
HAL Id: hal-01261459
https://inria.hal.science/hal-01261459

Submitted on 25 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WrapIt: Computer-Assisted Crafting of Wire Wrapped
Jewelry

Emmanuel Iarussi, Wilmot Li, Adrien Bousseau

To cite this version:
Emmanuel Iarussi, Wilmot Li, Adrien Bousseau. WrapIt: Computer-Assisted Crafting of Wire
Wrapped Jewelry. ACM Transactions on Graphics, 2015, Proceedings of ACM SIGGRAPH, 34 (6),
�10.1145/2816795.2818118�. �hal-01261459�

https://inria.hal.science/hal-01261459
https://hal.archives-ouvertes.fr

WrapIt: Computer-Assisted Crafting of Wire Wrapped Jewelry

Emmanuel Iarussi1 Wilmot Li2 Adrien Bousseau1

1 Inria 2 Adobe Research

(a) Input bitmap (b) Labeling (c) Printed jig (d) Fabricated piece

Figure 1: Our system allows novices to create a variety of custom jewelry. Following aesthetic and fabrication principles, our algorithm
decomposes an input line drawing (a) into smooth, well-connected paths that cover each line in the drawing exactly once (b). We extrude
support walls inside the sharp turns of the paths to create a physical jig that guides wire wrapping (c). Assembling the three wires of this
design yields a butterfly pendant (d).

Abstract

Wire wrapping is a traditional form of handmade jewelry that in-
volves bending metal wire to create intricate shapes. The technique
appeals to novices and casual crafters because of its low cost, ac-
cessibility and unique aesthetic. We present a computational design
tool that addresses the two main challenges of creating 2D wire-
wrapped jewelry: decomposing an input drawing into a set of wires,
and bending the wires to give them shape. Our main contribution is
an automatic wire decomposition algorithm that segments a draw-
ing into a small number of wires based on aesthetic and fabrication
principles. We formulate the task as a constrained graph labeling
problem and present a stochastic optimization approach that pro-
duces good results for a variety of inputs.

Given a decomposition, our system generates a 3D-printed cus-
tom support structure, or jig, that helps users bend the wire into
the appropriate shape. We validated our wire decomposition algo-
rithm against existing wire-wrapped designs, and used our end-to-
end system to create new jewelry from clipart drawings. We also
evaluated our approach with novice users, who were able to create
various pieces of jewelry in less than half an hour.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and ob-
ject representations; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques;

Keywords: computational design, line drawing segmentation, Eu-
lerian path, jewelry, wire wrapping, jig

1 Introduction

Jewelry is one of the oldest and most prevailing forms of craft-
ing, with the earliest known examples dating from almost 100,000
years ago. Traditionally, jewelry making has been a largely manual
process that involves a range of techniques, such as mold-making,
metal working, painting, etc. Today, while most commercial jew-
elry production leverages computer-aided design and manufactur-
ing technology, there remains a large class of jewelry that continues
to be made by hand. In recent years, interest in hand crafted jew-
elery has increased significantly with the growth of popular online
crafting marketplaces such as Etsy and ArtFire, which allow inde-
pendent artists to sell their work directly to consumers. The goal of
our work is to enable a broader range of users to create their own,
customized handmade jewelry.

We focus on a specific style of jewelry making called wire wrapping
that involves bending and connecting metal wires to create com-
plex shapes (Figure 1d). Wire wrapping is one of the most popular
forms of hand crafted jewelry; e.g., Etsy.com returns over 220,000
“wire wrapped jewelry” results. Moreover, since it involves af-
fordable materials and does not require melting or soldering, wire
wrapping is particularly appealing to casual crafters. Crafting sites
like Instructables.com include hundreds of wire wrapping tutorials
for creating a variety of jewelry and other ornaments. However,
since most tutorials provide instructions for a given piece of jew-

© Iarussi et al. | ACM 2015. This is the author's version of the
work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in
ACM TOG, http://dx.doi.org/10.1145/2816795.2818118.

elry and are hard to generalize, novices are limited to creating a
fixed set of designs. We present a computational design tool that
empowers novices to create wire-wrapped jewelry from their own
designs. Since wire wrapping can be viewed as a form of line draw-
ing (where wire takes the place of ink or graphite), we allow users
to specify their target designs as line drawings.

There are two major challenges in designing and fabricating
wire-wrapped jewelry from line drawings.

Wire decomposition. The first and most critical step is to
create a wire decomposition of the drawing into the appropriate
set of wires. Since pieces made of many wires are unstable and
difficult to assemble, good decompositions usually consist of few
wires. Yet, many shapes cannot be represented with a single wire
without doubling back over parts of the drawing, which often
detracts from the aesthetics of the resulting jewelry. Moreover, it is
hard to bend a single piece of wire to create sharp angles. Effective
decompositions require balancing these constraints and objectives.

Wire bending. Given a wire decomposition, the next step is
to bend each piece of wire to match the shape of the path specified
in the design. To help create smooth curves, jewelry makers often
wrap wires around tools called jigs. Several companies like WigJig
[2015] sell generic boards and cylindrical pegs that support custom
jig configurations. However, such pre-defined kits are not flexible
enough to create arbitrary shapes. For instance, cylinders can
only constrain bends of constant curvature, and target shapes with
multiple nearby bends can result in collisions between the pegs.

We propose an end-to-end design and fabrication system to help
novices address the above challenges. Our main contribution is an
algorithm to automatically decompose an input drawing into wires.
We formulate the decomposition task as a graph labeling problem,
where the labels define groups of line segments, each of which
should be “drawn” with a single wire (Figure 1b). Our aesthetic
and fabrication objectives result in both soft and hard constraints,
some of which have a global impact on the labeling. We describe a
stochastic optimization that handles these constraints.

Another key feature of our system is the automatic generation of a
custom 3D-printed jig from a given wire decomposition. Our jigs
include a set of support walls that constrain the shape of the wire to
match the design. We generate support walls strategically only on
curvy portions of each wire path (Figure 1c) so that there is enough
free space to easily manipulate the wire. Minimizing the amount of
support geometry also reduces the physical material required to 3D
print the jig. As extra guidance, our system generates instructions
to help plan and execute the wire wrapping and assembly. Note
that our approach differs from most recent work on computer-aided
fabrication since our goal is not to 3D print the final jewelry piece,
but rather to create an intermediate support structure that facilitates
the hand wrapping process while preserving the joy of crafting.

We evaluated our approach with novice users with little or no train-
ing in jewelry design and crafting. Participants took several minutes
to segment a design by hand. While they obtained similar solutions
to ours on simple designs, our algorithm yields solutions with fewer
wires or increased robustness on more complex examples. All par-
ticipants were able to create a piece of jewelry in less than half
an hour using a wire decomposition and custom jig generated with
our system. Participants commented that our system provides clear
instructions and that the jig is very helpful in creating the final wire-
wrapped jewelry.

2 Related Work

Professional jewelry is a major industry for which dedicated CAD
systems exist, such as GemVision Matrix and ArtCAM JewelSmith
to name a few. These systems provide advanced features to model
common types of jewelry (rings, bracelets, pendants, etc), to dec-
orate shapes with relief and gems, as well as to render the design
realistically. Our work targets a different audience: novice crafters
who wish to create their own unique jewelry with affordable mate-
rials and hands-on techniques. Studies on the Do-It-Yourself com-
munity suggest that manipulating materials by hand contributes to
the pleasure and pride of crafting [Tanenbaum et al. 2013].

Traditional crafting, such as wood working, sewing or metal
smithing, require significant expertise both to manipulate physical
materials and anticipate their behavior. Computer-aided design has
the potential of making such crafting accessible to novices by sim-
ulating the end artifact as well as guiding its fabrication [Schmidt
and Ratto 2013]. A typical example is Plushie [Mori and Igarashi
2007], an interactive system to design plush toys that combines
inflation simulation and geometric constraints to generate devel-
opable patches that reproduce a target shape after sewing. Skouras
et al. [2012; 2014] follow a similar workflow to assist the design
of inflatable structures. Holly [Igarashi and Igarashi 2010] allows
users to perform stencil design, automatically detecting islands and
adding bridges to connect them to the main sheet to be cut. Other
recent fabrication-oriented design systems assist the creation of fur-
niture [Umetani et al. 2012], pop-up cards [Li et al. 2011], paper
airplanes [Umetani et al. 2014], mechanical characters [Coros et al.
2013]. Closer to our application domain, Beady [Igarashi et al.
2012] assists the construction of customized 3D beadwork by de-
composing a 3D model into strips of beads while simulating phys-
ical interactions between neighboring beads. We adopt a similar
methodology to this family of work but apply it to the different do-
main of wire-wrapped jewelry. Given a line drawing, our tool auto-
matically generates a decomposition into metal wires that satisfies
artistic and fabrication constraints.

Computational tools have also been proposed to assist the assembly
of physical objects. While early work focuses on the generation of
instructions for existing models [Agrawala et al. 2003], recent work
integrates assembly constraints as part of the design goals, for in-
stance to create sculptures made of planar slices [Hildebrand et al.
2012] and interlocking furniture [Fu et al. 2015]. Craftsmen also
often rely on intermediate support structures, or scaffolds, to as-
sist assembly. Inspired by masonry techniques, Deuss et al. [2014]
rely on temporary chains to guaranty stability during the assembly
sequence of self-supporting structures. Temporary wooden struc-
tures have also been used for the fabrication of wire mesh sculp-
tures [Garg et al. 2014]. Taking inspiration from traditional wire-
wrapping techniques, our system automatically generates custom
support structures, called jigs, to guide the bending of wires.

One of the objectives of our algorithm is to wrap the wire over each
line of the input drawing exactly once. Similar objectives appear in
the computational design of continuous line drawings [Wong and
Takahashi 2011] and related travelling-salesman art [Kaplan and
Bosch 2005]. However, these algorithms aim to find a single path
that traverses all edges or visit all vertices of a graph, at the cost
of adding new lines to the drawing if needed. In contrast, our al-
gorithm allows the use of a variable number of paths to cope with
shapes that cannot be covered by a single path.

3 Wire-Wrapping Principles

As discussed previously, the main challenge in creating wire-
wrapped jewelry is to convert an input design, often represented

as a line drawing, into a wire decomposition that can be fabricated.
Books [McIntosh 2007; Dismore 2011; DeField 2015] and online
tutorials [WigJig 2015; Instructables 2015] provide many exam-
ples and recommendations for creating such wire decompositions.
We studied this literature and identified three key characteristics of
good decompositions.

Low complexity. Wire-wrapped jewelry
should be made with a small number of wires
because it is hard to join multiple wires in a
robust, stable way. In addition, part of the
beauty of wire-wrapped jewelry comes from
the intricate loops created by a long wire fol-
lowing a complex path. Ideally, a piece of wire-wrapped jewelry
should be made from a single wire. However, many input designs
cannot be reproduced using a single wire, unless the wire doubles
back over parts of the design, which artists tend to avoid for aeas-
thetic reasons. Good decompositions use the minimum number of
wires such that each part of the design is traversed exactly once.

Smoothness. While jewelry wire is made to be
malleable, the physical resistance of metal prevents
the creation of sharp bends. The path of each wire
in the decomposition should thus be as smooth as
possible with sharp angles in the input design rep-
resented by wire crossings. In the inset, the wire
follows the blue direction rather than the red one as
it results in a smoother trajectory.

Robustness. A piece of jewelry is most robust
when it is composed of a single wire. In cases
where several wires are needed to create a shape,
craftsmen try to connect each wire at least twice to
other wires to avoid weak dangling segments. At
each connection, thin wire is wrapped around the
various wire segments to hold them together with-
out soldering.

4 Wire Decomposition

4.1 Line-Drawing Vectorization

Our system takes as input a bitmap line drawing, which we assume
to be made of a single connected component. We first convert this
line drawing into a vector representation by applying morpholog-
ical thinning [Soille 2003], chaining pixels between junctions and
fitting Bezier curves on the resulting pixel chains. Note that more
advanced algorithms could be used for this purpose [Noris et al.
2013]. The output of this vectorization is an undirected graph where
each vertex corresponds to a junction (i.e., endpoint or intersection)
and each edge corresponds to a Bezier segment.

4.2 Energy Formulation

We denote the graph extracted from the input drawing as G =

{V, E}, where V are the vertices and E the edges. Our goal is to de-
compose the graph into N sub-graphs, each sub-graph correspond-
ing to a single wire of the final design. We express this problem as
assigning a label l

n2[0,N�1] to each edge of the graph. We evalu-
ate the quality of a given assignment l 2 {l

n2[0,N�1]}card(E) with
three energy terms that correspond to the three design principles
identified in Section 3. We now describe each of our energy terms
and later provide details about the optimization procedure. Figure 2
illustrates the effect of each of the terms on the solution.

(b) Low Complexity (c) Smoothness (d) Robustness(a) Input

Figure 2: Effect of each energy term. A trivial solution assigns a
different label to each line segment (a). This line drawing cannot
be represented by less than three Eulerian paths (b). In (b) the blue
and purple paths contain sharp turns that would be hard to cre-
ate with metal wire. Our smoothness term avoids sharp angles (c)
but results in a dangling blue path for the antennas. Our robust-
ness term encourages a solution where each path has at least two
connections to other paths.

Low complexity. The first and foremost objective of our algo-
rithm is to segment the graph into a small number of sub-graphs,
such that within each sub-graph, a piece of wire can traverse every
edge exactly once. In other words, the wire should form an Eule-
rian path through each sub-graph. The necessary condition for a
graph to admit an Eulerian path is that it has either no odd degree
vertices (for a closed path) or exactly two odd degree vertices that
correspond to the two endpoints of an open path. This Eulerian path
requirement makes our optimization particularly challenging as it
introduces a complex, non-local hard constraint in our graph label-
ing problem. To address this challenge, we design our optimization
procedure to only consider candidate decompositions where every
sub-graph has an Eulerian path, as described in Section 4.3. Thus,
our complexity term only needs to penalize solutions with a large
number of labels

E
complex

(l) = N. (1)

Note that N is ultimately bounded by the number of edges in the
graph, since the worst solution would be to assign a different label
to each edge.

Smoothness. Our second term favors smooth paths by measur-
ing the angle between consecutive curve segments at their junctions

E
smooth

(l) =
X

n2[0,N�1]

X

i

����⇡ � arctan

tn
i

⇥ tn
i+1

tn
i

· tn
i+1

����, (2)

tni

tni+1

where we loop over the Eulerian paths that
correspond to the N labels and measure at
each intersection the angle formed by the tan-
gent tn

i

of the incoming curve segment and
the tangent tn

i+1 of the subsequent outgoing
curve segment 1. The inset illustrates our no-
tation.

Robustness. We adopt a simple robustness heuristic which
avoids dangling pieces by penalizing sub-graphs with less than two

1In practice, we compute arctan (y/x) using the atan2(y, x) function
from the C++ library “math.h”.

connections to other sub-graphs

E
robust

(l) =

X

n2[0,N�1]

�
n

(l) (3)

�
n

(l) =

(
1, if sub-graph l

n

has less than 2 connections
0, otherwise

4.3 Optimization Method

Our optimization minimizes a weighted sum of the terms

argmin

l

E(l) = E
complex

(l) + �
s

E
smooth

(l) + �
r

E
robust

(l) (4)

s.t. each sub-graph l
n

admits a Eulerian path

where �
s

and �
r

balance the contribution of the terms. The com-
plexity and robustness terms have a global impact on the label con-
figuration and as such prevent the use of standard graph-cut tech-
niques. An exhaustive evaluation of the Ncard(E) configurations
is also not feasible for any problem of reasonable size. Finally, as
discussed previously, the Eulerian path requirement imposes a hard
constraint on the labeling.

In light of these challenges, we adopt simulated annealing [Kirk-
patrick et al. 1983] to explore the space of configurations, as sum-
marized in Algorithm 1. Our datastructure represents each sub-
graph as an Eulerian path. To satisfy the Eulerian constraint, we
initialize the optimization by assigning a different label to each edge
of the graph, i.e. we have N = card(E) sub-graphs of size 1, each
being an Eulerian path by construction. At each iteration, the al-
gorithm generates a new configuration l0 by perturbing the current
configuration l. We carefully designed the perturbation operators
to preserve the Eulerian property of the paths, as detailed in the
next paragraph. The new configuration is always accepted if it de-
creases the energy. Configurations that increase the energy can also
be accepted with a probability that depends on the energy variation
between l and l0 and a relaxation parameter T that geometrically de-
creases at a rate T T�T⇥C. This acceptance strategy prevents
the algorithm from getting trapped early in local minima. The al-
gorithm stops when the relaxation parameter becomes smaller than
a threshold T

end

. The algorithm returns the configuration with the
minimum energy overall. We initialize T to 100, C to 0.0001 and
T
end

to 0.0001.

Algorithm 1 Optimization procedure

Generate initial configuration l (one path per edge)
Initialize solution l

min

= l
Initialize relaxation parameter T = T

init

repeat
Generate l0 from l by applying a random operator (join, split
or permute) on a random path
Compute acceptance probability R = exp

⇣
E(l)�E(l0)

T

⌘

Draw a random value p 2 [0, 1]
if p < R then update l l0

else update l l
Update relaxation parameter T T � T ⇥ C
if E(l) < E(l

min

) then update l
min

 l
until T < T

end

return l
min

Perturbation operators. We define three local perturbation op-
erators to generate new configurations: join, split and permute. The
split operator selects a random path and splits it into two paths at

a random vertex (Figure 3a). The join operator selects two random
paths that share an end point and appends them to create a single
path (Figure 3b). The permute operator selects two random paths
sharing a vertex and swaps the labels on either side of the vertex
(Figure 3c). We randomly apply one of the three operators at each
iteration. Note that a join can cancel the effect of a split and that ap-
plying permute twice on the same vertex in sequence has no effect,
which is critical to allow the algorithm to escape bad configura-
tions. Since our perturbation operators never create new internal
vertices of odd degree, our optimization is guaranteed to maintain
the Eulerian property of the sub-graphs.

(a) Split (b) Join (c) Permute

Figure 3: Our stochastic optimization relies on three operators to
generate new configurations of labels. Colors represent different
labels, i.e. different sub-graphs. Split creates two sub-graphs from
a path (a). Join merges two paths in one (b). Permute exchanges
half-paths between two sub-graphs (c).

Performance. Figure 4 shows the evolution of the configurations
during the optimization. The energy makes large oscillations dur-
ing the first iterations as the algorithm explores the solution space.
It then makes more subtle adjustments and converges to a plateau as
the relaxation parameter becomes selective. Since full enumeration
of all possible decompositions is not practical for most designs of
reasonable complexity, we cannot objectively evaluate how close
our solutions are to the global optimum. Nevertheless, we per-
formed an exhaustive search on a simple design (bee in Figure 6)
using two labels and bounding the maximum length of the paths,
which gave 6 242 730 configurations. Over 1000 runs, our algo-
rithm found the best solution each time. We also performed 1000
runs on Figure 1 and obtained the same solution 999 times. Ta-
ble 1 provides timings2 for representative drawings, ranging from 3

seconds for the smallest design to 32 seconds for the biggest one.
Although the final number of wires in the decomposition depends
on the complexity of the input drawing, our algorithm reduced the
number of segments by a factor of four in these examples.

Drawing Input segments Output wires Time (sec.)
Butterfly (Fig. 1) 12 3 2.7

Horse (Fig. 8) 24 5 12

Tiger (Fig. 5) 54 16 32

Table 1: Timing and number of input and output paths for a few
representative input drawings.

4.4 Pre- and Post-Processing

We complement the algorithm described above with two optional
features that expand the space of solutions and increase robustness.

Bridges. Complex shapes are sometimes impossible to represent
with few Eulerian paths. Experienced jewelery makers often reduce
the number of wires in the final design by adding short extra seg-
ments, or bridges, between nearby paths. To incorporate bridges,
we pre-process the vectorized input drawing and detect pairs of ver-
tices that are closer than 0.3E , where E is the average edge length.

2Timings in Table 1 were measured on a MacBookPro with OS X
Yosemite, 16GB RAM and a 2.3GHz processor.

Energy E

Iterations
50000 1000000

0

20

30

40

50

61 wires

1

1

2

3
4

13 wires4

13 wires2 12 wires3

Figure 4: The energy decreases quickly during the first iterations
as edges get connected into longer paths. The optimization then
makes subtle updates to the configuration until it converges to a
stable solution after 75000 iterations.

We only retain the pairs that are not connected by an edge and that
are not separated by a line in the drawing. We insert these bridges
as optional edges in the graph and augment our energy function
with a term that penalizes their use. Denoting as B(l) the set of
active bridges for a given label configuration, the penalty term is
E

bridges

(l) = card(B(l)), weighted by �
b

= 0.1. We include the
bridges in our optimization via two additional perturbation opera-
tors. The first operator enables a bridge, which allows subsequent
iterations of the algorithm to join the bridge to another path. The
second operator disables a bridge and creates two paths if the bridge
was in the middle of a longer path.

Junction refinement. While our robust-
ness term favors well-connected sub-graphs,
it is sometimes impossible to avoid dangling
wires that are connected to one other sub-
graph at a single point. Inspired by tradi-
tional practice, we strengthen such configu-
rations as a post-process by merging the dangling segment with its
connected segment and then doubling the wire over it, as illustrated
in the inset. However, the double wire and sharp bends required by
this solution often make the design less aesthetically pleasing and
harder to fabricate, which is why our optimization tries to avoid
such cases in the first place.

5 Assisting Wire Bending

In addition to automating the decomposition of a design, our sys-
tem also assists in its physical realization. The main challenge is
in shaping the metal wire into the curves described by the design.
A common technique to create smooth curves of a prescribed cur-
vature is to wrap the wire around a curved tool, the so-called jig.
We experimented with several alternatives to create jigs that best
support the creation of a target path.

Pegs. Current practice for creating custom
jigs involves fixing cylinders, called pegs,
into a board [WigJig 2015]. Pegs of differ-
ent radii constrain the wire to form loops of
different curvature. The main advantage of
this technique is that a generic set of pegs is
sufficient to create a variety of shapes. How-
ever, this approach also imposes strong con-
straints on the design. First, cylindrical pegs can only produce turns
of constant curvature. Second, a design with closely-spaced turns
often results in colliding pegs. We originally considered moving

pegs during fabrication to avoid collisions. However, optimizing
peg placement and wrapping ordering is computationally complex.
Our initial tests also revealed that the assembly sequence is too hard
to follow while keeping the wire in place.

Naive extrusion. Given the increasing ac-
cessibility of 3D printing, an alternative so-
lution is to generate and print jigs that are
customized for a specific design. We first at-
tempted to simply extrude the negative space
around the design, which effectively pro-
duces a channel along the trajectory of the
wire. Users thus need to push the wire into
the channel, rather than wrapping the wire around pegs. How-
ever, our initial tests with this technique showed that pushing the
wire creates jaggy curves because the wire isn’t straightened by the
longitudinal tension of wrapping. A naive extrusion also requires
printing support all along the wire, even in areas where no support
is needed such as straight lines or the exterior side of a turn.

Extruding at curvature maxima. Based
on the above experiments, our final solution
is to extrude support material only on the in-
terior side of each turn. We define turns as
portions of curves for which the curvature ex-
ceeds a threshold, fixed to 0.01 in our im-
plementation. We use a wall thickness of
3.5mm, which we empirically found to be a
good tradeoff between material usage and robustness. We addition-
ally create walls for segments longer than 2cm even if their cur-
vature is below the threshold. To prevent collisions between the
walls and wire, we use a boolean operation to subtract the wire path
from the extruded wall geometry. We also add small holes to the
jig to mark the starting points of each path and to hold the wire in
place. Unlike the peg board approach, this solution does not suffer
from collisions and allows users to create curves of arbitrary shape.
Moreover, the empty space around the extruded walls gives room
to wrap the wire with tension to obtain a smooth result. We provide
the jigs for all the results in this paper as supplemental materials.

Finally, our interface integrates several convenient features to guide
users during fabrication. For each path, we display the wrapping
sequence step-by-step by highlighting successive curve segments.
We also display the length of each wire, to which we add a few
centimeters of margin to ease manipulation. We also show how to
attach each wire to its neighbors.

6 Evaluation

We evaluate our approach in three ways: comparing our wire de-
compositions to ground truth designs from existing wire-wrapped
jewelry; gathering feedback from novice users; and using our sys-
tem to create several pieces of jewelry from input clipart drawings.

Decomposing existing designs. Our wire decomposition algo-
rithm implements principles we deduced from the wire-wrapping
literature and example designs. To assess the effectiveness of this
algorithm, we created three ground truth decompositions by tracing
line drawings over images of existing wire-wrapped jewelry, cre-
ating one curve per wire of the jewelry (Figure 5). We then gave
rasterized versions of the traced drawings as input to our system.
Our results are near-identitical to the original decompositions.

User experience. We recruited five novice crafters to use our
system and provide feedback on their experience. Three partici-

(b) Artist’s decomposition (c) Our decomposition(a) Inspiration

Figure 5: We use existing jewelry (a) as inspiration to test our al-
gorithm. . Our solution (c) closely matches the Artist’s original
decomposition (b). The decompositions are identical for the lion
and the owl, while the left ear of the tiger results in a slightly differ-
ent configuration than the original, although with the same number
of wires.

pants were female and two were male, aged between 21 and 33.
Only participant P1 had any prior experience in jewelry making,
while P1, P2 and P4 had some experience with soldering. None
had done wire wrapping before.

To start, participants performed a warm-up
fabrication task to gain familiarity with the
challenges of bending and attaching wires.
The task involved wrapping a butterfly de-
sign on an existing jig with one wire attach-
ment in the center of the design (see inset).
We provided participants with the jig, metal
wire, pliers and a ruler. To facilitate the attachment step, we also
provided a third-hand, an inexpensive crafting tool with two clips
for holding different pieces of wire in place.

We then gave participants a line drawing and asked them to cre-
ate a wire decomposition by hand according to our principles of
few, smooth and well-connected wires. We provided a different in-
put drawing for each participant to help us gain a broader range
of feedback. The left two columns of Figure 6 compare our au-
tomatic decompositions with the user-generated results. Even for
these relatively simple designs, our system produced different de-
compositions for three of the drawings. Our decompositions for the
lotus (P3) and dolphin (P5) require fewer segments than the user
segmentations. For the butterfly, P4 found a solution with the same
number of wires as ours, but the purple antennae segment is not ro-
bust, as it only has one connection to the rest of the piece. We note
that P3’s two-wire solution for the lotus may have better preserved
the rotational symmetry of the design after fabrication, which our
algorithm doesn’t model. We disabled bridges for this comparison
since participants did not have the option of creating bridges in their
manual decompositions.

(a) Our segmentation (b) User segmentation (d) User jewelry

P1

P2

P3

P4

P5

(c) Printed jig

Figure 6: Results of our user experiment. For simple designs (P1,
P2), participants found the same solution as our algorithm (a,b).
For more complex designs, our algorithm finds a more robust solu-
tion (P4) or a solution with less wires (P5). All participants man-
aged to create their jewelry in less than half an hour (d).

Finally, we asked participants to build the design from our de-
composition and then conducted a post-study interview to gather
feedback. Figure 6(c) shows the user-fabricated pieces of jewelry,
which took about 20 minutes to create. Participants reported that
the step-by-step visualization helped them understand the wrapping
sequence of each path. On a Likert scale from 1 (strongly disagree)
to 5 (strongly agree), three participants strongly agreed that the au-
tomatic decomposition helped in building the jewelry piece, one
agreed, and one had no opinion. P2 commented that “My decom-
position was the same as the automatic one, but the automatic so-
lution gave me confidence in my choices and about where to end
each piece.” Participants unanimously appreciated the jig, agreeing
or strongly agreeing that it helps in building the jewelry piece. P2
commented that “It would have taken much, much longer to build
the jewelry without the jig”. P1 noticed that “The wire tends to
jump out of the jig when there are too many layers of wire pass-
ing at the same point.”, which may be addressed by higher support
walls.

Clipart to Jewelry. As a final means of evaluation, we used our
system to convert clipart drawings downloaded from the Internet
into wire-wrapped jewelry. We applied our vectorization algorithm
on the bitmap images and manually cleaned-up little segments that
would be hard to build at this scale. We also made small edits to
some of the input drawings to ensure that they were made of a sin-
gle connected component. Figure 1 and 8 show several complex
jewelry pieces that we created with this approach.

(b) Single jig (c) One jig per path(a) Segmentation

Figure 7: Packed turns in (a) produce many collisions between the
wire path and support walls. The resulting jig lacks support for
some of the wires (b). To overcome this problem, users can print a
separate jig for each wire (c).

7 Limitations

As observed during our user study, our decomposition does not ac-
count for aesthetic criteria such as symmetry, and our support walls
are sometimes not sufficient to keep the wire in place in the pres-
ence of many layers of wire.

In addition, complex drawings with densely packed turns can pro-
duce too many collisions between the support walls and wire path.
In such cases, the resulting jig can lack support to achieve the de-
sired shape or can contain many small pieces of walls that make
the construction sequence harder to follow. Nevertheless, users can
reduce complexity and collisions by printing a separate jig for each
Eulerian path, as shown in Figure 7.

While our current implementation does not offer user control, our
optimization could easily integrate user-provided constraints. For
instance, users could impose that two segments should definitely
share or not share the same label and the optimization could sim-
ply avoid any perturbations that violate such constraints. However,
our approach does not explicitly consider the layering relationships
between overlapping wires.

8 Conclusion and Future Work

We have presented an end-to-end system to assist the design and
fabrication of wire-wrapped jewelry. From an algorithmic stand-
point, our approach implements wire wrapping design principles in
an optimization that segments an input drawing into a small num-
ber of wires. The optimization favors smooth wires that are well-
connected to other wires to ease the fabrication of robust pieces.
The optimization also strives to cover each line in the drawing ex-
actly once to avoid double wires. From a fabrication standpoint,
our system outputs a physical support structure that guides users
in bending wires to obtain a desired shape. Our approach thus dif-
fers from completely automatic digital fabrication by preserving the
hand manipulation of jewelry materials, which greatly contributes
to the pleasure of craft.

We see several directions of future work to build on our contri-
butions. Our segmentation algorithm finds Eulerian paths that ex-
actly reproduce the input drawing, up to optional bridges. How-
ever, part of the art of wire wrapping involves abstracting a shape
to make it more suitable to fabrication with smooth wires. While al-
gorithms for shape abstraction exist [Mi et al. 2009], none account
for the specific fabrication and aesthetic constraints of jewelry mak-
ing. Jewelry makers also often combine wrapped wires with beads
and stones. While we have included beads in some of our results,
we have not considered the challenge of accounting for such ad-
ditional components during segmentation. Our jigs could also be
adapted to hold stones and beads in place during wrapping. Finally,
we strongly believe that the computational design of jigs and other
intermediate support structures has great potential for other forms
of craft, such as clay modeling or 3D wire sculpting.

Acknowledgments

We thank Anastasiya Ivanova for letting us use her pictures of beau-
tiful pieces of jewelry in Figure 5. This work was supported by
ANR-12-JS02-003-01 DRAO and software and research donations
from Adobe.

References

AGRAWALA, M., PHAN, D., HEISER, J., HAYMAKER, J.,
KLINGNER, J., HANRAHAN, P., AND TVERSKY, B. 2003.
Designing effective step-by-step assembly instructions. ACM
Transactions on Graphics (Proc. of SIGGRAPH) 22, 3 (July),
828–837.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
Transactions on Graphics (Proc. of SIGGRAPH) 32, 4 (July),
83:1–83:12.

DEFIELD, A. 2015. Make Wire Wrap Jewelry: Basic Wire Wrap-
ping Techniques and Jewelry Tutorials.

DEUSS, M., PANOZZO, D., WHITING, E., LIU, Y., BLOCK, P.,
SOKRINE-HORNUNG, O., AND PAULY, M. 2014. Assembling
self-supporting structures. ACM Transactions on Graphics 33,
EPFL-ARTICLE-201940.

DISMORE, H. 2011. Jewelry Making & Beading For Dummies.
–For dummies. Wiley.

FU, C.-W., SONG, P., YAN, X., YANG, L. W., JAYARAMAN,
P. K., AND COHEN-OR, D. 2015. Computational interlock-
ing furniture assembly. ACM Transactions on Graphics (Proc.
SIGGRAPH) 34, 4, 091:1–091:11. ⇤ joint first author.

GARG, A., SAGEMAN-FURNAS, A. O., DENG, B., YUE, Y.,
GRINSPUN, E., PAULY, M., AND WARDETZKY, M. 2014. Wire
mesh design. ACM Transactions on Graphics (TOG) 33, 4, 66.

HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2012. crdbrd:
Shape fabrication by sliding planar slices. In Computer Graphics
Forum, vol. 31, Wiley Online Library, 583–592.

IGARASHI, Y., AND IGARASHI, T. 2010. Holly: A drawing editor
for designing stencils. Computer Graphics and Applications,
IEEE 30, 4, 8–14.

IGARASHI, Y., IGARASHI, T., AND MITANI, J. 2012. Beady: in-
teractive beadwork design and construction. ACM Transactions
on Graphics (TOG) 31, 4, 49.

INSTRUCTABLES, 2015. http://www.instructables.

com/howto/wire+wrapped+jewelry/. Accessed:
2015-05-30.

KAPLAN, C. S., AND BOSCH, R. 2005. Tsp art. Bridges: Mathe-
matical Connections in Art, Music and Science, 301–308.

KIRKPATRICK, S., GELATT, C. D., VECCHI, M. P., ET AL. 1983.
Optimization by simmulated annealing. science 220, 4598, 671–
680.

LI, X.-Y., JU, T., GU, Y., AND HU, S.-M. 2011. A geometric
study of v-style pop-ups: Theories and algorithms. ACM Trans-
actions on Graphics (Proc. of SIGGRAPH) 30, 4 (July), 98:1–
98:10.

MCINTOSH, J. 2007. Wire Wrapping: The Basics and Beyond.
CreateSpace Independent Publishing Platform.

(a) Input bitmap (b) Vectorized segments (c) Labeling (d) Printed jig (d) Fabricated piece

Figure 8: Clipart repositories provide a wide source of inputs for our approach. Note how our algorithm finds decompositions with few yet
smooth and robust wires, such as the body of the bee and the legs of the horse.

MI, X., DECARLO, D., AND STONE, M. 2009. Abstraction of 2d
shapes in terms of parts. In Proc. Symp. on Non-Photorealistic
Animation and Rendering (NPAR), ACM.

MORI, Y., AND IGARASHI, T. 2007. Plushie: an interactive design
system for plush toys. In ACM Transactions on Graphics (TOG),
vol. 26, ACM, 45.

NORIS, G., HORNUNG, A., SUMNER, R. W., SIMMONS, M.,
AND GROSS, M. 2013. Topology-driven vectorization of clean
line drawings. ACM Transactions on Graphics (TOG) 32, 1, 4.

SCHMIDT, R., AND RATTO, M. 2013. Design-to-fabricate: Maker
hardware requires maker software. Computer Graphics and Ap-
plications, IEEE 33, 6 (Nov), 26–34.

SKOURAS, M., THOMASZEWSKI, B., BICKEL, B., AND GROSS,
M. 2012. Computational design of rubber balloons. Computer
Graphics Forum (proc. Eurographics) 31, 2 (May), 835–844.

SKOURAS, M., THOMASZEWSKI, B., KAUFMANN, P., GARG,
A., BICKEL, B., GRINSPUN, E., AND GROSS, M. 2014. De-
signing inflatable structures. ACM Transactions on Graphics
(Proc. SIGGRAPH) 33, 4, 63:1–63:10.

SOILLE, P. 2003. Morphological Image Analysis: Principles and
Applications, 2 ed. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

TANENBAUM, J. G., WILLIAMS, A. M., DESJARDINS, A., AND
TANENBAUM, K. 2013. Democratizing technology: Pleasure,
utility and expressiveness in diy and maker practice. In Proc. of
the SIGCHI Conference on Human Factors in Computing Sys-
tems, ACM, 2603–2612.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Transactions on Graphics (Proc. of SIGGRAPH) 31, 4.

UMETANI, N., KOYAMA, Y., SCHMIDT, R., AND IGARASHI,
T. 2014. Pteromys: Interactive design and optimization of
free-formed free-flight model airplanes. ACM Transactions on
Graphics (Proc. of SIGGRAPH) 33, 4 (July), 65:1–65:10.

WIGJIG, 2015. www.wigjig.com. Accessed: 2015-05-30.

WONG, F. J., AND TAKAHASHI, S. 2011. A graph-based ap-
proach to continuous line illustrations with variable levels of de-
tail. Computer Graphics Forum 30, 7, 1931–1939.

