Skip to Main content Skip to Navigation
Journal articles

Suite d’ensembles partiellement ordonnés

Abstract : This work is to study an order D(P) on maximal antichains of a given order. D(P) is an order included in the order which defines the Lattice of maximal antichains AM(P), introduced by R.P. Dilworth, in 1960. In [3], T.Y. Kong and P. Ribenboim have proved that there exists an integer i such that Di(P) is a chain, where Di(P)=D(D(…D(P))), i times. We find the smallest i, noted cdev(P) such that Di(P) is a chain for some particular classes of orders and we approximate this parameter in the general case of order.
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/hal-01262047
Contributor : Coordination Episciences Iam <>
Submitted on : Tuesday, January 26, 2016 - 10:56:33 AM
Last modification on : Wednesday, October 30, 2019 - 4:34:07 PM
Long-term archiving on: : Wednesday, April 27, 2016 - 1:15:53 PM

File

arima00404.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : hal-01262047, version 1

Collections

Citation

Bachir Sadi. Suite d’ensembles partiellement ordonnés. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2006, 4, pp.66-71. ⟨hal-01262047⟩

Share

Metrics

Record views

654

Files downloads

1248