
our method processes bitmap drawings with a finite resolution and
sketchy lines. From an algorithmic point of view, CrossShade esti-
mates normals solely at curve intersections and propagates these
estimates along and in-between curves using parametric Coons
patches. Our algorithm operates in a different order, first apply-
ing scattered interpolation on the strokes to form a dense curvature
field and then estimating normals at each pixel. CrossShade also
enforces planar cross-section curves, which our local formulation
cannot do. In practice, our algorithm tends to produce a flatter result
near boundaries of curved surface patches, such as on the lens of
the camera in Figure 20, where the junctions make the orientation
estimation less reliable (Section 4). We plan to explore the estima-
tion of two directions near junctions to address this issue [Aach
et al. 2006]. Nevertheless, our approach produces results visually
similar to CrossShade, without requiring users to be familiar with
vector drawing tools.

10. CONCLUSION AND FUTURE WORK

Sketch-based modeling systems traditionally take clean vectorial
curves as input. In this paper we have explored an alternative ap-
proach by extrapolating curvature lines from bitmap drawings. Our
approach relies on a scattered-data interpolation to be robust to the
rough drawings common in concept sketching. The resulting 2.5D
cross fields, which we call Bend Fields, allow a range of sketch-
editing applications originally developed for 3D surfaces, such as
local shading, texture mapping and cross-hatching.

Our algorithm relies on two technical contributions, the formu-
lation of a suitable smoothness energy that captures the behav-
ior of curvature fields, and a non-orthogonal cross field represen-
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(a) Rasterized CrossShade
curves

(b) Our normals (c) Our shading (d) CrossShade
normals

(e) CrossShade
shading

Fig. 20: Comparison with CrossShade [Shao et al. 2012]. Our method produces qualitatively similar results without the need for vectorial
curves. Note that we rasterized the CrossShade curves as polylines and did no attempt to remove extraneous dangling segments at extremities.

tation. We foresee numerous applications of these two contribu-
tions in other research domains. We first plan to explore the use
of our approach for 3D sketch-based modeling. While our normal-
fields can be integrated to form height-fields (Figure 22), the re-
sulting surface is often distorted due to perspective inaccuracy in
sketches [Schmidt et al. 2009], which would require special treat-
ment, for instance by detecting and enforcing regularization con-
straints over the cross field [Xu et al. 2014]. Our smoothness en-
ergy could also represent a powerful regularizer for shape-from-
shading, shape-from-texture and shape-from specularity algorithms
[Tappen 2011]. Finally, our non-orthogonal cross field representa-
tion can also contribute to quad-meshing algorithms in applications
where the orthogonality constraint is not desirable, as shown in Fig-
ure 23. For such applications, an interesting direction for future
work would be to add two length variables to each cross in order to
support variable-length fields in the optimization.
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Appendix

We describe in this appendix our implementation of the binary-
labeling problem to find a consistent orientation of directions over
a surface patch. We express the image as a graph, where each pixel
is a node connected to its upper and right neighbor by an edge. Each
node i stores two candidate values uz(i) and−uz(i), and each edge
(i, j) stores the 2× 2 pairwise cost matrix of assigning each possi-
ble pair of values to the nodes i and j. We express these costs as the
absolute difference between the two values. Our goal is to select the
value of each node that minimize the cost over all edges, which we
solve using the Convergent Tree-reweighted Message Passing algo-
rithm1 [Kolmogorov 2006]. We optionally provide users the ability
to constrain one of the two values at a pixel, which the algorithm
then propagates to other pixels. This feature is particularly useful to
resolve the ambiguity between convex and concave surface patches,
which have opposite orientations. We express these constraints as a
unary penalty term that we set to 0 for the solution we want to favor
and to 1 for the solution we want to penalize. We also account for
these constraints in the pairwise terms that we set to 1 for the solu-
tion we want to penalize. Finally, care should be taken to properly
handle the transition functions when computing the pairwise term.

1Implementation available at http://research.microsoft.com/en-
us/downloads/dad6c31e-2c04-471f-b724-ded18bf70fe3/
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