
�>���G �A�/�, �?���H�@�y�R�k�e�k�R�R�8

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�k�e�k�R�R�8

�a�m�#�K�B�i�i�2�/ �Q�M �k�e �C���M �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�o���H�B�/���i�B�Q�M �Q�7 �6�Q�`�K���H �a�T�2�+�B�}�+���i�B�Q�M�b �i�?�`�Q�m�;�?
�h�`���M�b�7�Q�`�K���i�B�Q�M ���M�/ ���M�B�K���i�B�Q�M

���i�B�7 �J���b�?�F�Q�Q�`�- �C�2���M�@�S�B�2�`�`�2 �C���+�[�m�Q�i

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���i�B�7 �J���b�?�F�Q�Q�`�- �C�2���M�@�S�B�2�`�`�2 �C���+�[�m�Q�i�X �o���H�B�/���i�B�Q�M �Q�7 �6�Q�`�K���H �a�T�2�+�B�}�+���i�B�Q�M�b �i�?�`�Q�m�;�? �h�`���M�b�7�Q�`�K���i�B�Q�M ���M�/
���M�B�K���i�B�Q�M�X �_�2�[�m�B�`�2�K�2�M�i�b �1�M�;�B�M�2�2�`�B�M�;�- �a�T�`�B�M�;�2�` �o�2�`�H���;�- �k�y�R�d�- �k�k �U�9�V�- �T�T�X�9�j�j�@�9�8�R�X �I�R�y�X�R�y�y�d�f�b�y�y�d�e�e�@
�y�R�e�@�y�k�9�e�@�e�=�X �I�?���H�@�y�R�k�e�k�R�R�8�=

https://hal.inria.fr/hal-01262115
https://hal.archives-ouvertes.fr

Validation of Formal Speci�cations through
Transformation and Animation

Atif Mashkoor
Software Competence Center Hagenberg GmbH,

Hagenberg, Austria
�rstname.lastname@scch.at

Jean-Pierre Jacquot
Universit́e de Lorraine & LORIA,

Vandœuvre-l�es-Nancy, France
�rstname.lastname@loria.fr

Abstract—A signi�cant impediment to the uptake of formal
re�nement-based methods among practitioners is the challenge
of validating that the formal speci�cations of these methods
capture the desired intents. Animation of speci�cations is widely
recognized as an effective way of addressing such validation.
However, animation tools are unable to directly execute (and thus
animate) the typical uses of several of the speci�cation constructs
often found in ideal formal speci�cations. To address this problem
we have developed transformation heuristics that, starting with an
ideal formal speci�cation, guide its conversion into an animatable
form. We show several of these heuristics, and address the need to
prove that the application of these transformations preserves the
relevant behavior of the original speci�cation. Portions of several
case studies illustrate this approach

Keywords—Formal methods, Requirements speci�cations, Vali-
dation, Animation, Event-B

I. I NTRODUCTION

To be correct, a requirements document must be both
complete and consistent. The former property concerns the fact
that the document references all the important requirements.
The latter property concerns the fact that no requirement
contradicts another one.

While there is no mathematical answer to the issue of
completeness, formal techniques can be effectively used to
determine the consistency of requirements [1]. During this
process, requirements are speci�ed using mathematics- and
logic-based notations. There are operative de�nitions of the
notions of veri�ability and soundness for texts using such
notations. The consistency of the requirements can then be
assessed with the help of techniques like theorem proving and
model checking.

However, when a document is written in a formal or
semi-formal language, a third property must also be checked:
validity. It concerns the fact that the formal speci�cation
expresses the actual customer's requirements. This property
can best be attained by involving customers in the formal
modeling process.

Traditionally, software engineers distinguish between veri-
�cation and validation. The former activity checks that a text
enjoys some given formal, provable, properties. The latter ac-
tivity checks that the artifact answers the customer's needs. As

The writing of this article is partly supported by the Austrian Ministry
for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy, and the Province of Upper Austria in the frame of
the COMET center SCCH.

veri�cation is mathematically based, it has been the main focus
of designers of formal methods so far. Current frameworks
provide many tools and techniques to help developers produce
veri�ed texts, but far less to help produce validated texts.

As compared to validation, veri�cation of a speci�cation is
a well-de�ned process. It ensures that involved expressions do
not contradict with each other and maintain certain properties.
Additionally, we also have a set of well-engineered assistant
tools at our disposal. Theorem provers like ACL2 [2], PVS
[3], HOL [4] and Isabelle [5], and model checkers like BLAST
[6], NuSMV [7], PRISM [8] and SPIN [9] are already well-
established in the industry and have been successfully used in
several industrial projects [10], [11], [12], [13].

Casting requirements into predicates allows one to use
proof techniques to assess the consistency. Formalisms, such
as Z [14], B [15] or Event-B [16], provide us with further help
through the notion of re�nement which breaks huge proofs into
many smaller ones. Yet, writing the speci�cation and showing
its consistency requires a considerable amount of interaction,
efforts, and technical skills and know-how. As non-technical
stakeholders usually lack these skills and know-how, it is
very dif�cult to integrate such stakeholders into the modeling
process unless the formal model is presented to them in a
comprehensible form.

The case with validation is different. First, it is highly
subjective. Second, we have fewer tools available for it. Third,
even the available tools, particularly those which can execute a
model, like CoreASM [17], Asmeta tool-set [18], VDMTools
[19], or ProB [20] have limitations such as unsupported
constructs, unbounded expressions, or purely implicitly de�ned
functions and operations.

The tools which are most helpful to validate a speci�cation
rely on creating, running and evaluating scenarios on a formal
model. Among those, animation is a process of executing a
speci�cation by invoking its operational semantics. It is mainly
an automated process where an animator reveals the behavior
of a formal speci�cation either textually or graphically. This
technique is similar to structure exploration technique [21]
where a formal model containing collection of constraints is
fed to an analyzer. The analyzer then explores the model by
generating sample structures and check properties of the model
by generating counterexamples. This technique of validation
is appealing even for non-technical stakeholders. However, the
catch is that not all speci�cations are directly animatable; some
need to be transformed to achieve execution [22], [23]. During

the process of transformation, the non-nimatable expressions
are replaced by equivalent but animatable counterparts. Then
the question is: are these transformations sound enough so that
the judgments made on such transformed speci�cations can be
considered trustworthy as far as validation is concerned?

The main aim of this work is to introduce an animation
process based on behavior-preserving transformations for val-
idation of formal speci�cations. Like an intractable proof can
be broken down into a sequence of many smaller proofs, the
validation of a speci�cation can also be associated with its
re�nement-based development steps. This methodology then
provides us with means to check the compliance of a formal
speci�cation, that in its initial form may not be animatable due
to the inherent non-executable nature of its contents, to actual
customers' requirements.

To determine the full-correctness of formal speci�cations,
we employ the framework VTA [24] in which speci�cations
are �rst checked for consistency and then animated. VTA relies
on theorem provers and model checkers for analyzing the
consistency of speci�cations. Once a speci�cation is veri�ed,
it then proceeds for validation by animation. During the ani-
mation process, the speci�cation that contain non-animatable
traits is transformed to achieve its execution in such a way that
its behavior can be analyzed and reasoned about. The result
of the whole correctness-assessment process is a speci�cation
which is both veri�ed and validated.

We aim to reap bene�ts of this methodology in two ways.
First, this methodology enables early detection of requirements
problems (say, misunderstanding about a certain behavior).
Second, users can be involved in the process of checking the
correctness right from the start. Users can join the validation
part during the animation process, while leaving the technical
proving to the technical experts.

The paper is organized as follows: We �rst present a brief
overview of the VTA framework in section II. Section III dis-
cusses the difference between classes of speci�cations. Section
IV discusses how the class of a speci�cation can be changed.
Section V presents some transformational heuristics along with
their semantics. Section VI demonstrates the application of
transformations on three case studies. Section VII presents an
evaluation of the proposed animation process. Section VIII
provides some related work. Finally, the paper is concluded
with some proposed future work.

II. VTA

VTA (Verify-Transform-Animate) is a framework for rig-
orous veri�cation and validation of requirements speci�cations
written in a formal re�nement-based method. One of the
major roles of re�nement is to break the veri�cation process
into small assessments and to integrate it with the stepwise
development process of the speci�cation. VTA, powered by
the techniques of veri�cation, transformation and animation,
is based on the same principle. VTA allows the correctness
of a speci�cation to be assessed throughout the development
process.

The �ow through the steps of the VTA framework is shown
within the rectangle in Figure 1. It consists of the following
steps:

1) Formally specify the requirements by grouping them
into observation levels,

2) Verify the speci�cation:
a) Discharge all Proof-Obligations (POs), and
b) Perform model checking when needed,

3) Transform each non-animatable element of the spec-
i�cation:

a) Choose the matching heuristic from the list,
b) Check that its applicability conditions hold,
c) Prove its application, and
d) Apply the heuristic,

4) Validate the speci�cation by its animation. If an
unacceptable behavior is encountered, modify the
requirements and restart from step one.

Fig. 1. The VTA framework: structure of a re�nement step

A. Observation-level-driven formal modeling

In VTA, an abstract requirements model is transformed into
a formal speci�cation through a technique that is based on
observation levels [24]. An observation level is de�ned as a
focus on a speci�c part of the model describing a unique aspect
such as a speci�c protocol or a physical decomposition of the
system. Grouping re�nements into observation levels provides
a speci�cation with a super-structure which eases the under-
standing of the model. This arrangement re�ects either the
“natural” structure of the system being modeled, particularly
when there are physical components, or of its behaviors, i.e.,
the evolutions of its state. This break-down facilitates both
comprehension and animation of formal requirements. With

2

this approach, the important properties are introduced at the
desired level of observation. Each observation level contains
one or several re�nements. We recommend animation of at
least one re�nement per observation level. Our rationale is that
observation levels are correlated to fundamental characteristics
of models which have strong impacts on behaviors. Checking
that the speci�ed behaviors are the valid ones, and that there is
no bad emerging behavior, is of particular importance. Please
see [25] for the detailed discussion.

B. Veri�cation

The next step of our proposed framework is based on
veri�cation of speci�cations. While verifying a speci�cation,
both deductive veri�cation and model checking are important.
The VTA framework supports the usage of both veri�cation
techniques where appropriate. We �rmly believe that veri�ca-
tion must be the starting step because there is no point in the
validation of an inconsistent speci�cation.

C. Transformation

As soon as the speci�cation is veri�ed, we prepare it for
animation. If some unsupported features of the language or
non-executable elements, such as non-constructive de�nitions,
are encountered, they are transformed using the proposed
heuristics (discussed in section V).

If a problem is discovered, we inspect it and try to match
the case with the list of heuristics. This inspection and match-
ing practice includes checking if the heuristic's application
condition holds. The application of a heuristic may raise a
PO. We are then required to justify this application. This
justi�cation can either be provided in the form of a formal
proof (discharge of the PO) or by a rigorous argument that the
application of the heuristic would not alter the behavior of the
speci�cation.

D. Animation

Once the transformations have been applied, the speci�ca-
tion should now be animatable. Animation would demonstrate
the behavior of the speci�cation. If the demonstrated behavior
is as per expectations then we have the veri�ed and validated
speci�cation in our hands. However, if this is not the case
and a closer look at the speci�cation has revealed deviations
from the intended behavior, then we need to go back to the
initial speci�cation to correct the unacceptable behavior. This
triggers a loop, i.e., re-proving, re-application of heuristics,
and re-animation until the speci�cation conforms to actual
requirements.

The animation cycle stops when all the scenarios that were
designed from the informal requirements have been executed
and the behavior of the speci�cation has been approved by
stakeholders.

First two steps are out of scope of this paper. Rest of the
paper will focus only on transformation and animation steps
of the VTA framework.

III. A NIMATABILITY VERSUS PROVABILITY

Animatability and provability are distinct characteristics
of a speci�cation. Both depend on intrinsic properties of
models and on the power of the tools used. Animatability is
particularly dependent on the tools. Therefore, a speci�cation
may fall into one of four classes shown by Figure 2.

Fig. 2. Classes of speci�cations

Just as a faulty program can be executed, an incorrect
speci�cation can also be animated. Of course, neither would
be an admissible solution to the problem at hand. However, ob-
servations of the program's execution can provide developers
with precious insights later contributing towards the correct
solution. Likewise, animation that reveals a speci�cation to
be invalid provides guidance to the developers on how the
speci�cation needs correction.

Some important ingredients, often found in formal speci-
�cations are among the list of constructs which render these
speci�cations non-animatable. For example, non-constructive
de�nitions, in�nite sets or complex quanti�ed logic expres-
sions make speci�cations non-animatable. As animation, by
nature, heavily depends on tools, so any limitation of the
tool will also be a restriction on the class of animatable
speci�cations.

One can always try to produce from the start a spec-
i�cation which belongs to the animatable class “Provable
and animatable.” However, this is not a good idea for wo
main reasons. The �rst reason is that the speci�er should
avoid overspeci�cation [26]. The second reason concerns the
re�nement principles that encourage us to use liberally abstract
de�nitions, non-determinism, and small re�nement steps [27].

A well-written speci�cation can later, of course, be brought
to the right class for the sake of animation. However, during
the process of bringing speci�cations into an animatable class,
the elements which are necessary to discharge POs may be
altered or even suppressed. By compromising on proofs, we
are at a risk of generating inconsistent speci�cations. In fact,
sometimes we cannot prove within the formal rules of the
given formal method that a transformation does not modify
the original behavior. This implies that the provability of
these transformations must be asserted through other means.
In such cases, the mathematical tradition of providing rigorous
and convincing arguments as a paper-and-pencil proof of the
preservation of the behavior for each transformation heuristic
can be followed.

IV. RENDERING A SPECIFICATION ANIMATABLE

We may have to change the form of a speci�cation to
make it animatable. We do this primarily by reformulating its
expressions and adding some constructive elements to it. The
techniques to do this (depicted by Figure 3) are the following.

3

Fig. 3. Types of class changing techniques

A. Approximation

Approximation is a standard technique to modify a model
so that the transformed model is not only close to the original
model but also has better computational properties. For our
purpose, we look for approximations which can be ef�ciently
executed. In our transformations, we use two types of approx-
imations: under-approximation and over-approximation. The
former is the idea of taking a reasonable subset of the original
model, whereas the latter takes a superset. These approxima-
tion techniques are based on abstract interpretation [28] and
are often used to address state explosion problems in model
checking.

Under-approximation can be used to address the problem of
non-termination. This is a speci�c kind of termination which is
based on enumeration of values. When a formula is based on
an unbounded value an animator may continue enumerating
it inde�nitely. Consequently, animation fails. Restricting the
enumeration within �nite bounds addresses the problem. In
other cases, where a formula is constituted of complex and
composite data structures, such as sequences or lists, the
technique of over-approximation can be exploited to simplify
the formula and achieve its execution. For instance, a list,
which is a total function on an interval of integers, can be
over-approximated by a partial function on integers.

The rationale of using approximation for model checking
is applicable here as well. For example, if some property exists
in the abstract (over-approximate) speci�cation then it holds in
the concrete speci�cation. However, if the property does not
hold in the former, we do not know if the latter violates this
property.

B. Re�nement

Re�nement is an established formal activity to transform
an abstract formal speci�cation into a concrete executable
program. When possible, VTA uses re�nement to transform
non-executable high-level non-constructive formulas and ex-
pressions into lower-level animatable and executable elements.

When a speci�cation is re�ned, we need to prove the
abstract-re�nement relationship between the two models. This
amounts to establish two properties:

1) The re�ned model maintains the invariant of the
abstract model. We must prove that the re�ned guards
are stronger than the original. Furthermore, the re-
sulting actions do not lead to an incorrect state in the
abstract speci�cation. We must also prove that the
new events are re�nement of the SKIP event (i.e.,
the “do-nothing” event).

2) The new events do not introduce a divergence. Tech-
nically, we must prove there is no in�nite chain of
new events.

C. Rewriting

Rewriting is the process of replacing either some sub-terms
or the whole formula with equivalent terms. In VTA, term
rewriting is used to simplify non-animatable complex formulas
to make them animatable. Application of this technique is
fruitful for formalisms such as B or Z, where generalized
substitutions are used to describe state modi�cations. Ani-
mators often �nd it dif�cult to compute the state transition
relation if it contains dynamic functions whose parameters are
passed non-deterministically at runtime and depend upon the
computations performed by guards. As a solution, the non-
computable formula is then partly or completely rewritten by
its equivalent counterpart in set algebra or Conjunctive Normal
Form (CNF).

D. Inlining

Inline/macro expansion is an optimization technique to
replace a call of a function by its body. While writing
speci�cations, this is a common practice to use functions for
readability and simplifying proofs. A function based on a case-
analysis has multiple de�nitions and cannot be enumerated
straightforwardly, thus, failing the execution of the incorporat-
ing speci�cation. This problem can be solved by using inline
expansion technique, i.e., to replace the function call by its
body. Thus, enumeration is no longer required and the animator
proceeds with its normal operation.

Inline expansion, in fact, is based on two previously
de�ned transformation techniques: rewriting and re�nement.
It is rewriting because the function call is being replaced
by its body which means semantically both expressions are
equivalent. Of course, proper care has to be exerted with the
use of the involved variables. It can be de�ned as re�nement
since the PO of enabledness preservation (see Section V-B)
which must be discharged, requires us to prove that if a
transition is enabled in the transformed speci�cation then it
should also be enabled in the intial speci�cation, and vice-
versa. Formally, the enabledness preservation PO is de�ned
by a conjunction where the �rst formula is a standard Event-B
PO for event re�nement:

8Sa ; Ca ; Sr ; Cr ; Va ; Vr ; xa ; x r :Aa^ A r ^ I a^ I r) (Gr) Ga)

^

8Sa ; Ca ; Sr ; Cr ; Va ; Vr ; xa ; x r :Aa^ A r ^ I a^ I r) (Ga) Gr)

Where Sa , Ca , Sr and Cr represent sets and constants
of the abstract and re�ned speci�cations respectively.Va and
Vr denote variables of the abstract and re�ned speci�cations
respectively.xa andx r represent local variables of the abstract
and re�ned state transition relation respectively.Aa , A r , I a ,
I r , Ga , Gr are axioms, invariants and guards of the abstract
and re�ned speci�cations respectively.

4

V. TRANSFORMATIONAL HEURISTICS AND THEIR
SEMANTICS

From the general principles used to make a speci�cation
animatable, we can design practical heuristics tailored to a
speci�c speci�cation language and a speci�c animation tool.
The transformational heuristics ensure that behaviors observed
during the animation of a transformed speci�cation are spec-
i�ed in the original non-animatable speci�cation, possibly at
the expense of other formal properties such as provability. The
correctness of heuristics and of their application then becomes
an issue at two levels. At the usage level, users must be
con�dent that they chose and applied an adequate heuristic.
At the formal level, we must guarantee that the behaviors of
the transformed model are the same as those of the original
model. We address this issue of correctness using a two-step
approach.

a) Step 1:We present the heuristics using a pattern and
give rigorous arguments to justify their use. We assume that
they are applied to an already veri�ed formal text. The pattern
is shown in Figure 4.

Fig. 4. The heuristic pattern

For each heuristic, we �rst describe thesymptom, i.e.,
what indication from the animator of its inability to execute
a speci�cation would prompt the use of this heuristic. It also
indicates the construct of the model, such as axiom, guard,
or transition statement, where the problem lies and which is
susceptible to modi�cation. Thetransform explains how the
original statement must be transformed in order to be ani-
matable. Each transform is based on the execution techniques
discussed in Section IV.Caution is the description of the
applicability conditions, the assumptions to check, the possible
effects, and the precautions to follow. In thejusti�cation part,
we provide a rigorous argument about the validity of the
transformation.

b) Step 2: We de�ne a formal semantics of transfor-
mations to give a proof of soundness of their application.
The proof indicates under which conditions both the original
and transformed speci�cations are behaviorally equivalent, i.e.,
provided same values, the same sequences of state transitions
can be followed on both speci�cations.

Animating a speci�cation is all about observing the behav-
ior of a model, i.e., its evolution during its execution. Then,
the property we want to assure is: “what is observed on the
animation of the transformed speci�cation would have been
observed on the animation of the initial speci�cation.” Two

further points should be noted. First, we can restrict the relation
to a form of inclusion of behaviors rather than a strict equality.
We can “lose” behaviors (e.g., by restricting some ranges),
but we cannot “add” behaviors (e.g., by allowing transitions).
Second, during an animation, we can look only at two things:
the enabledness status of all transitions, and the values of state
variables. So, we should express the relationship with these
two features of the execution.

A. The heuristics

During our experimentation with valuation-based anima-
tors, such as Brama [29], we have encountered ten kinds
of impediments to animation of formal speci�cations, and
designed heuristics to deal with each of tem. In the interest
of brevity, in this paper we discuss four of them in detail, and
summarize the other six. The reader is referred to [30] for a
detailed description of all ten of them.

Table I contains the list of symbols used in the following
sections.

Symbol Meaning Symbol Meaning
j Such that \ Intersection
9 There exists 8 For all
! Total function 7! Partial function
2 Element of � Subset of
N Set of natural numbers N1 Set of +ve natural numbers
P Power set 7! Maplet
� Domain restriction � Total injection
, Logical equivalence) Logical implication
^ Logical conjunction _ Logical disjunction
6= Not equal to = Equal to
:= Becomes equal to : j Becomes such that
> Greater than ; Empty set
B Boolean � Cartesian product

TABLE I. T HE SYMBOL TABLE

Heuristic 1: Generalize expressions involving complex it-
erations

This heuristics is motivated by the dif�culty of iterating
over complex nested predicated expressions. Such expressions
come occur when models use types such as lists or trees.

Symptom: Failure of an animator to build iterators of a
predicate. The problem lies often with list-like types.

Transform: Take the super-set of the expression.

Original var = f xj9n:n 2 N1 ^ x 2 1::n ! yg

Transformedvar 2 P(N 7! y)

Caution: This transformation loosens the constraints on the
values, some of which maybe essential to the behavior. For
instance, the property that all integer numbers between 1
and the length of the sequence belong to the domain of the
function. An animator may not ensure any more that this
property holds. The burden of the check is passed onto the
input of the values. It must be ensured that animation is
performed on a shared set of values between the original and
transformed speci�cations.

Justi�cation: On the subset of shared values, that is, those
values respecting the constraints left out by the generalization,

5

both speci�cations must have the same behavior. Two cases
must be considered:

� the value is associated with a constant: it does not
change during the animation and it keeps its proper-
ties,

� the value is associated with a variable: at least one of
the POs in the initial speci�cation deals with proving
that the result of the computation belongs to the set.
Since the initial speci�cation is veri�ed, the values in
the modi�ed speci�cation have the same property.

This is an example of abstraction because the transformed
formula is an abstraction of the original one. In abstraction
framework, this technique is known as over-approximation.

Heuristic 2: Avoid expressions involving mapping of vari-
ables in substitutions

Some animators have dif�culty with computing set values
de�ned by comprehension. This can often be overcome by
rewriting as Cartesian product.

Symptom: Failure of an animator to compute sets of tuples in
substitutions. The problem lies in substitutions of the model.

Transform: Rewrite the substitution to avoid mapping.

Original f x; y:x 2 X ^ y 2 Y jx 7! yg

Transformedf x 2 X jxg � f y 2 Y jyg

Justi�cation: The transformation is simply rewriting of the
initial expression as a formula in set algebra. This heuristic
can also be used in guards and axioms.

Heuristic 3: Inline the function de�nition in events

Some formal methods do not distinguish between functions
de�ned as �nite maps and functions de�ned by an analytical
expressions. The latter are de�ned as constants using axioms
which can not be assigned a value by enumeration-based
animators.

Symptom: Failure of an animator to assign the start up values
to complex functions. The problem is associated with the
axioms of the model which de�ne analytical functions.

Transform: Substitute function calls by their inline equivalent

Original (in axiom)8x:x 2 S) f (x) = expression(x)

Original (in transition)f (v)

Transformed (in axiom)true

Transformed (in transition) Add a new guardv 2 S and
replacef (v) with expression(v)

Caution: All occurrences off in the speci�cation must be
replaced; be consistent when replacing formal parameters by
actual values.

Justi�cation: This is the case of re�nement. In a mathematical
context, the valuef (v) is equal to its de�nition expression
where v has been substituted tox; both expressions are
interchangeable.

Heuristic 4: Replicate transitions which use functions
de�ned “by cases”

Some formal methods do not support conditional constructs
such asif-then-else. Speci�ers must de�ne functions with
“cases” through axioms written as disjunctive formulas.

Symptom: Same as Heuristic 3 plus a case analysis.

Transform:

Original (in axiom) 8x:x 2 S) (p(x)) f (x) =
expression(x) ^ q(x)) f (x) = expression0(x))

Original (in transition)

Transition A

WHERE ...f(v)...THEN ...f(v)...END

Transformed (in axiom)true

Transformed (in transitions)

Transition A1

WHERE ... grdCase1 p(v) THEN ... END

Transition A2

WHERE ... grdCase2 q(v) THEN ... END

Caution: This heuristic must be followed by the application
of Heuristic 3. Check that all cases have been covered. Be
particularly careful if the function is applied to several different
actual parameters; this may require several applications of this
heuristic.

This heuristic entails a major surgery in a speci�cation. A
blind application may introduce many copies of state transition
relations. By grouping several functions into one transforma-
tion, it is possible to reduce the number of duplications.

Justi�cation: This is a case of re�nement. The predicates
used in “by case” de�nitions are equivalent to guards in state
transitions. They have the same form and are used for the
same purpose. The state transition relations A1 and A2 are
the copies of A, except for the new guard, their union is
equivalent to A. Hence, the transformed speci�cation has the
same behavior as the original speci�cation.

The six other heuristics are summarized below.

Removing thefinite axioms. Such axioms are introduced
in speci�cations just to discharge the related POs; however,
they do not not alter the behavior of the speci�cation. Hence,
it is safe to remove them.

Specifying the �niteness of a quanti�ed domain. For example,
if the range is of natural numbers, specifying a �nite range

6

between a minimum and a maximum. This is the issue of
decidability that is a common animation problem. Our solution
to �x it by stating that any variable, parameter, or constant can
only take �nitely possible values is a standard solution for such
problems.

Explicitly providing the typing information of all variables
and constants used in a predicate. While proving theorems,
provers can automatically infer the typing information of
involved variables and constants; however, this is not the case
with valuation-based animators which explicitly require this
information to set up the iteration process.

Avoiding dynamic function computation in substitutions. This
heuristic is similar to Heuristic 2 and requires the same
treatment: rewriting.

Complex invariant predicates. Invariants are conditions that
must be adhered by the behavior of a speci�cation. In the
case of failure to be able to compute then, either they can
be rewritten like heuristic 2 or can also be removed from the
speci�cation under the assumption that they already have been
taken care of during the veri�cation process.

Introduction of observation variables. These variables are re-
quired due to the limitation of the communication protocol
between the animator and the external graphical environment,
such as Adobe Flash, which has limited support for data
structures. Our solution in this case is to transform the unsup-
ported output values by external graphical environment into
the supported ones.

B. Formal semantics of transformations

The transformational heuristics proposed in VTA actually
modify the original speci�cation. Therefore, we need to show
that, as far as animation is concerned, what is observable on
the transformed speci�cation would have been observable on
the original speci�cation.

Our work is based on a kind of trace semantics where we
consider sequences of states and transitions. In the following,
Specx denotes a speci�cation. The basic elements of the
semantics are then:

State:a mapping of names from setN to values from setV ,
constrained by the invariant (variables) or axioms (constants)
of the speci�cation

S = N ! V ^ 8 s:s 2 S) Inv (s)

Event: a transition from one state to another de�ned with
the help of a guardGe and a state transitionUe

e = When Ge(s; v) Then Ue(s; v) End

wheres denotes the state andv denotes the non-deterministic
values (i.e., parameters) used by the event. We note the �ring
of an event as

s
e(v)
�! t

Behavior: a sequence of states and event �ring, starting
from an initial state

b 2 seq(S � E � P(V) � S) ^
8i:i 2 dom(b)) (Pr 4(b(i)) = Pr 1(b(i + 1)) ^

Pr1(b(i))
Pr 2 (b(i))(Pr 3 (b(i)))

�! Pr4(b(i))

where Pr i denotes thei th projection of the quadruples. We
noteBp as the set of all behaviors of the speci�cationSpecp.

Relation: the two compared speci�cations may not have
exactly same events, so we need to introduce a relation
between events,Rel, de�ned as:

8e0:e0 2 Events(Spect))
9e:e2 Events(Speco) ^ e0 7! e 2 Rel

8e:e2 Events(Speco))
9e0:e0 2 Events(Spect) ^ e0 7! e 2 Rel

where Events(Spec) denotes the set of all events of the
speci�cation Spec.

Shared state:a state where all the variables common to
both speci�cations have the same values:

S0
o = f s:s 2 SojN t \ No � sg

S0
t = f s:s 2 St jN t \ No � sg

Sc = S0
o \ S0

t

Shared behaviors:the behaviors which go through the same
sequence of states by �ring events related byRel. Let us
denoteRel� the extension ofRel to behaviors where each
event in a behavior is related to the event at the same position
in the other one:

8bo; bt :bo 2 Bo ^ bt 2 B t ^ bo 7! bt 2 Rel� ,
(8i:i 2 dom(bo)) (Pr 2(bo(i)) 7! Pr2(bt (i)) 2 Rel))

The shared behaviors between two speci�cationsSpeco
andSpect , seen from theSpect perspective are de�ned as:

B t
c = f bt jbt 2 B t ^ (Rel�� 1[f bt g] � Bo)g

Behavior preservation:a speci�cationSpect preserves the
behavior ofSpeco if all the behaviors observed onSpect are
shared behaviors. This intuitive de�nition is slightly too broad
and should be quali�ed on two aspects. First, the starting
state must be a shared state. Second, all non-deterministic
parameters must be admissible in both speci�cations. This
property is expressed by the following predicates:

validParam (v; s; e; Rel) = Ge(s; v)^
e 2 ran(Rel)) (9e0:e0 2 Rel� 1[f eg] ^ Ge0(s; v)) ^
e 2 dom(Rel)) (9e0:e0 2 Rel[f eg] ^ Ge0(s; v))

validParam � (b; Spec; Rel) =
8 (si ; ei ; vi ; t i):(si ; ei ; vi ; t i) 2 b)

validParam (vi ; si ; ei ; Rel)

So, the formal de�nition of behavior preservation is:

Spect
B� jRel Speco ,

8bi :bi 2 B t ^ s1 2 Sc^
validParam � (bi ; Speco; Rel)) bi 2 B t

c

This de�nition then needs to be connected to what is actu-
ally observed during an animation: which events are enabled
and what are the values in the states.

SameEnablednessexpresses the idea that on the shared
states, events in both speci�cations have the same status

7

(enabled or not); formally, the guard of both events is true.

SameEnabledness(Spect ; Speco; Rel) ,
(8s; e; v:s2 Sc ^ e 2 Events(Speco)^

validParam (v; s; e; Rel) ^ Ge(v; s))
(9e0:e0 2 Events(Spect) ^ e0 7! e 2 Rel ^ Ge0(v; s))) ^

(8s; e0; v:s 2 Sc ^ e0 2 Events(Spect)^
validParam (v; s; e0; Rel) ^ Ge0(v; s))
(9e:e2 Events(Speco) ^ e0 7! e 2 Rel ^ Ge(v; s)))

SameReachability expresses the fact that all states that
can be reached from a shared state in a speci�cation can also
be reached in the other one.

SameReachability(Spect ; Speco; Rel) ,
(8s; t; e; v:s; t 2 Sc ^ e 2 Events(Speco)^

validParam (v; s; e; Rel) ^ s
e(v)
�! t)

(9e0:e0 2 Events(Spect) ^ e0 7! e 2 Rel ^ s
e0(v)
�! t))^

(8s; t; e0; v:s; t 2 Sc ^ e0 2 Events(Spect)^

validParam (v; s; e0; Rel) ^ s
e0(v)
�! t)

(9e:e2 Events(Speco) ^ e0 7! e 2 Rel ^ s
e(v)
�! t))

SameClosure states the idea that a behavior with valid
parameters reaches only shared states from a shared state.

SameClosure(Spect ; Speco; Rel) ,
8s; t; e; v:s 2 Sc ^ t 2 So ^ e 2 Events(Speco)

^ validParam (v; s; e; Rel) ^ Ge(v; s) ^ s
e(v)
�! t) t 2 Sc

These de�nitions allow us to give the observation theorem:
if two speci�cations have the three preceding properties, the
�rst preserve the behavior of the second:

SameEnabledness(Spect ; Speco; Rel)^
SameReachability(Spect ; Speco; Rel)^
SameClosure(Spect ; Speco; Rel))

Spect
B� jRel Speco

Proof:

Let Speco be the original speci�cation andSpect be
the transformed speci�cation. LetRel be the relation be-
tween these speci�cations. LetB t = Behavior (Spect)
and Bo = Behavior (Speco): Let bt ; bo:bt 2 B t ^
bo 2 Bo: Now if SameEnabledness(Speco; Spect ; Rel) ^
SameReachability(Speco; Spect ; Rel)) 9 Bc:bt ; bo 2 Bc

Same enabledness and reachability means speci�cations
share behaviors. However, some events may lead to non-shared
states, therefore we take closure to consider only the shared
states of both speci�cations, i.e.,

8s; t; e; v:s 2 Sc ^ t 2 So ^ e 2 Events(Speco)

^ validParam (v; s; e; Rel) ^ Ge(v; s) ^ s
e(v)
�! t) t 2 Sc

If the speci�cation has also the same closure (i.e., no
transition leads to a non-shared state) in addition to the
same enabledness and reachability (shared behaviors) then the
speci�cations are behaviorally equivalent, i.e., any behavior
which is observed in the transformed speci�cation would also
be observed in the original speci�cation.

Therefore,

SameEnabledness(Spect ; Speco; Rel)^
SameReachability(Spect ; Speco; Rel)^
SameClosure(Spect ; Speco; Rel))

Spect
B� jRel Speco

VI. D EMONSTRATION OF THE APPROACH ON CASE
STUDIES

We applied the VTA framework to assess the correctness
of three speci�cations, all written in the Event-B speci�cation
language [16]. The Event-B method is an offspring of the B
method [15] and is designed for system-level modeling and
analysis of large reactive systems. It uses set-theory and �rst-
order logic as the speci�cation notation. It also uses the notions
of re�nements (to represent systems at different levels of
abstraction) and theorem proving (to prove the consistency be-
tween various re�nement levels). Its development is supported
by the RODIN platform [31]. For animation purposes, we used
the valuation-based animators Brama [29] and AnimB1.

An Event-B speci�cation is composed ofContextswhich
specify the static part of the requirements model andMachines
which specify the dynamic part of the model. The re�nement
relation is calledre�nementbetween machines, andextension
between contexts. All machines have a special event, INITIAL-
ISATION, which speci�es the initial state.

The �rst case study is about a land transport domain
model [32], [33]. The second case study is about the landing
system of an aircraft [34]. The third case study is about
a platooning system [35]. All case studies are available at
http://dedale.loria.fr.

The VTA framework explicitly requires all speci�cations
to be proven before proceeding with their animation. The
speci�cations are then animated by creating reasonable be-
havioral scenarios representing the protocols that would have
been observed in the reality. The animators are provided with
startup values accordingly.

Not all re�nements are animated. Some re�nements based
on small incremental steps are uninteresting from the anima-
tion's point of view because they do not bring much informa-
tion in terms of new behaviors. At least one re�nement per
observation level was subjected to animation. An interesting
point to note is that a speci�cation may not be animatable
while its re�nement may be; there is no monotonicity in
general.

The result of the application of heuristics is an animatable
speci�cation. In the following, the application of heuristics on
formal speci�cations is presented in a before-after state clearly
indicating how the speci�cation has been transformed. When
necessary, the application of heuristics is justi�ed in the form
of a formal proof.

A. Case study 1: The land transport domain model

The speci�cation in this case study is about modeling
of the land transportation domain. The term “transportation”

1http://www.animb.org

8

http://dedale.loria.fr

Fig. 5. Event-B model of the land transport domain [25]

refers to the movement of people or goods by vehicles from
one location to another. Many important transportation con-
cepts, such as vehicles, hubs (stations, junctions), connections
(paths, routes), and movement, appear in this de�nition of
transportation. They must be de�ned in the domain description.
In the speci�cation, we also express properties that any system
working within the domain is expected to meet and maintain.

In this speci�cation effort, the focus is on the formal
de�nition of domain's laws, protocols and properties, rather
than on the implementation of a particular system. Re�nement
is used to introduce new notions; the proof obligations (POs)
serve to guarantee the consistency of the model.

The domain model contains one abstract machine
Movement0 and its seven re�nements. All machines of the
model are shown by green blocks. In parallel with machines,
two contexts are being re�ned. The �rst is the contextNet,
which models the static properties of the network (its topology,
quantities associated with its elements, etc.). The second is
the contextStartState which helps to set and prove the
INITIALISATION event of the machines. The contexts of
the model are shown by blue blocks. Extension between
contexts and re�nement between machines are shown by single
arrow lines; whereas, the use of contexts by machines is
depicted in Figure 5 by dashed lines.

The development is structured into four different obser-
vation levels. The abstract model, the �rst two re�nements
and the �fth re�nement sit at the �rst observation level that
de�nes thetravel protocol which means a vehicle can move
between two distinctive geographical points (hubs). Though
technically realized as the re�nement ofMovement4 , the
�fth re�nement step is logically situated at the �rst level of
observation; it introduces time and concerns only the events
at the �rst level. The third re�nement belongs to the second
level of observation that decomposes the travel protocol into
further two sub-protocolscrossing hubsand traversing paths.

The fourth re�nement belongs to the third observation level
that decomposes the protocol ofcrossing a hubinto further
sub-protocols ofentrance in a hub, leaving a path, andwaiting
to enter in a hub. The sixth and seventh re�nements model
the fourth observation level that decomposes the protocol of
traversing a pathinto further sub-protocols ofwait to enter on
a path, leaving a hub, moving on a path, andwaiting to move
on a path. MachineMovement7 completes the introduction
of time into the model and concerns the events and situations
at this level.

This speci�cation exhibits several properties which call for
animation as the mean to check their validity, namely:

� complex data with behavioral constraints (following a
route, for instance),

� protocols and iterations (travel as a sequence of hub
crossing and path traversing protocols, for instance),
and

� non-deterministic interaction between elements (au-
tonomous vehicles, for instance).

The second re�nement of the model introduces the notion
of routes in the contextNet2 as shown by the left hand side
of Figure 6. The constantroutes is a set of sequences of
paths ; a path is an edge in the graph between twohubs
(stations) which are the vertices. The set of routes is introduced
as follows:

seqPaths= f seqj9n:n 2 N1 ^ seq2 1::n � paths

^ f inite (seq) ^ card(seq) = ng

As sequence is not a primitive data type in Event-B data
structure, we must provide its de�nition. This de�nition uses
double quanti�cation which the employed animator was unable
to support when we tried to animate the model. To make the
model animatable, we employ Heuristic 1 to transform the
axiom to use the following superset of its expression:

seqPaths2 P(N 7! paths)

Since the type information of seqPaths has been changed,
the model propertiespro1 andpro2 (see the left hand side of
Figure 6) expressed in terms of the original type information
may no longer hold. Actually, these properties state that valid
origin and destination hubs of a route are stations (and not
junctions), both hubs belong to the same network, both hubs
are connected to each other, and both hubs forbid cyclic
connections (it is a domain restriction to avoid in�nite circular
paths). The properties use functions de�ned in previous re�ne-
ments, such asconnectionOrigin/Destination and
obsNetHubs , which provide the connections and the hubs
of a network respectively. Bothpro1 andpro2 are removed.
Hence, the speci�cation is now animatable. Figure 6 shows the
contextNet2 before and after the application of Heuristic 1.

The most important effect of the application of Heuristic
1 is the invalidation of all proofs, either inNet2 or in
Movement2 and their subsequent re�nements, which relied
on the essential property of sequences:

9

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes, isRoute, seqPaths

AXIOMS
typ1 paths � Connections
typ2 seqPaths = f seq j 9 n . n 2 N1 ^ seq 2 1..n � paths ^

�nite (seq) ^ card(seq) = ng
typ3 isRoute 2 seqPaths ! B
typ4 routes = f sp j sp 2 seqPaths ^ isRoute(sp) = TRUEg

pro1 8r.r2 seqPaths ^
((connectionOrigin(r(1)) 2 stations ^
connectionDestination(r(card(r))) 2 stations^
(obsNetHubs[f connectionOrigin(r(1))g] \
obsNetHubs[f connectionDestination(r(card(r)))g] 6= ?) ^
(8 i . i2 2..card(r) ^ connectionDestination(r(i� 1)) = connectionOrigin(r(i)))
^ connectionOrigin(r(1))6= connectionDestination(r(card(r))) ^
(8i1, i2 . i12 1..card(r) ^ i22 1..card(r) ^ i1 6= i2)
connectionOrigin(r(i1)) 6= connectionOrigin(r(i2)))
^ (8 i1 , i2 . i12 1..card(r) ^ i22 1..card(r) ^ i16= i2
) connectionDestination(r(i1)) 6=
connectionDestination(r(i2)))) , isRoute(r) = TRUE)

pro2 8c.c2 Connections)
(connectionDestination(c)2 stations ^ connectionOrigin(c) 2 stations)
(9r. r2 routes ^ connectionOrigin(c) = connectionOrigin(r(1)) ^
connectionDestination(c) = connectionDestination(r(card(r)))))

END

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes, isRoute, seqPaths

AXIOMS
typ1 paths � Connections
typ2 seqPaths 2 P(N 7! paths)

typ3 isRoute 2 seqPaths ! B
typ4 routes = f spjsp2 seqPaths ^ isRoute(sp) = TRUEg

END

Fig. 6. The contextNet2 before (left) and after (right) the application of Heuristic 1

8s:s 2 seqPaths) dom(s) = 1 ::card(s)

Proof of application of Heuristic 1:Animation requires
us to provide actual values forseqPath . Since seqPath
is a constant, we just need to ensure that the actual values
conform to the axioms of the originalNet2 . Then, since
the Movement2 machine is veri�ed, we are garanteed that
animation will only reach shared legal states.

B. Case study 2: The landing gear system

The second case study deals with the speci�cation of a
Landing Gear System (LGS) of an aircraft. The LGS is in
charge of maneuvering landing gears and associated doors.
The LGS is composed of 3 landing sets: front, left and
right. Each landing set contains a door, a landing-gear and
associated hydraulic cylinders. The main parts of the LGS are
as following:

1) a mechanical part that contains all the mechanical
devices and the three landing sets,

2) a digital part including the control software,
3) and a pilot interface.

The corresponding Event-B model speci�es the pilot inter-
face, the digital part, and the mechanical and hydraulic parts
of the system. Additionally, it describes the hardware (gears,
doors, sensors, lights, electro-valve, etc.), the normal working
of the hardware and software, and the safety properties (normal
and emergency modes).

As shown by Figure 7, the Event-B model of the landing
gear system contains one abstract machineLandingSystem
and its four re�nements, all shown by green blocks. In parallel
with machines, two contextsContextInit andHardware

are also being re�ned. The former contains the information
necessary to set and prove theINITIALISATION event
of the machines. The latter contains the description of the
hardware con�guration and status, such as description of
landing sets as front, left and right, and handle states as
up and down. Additionally, the contextCockpitHardware
contains the description of the pilot interface and the context
Phase_Ident contains the information regarding readings
of the sensors. The contexts of the system are shown by blue
blocks. Extension between contexts and re�nement between
machines are shown by single arrow lines, whereas the use of
contexts by machines is depicted by dashed lines.

Figure 7 also shows three levels of observations. The
abstract model sits at the �rst observation level that deals
with the status of the plane: ready to land or �y. The �rst,
second and third re�nement of the model belongs to the
second observation level that deals with the movement of the
mechanical elements of the landing gears (doors, legs, locks,
etc.). The fourth re�nement sits at the third observation level
that was introduced when we wanted to model the reading of
the sensors.

An interesting feature of the LGS case study is a re-
quirement that the maneuvers can be interrupted and reversed
at any time. So, exercising the events which model the
reversal is an important part of the validation. One such
event, restore_up , introduced in the third re�nement,
LandingSystem_3 , updates the related variables using the
following pattern:

var :j var 0 2 LANDING SET S ! SENSOR OUT P UT S^
(8g:g 2 LANDING SET S)) (var 0(g) = sfalse))
or
var :j var 0 2 LANDING SET S ! SENSOR OUT P UT S^
(8g:g 2 LANDING SET S)) (var 0(g) = strue))

10

Fig. 7. Event-B model of the landing gear system [25]

wheresfalseandstruemodel the binary information sent by
the sensors.

During animation, the animator fails to execute these
substitutions due to its inability to dynamically map variables
to each other. We then rewrote the actions using Heuristic 2
as following to achieve their execution.

var := LANDING SET S � f sfalse g
or
var := LANDING SET S � f strue g

Figure 8 shows the eventrestore_up before and after
the application of Heuristic 2.

C. Case study 3: The platooning system

The third case study deals with the speci�cation of a
platooning system. Platooning is a mode of moving where
vehicles are synchronized and follow one another closely. A
platoon can be seen as a road-train where cars are linked by
software, instead of hardware. Platooning has several potential
uses in an urban mobility system: augmenting throughput,
herding unused cars to stations, or running transient buses,
for instance.

Several platooning control systems are being developed
and experimented. One locally developed is based on Situated
Multi-Agent (SMA) theory. Each car has its own local control
algorithm which uses a perception/decision/action loop; the
platooning behavior is an emerging property [36], [37].

An Event-B speci�cation of the local model has been
written [35], [38], [39]. Contrary to the �rst case study, the
structure of the development in this case study can be inter-
preted as a sequence of re�nements toward an implementation.
Each re�nement decomposes some events to make explicit a
part of the general computation.

The Event-B model of the speci�cation is presented by
Figure 9. The speci�cation consists of �ve machines (four
re�nements):

� Platoon: de�nes platoons and sets the basic safety
property. It contains only one event,all_move ,
where all vehicles change positions while keeping safe
distance.

� Platoon 1: decomposes the event into one which
moves the leader vehicle and one which moves the
followers. This organizes the basic “iteration along the
platoon” of each move.

� Platoon 2: computes the length of each basic move.
This leads to the introduction of kinematic functions
in the contexts and to the re�nement of move events
into several ones, each corresponding to a different
situation (whether the maximum and minimum speeds
are reached or not). This models theactionpart of the
SMA.

� Platoon 3: introduces the notion ofdecisionof the
SMA model into the speci�cation. Two events, one for
the leader, and one for the followers, are introduced
and integrated in the control loop.

� Platoon 4: introduces the notion ofperceptionwhich
allows decision events to be re�ned so the actual
computation of the parameters of the control law
(acceleration) can be performed.

Although the last re�nement is very close to an implemen-
tation, in spirit if not in form, yet we decided to use animation
to validate the speci�cation for several reasons. The �rst was
curiosity as the heavy use of functions was challenging, the
second was to compare the results of the animation with the
results of simulations that had been previously made, and the
last was to con�rm that a certain “formal approximation” was
legitimate.

The last reason is a consequence of using discrete tools
to model what is inherently continuous. In this case, all POs
were discharged, assuming one property, namelyx(y=z) =
(xy)=z, holds. True inR, this property is false inN. However,
the difference becomes actually negligible when numerators
are much bigger than denominators. Animation with realistic
values gives insight on the validity of the “approximation” and
on the solidity of the model.

The context of the model contains the notions ofspeed
and acceleration. Several constants and axioms have been
introduced into the context to help introducing the kinematics
of a platooning system. The de�nition of the kinematics is
comprised of complex mathematical functions and de�nitions
which are non-animatable. Their non-animatability is primarily
due to the complex de�nition of the functions. It does not allow
the assignment of a single start-up value to the constant for
animation. In fact, some of the functions are based on multiple
de�nitions, each corresponding to a different case.

The �rst complexity arose in the re�nementPlatoon_2
with the de�nition of thenew_xpos function:

8xpos0; speed0; accel0:
((xpos0 2 N ^ speed0 2 0::MAX SPEED ^
accel0 2 MIN ACCEL::MAX ACCEL))

(new xpos(xpos0 7! speed0 7! accel0) =
xpos0 + speed0 + (accel0=2)))

which models the kinematic law of computing a new position
of a vehicle based on its acceleration and speed. It was used in
some event guards in the following form and naturally could
not be computed because actual values were required by the

11

restore up b=
REFINES

restore up
WHERE

grd1 all gear down gear position = all up
grd2 nominal mode operating mode = normal
grd3 abort command continuation mode = continue
grd4 all raised 8g.g2 LANDING SETS) (gear movement(g) = locked up

_ gear movement(g) = stored up)
grd5 handle down handle state = handle up

THEN
act1 door open door open : j door open' 2 LANDING SETS !

SENSOR OUTPUT ^ (8g. g2 LANDING SETS)
(door open'(g) = sfalse))

act2 all gears up gear position := all up
act3 all stored gear movement := f Front 7! stored up, Left 7! stored up,

Right 7! stored upg
act4 normal mode operating mode := normal
act5 continue continuation mode := continue
act6 light maneveur off light maneuver := light off
act7 gear extended gear extended : j gear extended' 2 LANDING SETS !

SENSOR OUTPUT ^ (8g. g2 LANDING SETS)
(gear extended'(g) = sfalse))

act8 gear retracted gear retracted : j gear retracted' 2 LANDING SETS !
SENSOR OUTPUT ^ (8g. g2 LANDING SETS)
(gear retracted'(g) = strue))

act9 door closed door closed : j door closed' 2 LANDING SETS !
SENSOR OUTPUT ^ (8g. g2 LANDING SETS)
(door closed'(g) = strue))

act10 presurized circuit presurized : j circuit presurized ' 2 SENSOR OUTPUT
^ (circuit presurized ' = sfalse)

act11 switch analog switch : j analog switch' 2 SWITCH POSITIONS ^
(analog switch' =open)

END

restore up b=
REFINES

restore up
WHERE

grd1 all gear down gear position = all up
grd2 nominal mode operating mode = normal
grd3 abort command continuation mode = continue
grd4 all raised 8g.g2 LANDING SETS) (gear movement(g) = locked up

_ gear movement(g) = stored up)
grd5 handle down handle state = handle up

THEN
act1 door open gear extended := LANDING SETS � f sfalseg

act2 all gears up gear position := all up
act3 all stored gear movement := f Front 7! stored up, Left 7! stored up,

Right 7! stored upg
act4 normal mode operating mode := normal
act5 continue continuation mode := continue
act6 light maneveur off light maneuver := light off
act7 gear extended gear extended := LANDING SETS � f sfalseg

act8 gear retracted gear retracted := LANDING SETS � f strueg

act9 door closed door closed := LANDING SETS � f strueg

act10 presurized circuit presurized : j circuit presurized ' 2 SENSOR OUTPUT
^ (circuit presurized ' = sfalse)

act11 switch analog switch : j analog switch' 2 SWITCH POSITIONS ^
(analog switch' = open)

END

Fig. 8. The eventrestore_up before (left) and after (right) the application of Heuristic 2

animators instead of a calling a function in the context.

nxpos = new xpos(xpos(vehicle) 7! speed(vehicle) 7!
magic accel)

wheremagic acceldenotes a free variable for this re�nement,
which will be replaced by a state variable further on down the
development. Using Heuristic 3, we rewrote the guards as

nxpos = xpos(vehicle) + speed(vehicle) + (magic accel=2))

Proof of application of Heuristic 3: The PO indicates
that theGr) G must be proven.

nxpos = new xpos(xpos(vehicle) 7! speed(vehicle) 7!
magic accel) (G)

The functionnew xpos is de�ned as:

new xpos(xpos0 7! speed0 7! accel0) = xpos0 +
speed0 + (accel0=2)

Inlining the de�nition of function intoG with the corre-
sponding local variables:

nxpos = xpos(vehicle) + speed(vehicle) +
(magic accel=2)) (Gr)

Therefore,Gr) G.

The most important complication came with another kine-
matic functionnew_xpos_max that calculates the position of
a vehicle when its speed has already reached the maximum. It
is quite similar tonew_xpos , except there is a case de�nition,

Fig. 9. The Event-B model of the platooning system [35]

i.e., either the particular vehicle is accelerating or not:

8xpos0; speed0; accel0:
((xpos0 2 N ^ speed0 2 0::MAX SPEED ^

accel0 2 MIN ACCEL::MAX ACCEL))
(accel0 = 0) new xpos max
(xpos0 7! speed0 7! accel0) =
xpos0 + MAX SPEED)^
(accel6= 0) new xpos max
(xpos0 7! speed0 7! accel0) =
xpos0 + MAX SPEED �
(((MAX SPEED � speed0)�
(MAX SPEED � speed0))=(2=accel0))))

The events usingnew_xpos_max function had to be dupli-
cated (Heuristic 4), one with the guardaccel=0 and the other
with its negation.

The prime example of such cases is the eventmove1_max

12

which is shown by Figure 11. Theguard3 of the original
event calculates the new speed of a vehicle as:

nspeed= new speed(speed(vehicle) 7! magic accel)

The speed is then checked against the maximum allowed speed
guard4 and consequently a new position for the vehicle is
determined inguard5 as:

nxpos = new xpos max(xpos(vehicle) 7! speed(vehicle)
7! magic accel)

To solve the issue, the cases de�ned to calculate
new_xpos_max are broken down into two events, each cater-
ing for one particular case. Figure 12 shows the transformed
move1_max event.

The original and the transformed contextContext_2 that
tells which functions have been relocated to machines are
shown by Figure 10.

move1 max b=
REFINES

move1
ANY

magic accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic accel 2 MIN ACCEL..MAX ACCEL
grd3 nspeed = new speed(speed(vehicle)7! magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = new xpos max(xpos(vehicle)7!

speed(vehicle)7! magic accel)
WITH

var1 magic xpos vehicle = nxpos
THEN

act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

Fig. 11. The eventmove1_max before the application of Heuristics 3 & 4

Proof of application of Heuristic 4:The PO needs to be
proved is

Ge(v)) 9 e0:e0 2 Rel[f eg] ^ G0
e0(v) ^ (8e0:G0

e0(v)) Ge(v))

The non-animatable expression is the following:

nxpos = new xpos max(xpos(vehicle) 7! speed(vehicle)
7! magic accel)(Ge)

The functionnew xpos max is de�ned as:

If accel 0 = 0)
new xpos max(xpos0 7! speed0 7! accel0) =
xpos0 + MAX SPEED

else if accel0 6= 0)
new xpos max(xpos0 7! speed0 7! accel0) =
xpos0 + MAX SPEED �
(((MAX SPEED � speed0)�
(MAX SPEED � speed0))=(2=accel0))

Inlining the de�nition of function intoGe while splitting
it into G0 andG00

G0 states:

grd0 magic accel6= 0
grd5 nxpos = xpos(vehicle) + MAX SPEED �

(((MAX SPEED � speed(vehicle)) �
(MAX SPEED � speed(vehicle))) =(2 � magic accel))

G00states:

grd00magic accel= 0
grd5 nxpos = xpos(vehicle) + MAX SPEED

Therefore,G0_ G00) Ge(v).

The major breakthrough of the animation activity was the
discovery of oscillation in the platoon, i.e., the propagation of a
wave inside the platoon without stabilization. The last vehicles
of the platoon had to adjust their acceleration frequently while
the ones in the front run smoothly. Animation shows that this
speci�cation needs to be improved on this account as this is
an undesirable feature.

VII. E VALUATION OF THE ANIMATION PROCESS

Breuer et al. [40] listed three qualitative measures that
can be used to evaluate any animation process. In addition to
completeness, they mention coverage, i.e., how many language
constructs are handled; ef�ciency, i.e., how quickly is an
animation process is performed; and sophistication, i.e., how
many of the animation processes actually terminate.

In addition, [41] provides further criteria to strengthen the
evaluation of an animation process, i.e., interactivity, trans-
parency and operational equivalence. Interactivity is the idea
that a user should be able to interact with the animator in order
to perform better exploration of the speci�cation. Transparency
is directly related to the intermediate transformations that
help achieve animations of speci�cations. Finally, operational
equivalence of an animator is ensured when its performed
operations are equivalent to the speci�cation, instead of its
achieved re�nements.

The VTA framework meets most of the stipulated criteria
for a desirable animation process. As described in this paper,
we are able to compensate for an animation tool's inability to
execute speci�cations. For example, if a speci�cation language
construct is not supported by a tool, we promote its rewriting
into an equivalent formula that not only extends its coverage
but also contribute towards its ef�ciency and sophistication.
Our heuristics that deal with the simpli�cation of formulas,
providing missing types, inlining function values, etc., also
help achieve ef�ciency and sophistication.

VTA not only increases the interactivity of users with tools
by proposing heuristics but with the help of provided seman-
tics one can also reason about transparency of the proposed
transformations. In some cases, transformations are identity
functions, so they are highly transparent. However, in case of
non-supported elements where speci�cations need to undergo
some structural reordering and optimizations, our proposed
semantics provide a basis to argue about the soundness and,
consequently, transparency of transformations.

It is not always possible to maintain the operational equiv-
alence between the original and the transformed speci�cation,

13

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX SPEED, MIN ACCEL, MAX ACCEL,
initial speed , new speed, new xpos,
new xpos max, new xpos min

AXIOMS
typ01 MAX SPEED 2 N1
typ02 MAX ACCEL 2 N1
typ03 MIN ACCEL 2 INT

pro01 MIN ACCEL < 0
pro02 initial speed 2 1..VEHICLES !

0..MAX SPEED
pro03 8 vehi0.(vehi02 1..VEHICLES) (9 speed0.

(speed0 2 0..MAX SPEED ^
initial speed (vehi0) = speed0)))

pro04 new speed 2 (0..MAX SPEED X
MIN ACCEL..MAX ACCEL) ! INT

pro05 8 speed1,accel1 .
(speed12 0..MAX SPEED ^ accel12
MIN ACCEL..MAX ACCEL)
new speed(speed17! accel1) =
speed1 + accel1)

pro06 new xpos 2 (N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL)! N

pro07 8 xpos0,speed0,accel0 . ((xpos0 2 N ^
speed0 2 0..MAX SPEED ^
accel0 2 MIN ACCEL..MAX ACCEL))
(new xpos(xpos07! speed07! accel0) =
xpos0 + speed0 + (accel0 / 2)))

pro08 new xpos max 2 N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL ! N

pro09 8 xpos0,speed0,accel0 . (xpos0 2 N
^ speed0 2 0..MAX SPEED ^
accel0 2 MIN ACCEL..MAX ACCEL)
((accel0 = 0)
new xpos max(xpos07! speed07! accel0)
= xpos0 + MAX SPEED) ^
(accel0 6= 0)
new xpos max(xpos07! speed07! accel0) =
xpos0 + MAX SPEED �
(((MAX SPEED � speed0) �
(MAX SPEED� speed0))/(2� accel0)))))

pro10 new xpos min 2 N X 0..MAX SPEED X
MIN ACCEL..MAX ACCEL ! N

pro11 8 xpos0,speed0,accel0 . (xpos0 2 N ^
speed0 2 0..MAX SPEED ^
accel0 2 MIN ACCEL..MAX ACCEL)
((accel0 = 0)
new xpos min(xpos07! speed07! accel0) =
xpos0) ^ (accel0 6= 0)
new xpos min(xpos07! speed07! accel0) =
xpos0 � ((speed0 � speed0) /
(2 � accel0)))))

END

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX SPEED, MIN ACCEL, MAX ACCEL,
initial speed ,

AXIOMS
typ01 MAX SPEED 2 N1
typ02 MAX ACCEL 2 N1
typ03 MIN ACCEL 2 INT

pro01 MIN ACCEL < 0
pro02 initial speed 2 1..VEHICLES !

0..MAX SPEED
pro03 8 vehi0.(vehi02 1..VEHICLES)

(9 speed0 . (speed0 2 0..MAX SPEED ^
initial speed (vehi0) = speed0)))

END

Fig. 10. The contextContext_2 before (left) and after (right) the application of Heuristic 3

for example, in case of re�nement and approximation. In
the transformation process, one can lose certain behaviors,
for example, by restricting some inputs, but one can not
have additional behaviors such as new state transitions. We
have, therefore, introduced the notion of �delity which, once
proved, ensures that observations made on the transformed
speci�cation equate with the original speci�cation.

VIII. R ELATED WORK

The concept of speci�cation animation is not a new one.
Program visualizations have been previously used for design-
ing, developing, monitoring and debugging software. Some
notable visualization environments spanning across different
areas of interest are graphics interface development [42],
visualization of concurrent processes [43], etc.

Executability of speci�cations is a controversial issue.
More than two decades ago, Hayes et al. [44] objected to the
idea of speci�cation execution. They argued that executability
suppresses the expressiveness of a language and as far as
speci�cations are concerned, the latter quality of a speci�cation
should be preferred over the former. In addition, they stated
that executable speci�cations can negatively affect implemen-
tations.

In response to these concerns, [45] replied that it is the
issue of correctness which is the major challenge in soft-
ware development and not the expressiveness of speci�cation
languages. A technique like animation is, in fact, a very
powerful method to ensure that speci�cations are validatable
by customers as early as possible, thus, minimizing the chances
of software faults.

14

move1 max b=
REFINES

move1
ANY

magic accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic accel 2 MIN ACCEL..MAX ACCEL
grd' magic accel 6= 0
grd3 nspeed = new speed(speed(vehicle)7!

magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = xpos(vehicle) +

MAX SPEED � (((MAX SPEED �
speed(vehicle)) � (MAX SPEED �
speed(vehicle))) / (2 � magic accel))

WITH
var1 magic xpos vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

move1 max zero b=
REFINES

move1
ANY

magic accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic accel 2 MIN ACCEL..MAX ACCEL
grd '' magic accel = 0
grd3 nspeed = new speed(speed(vehicle)7!

magic accel)
grd4 nspeed > MAX SPEED
grd5 nxpos = xpos(vehicle) + MAX SPEED

WITH
var1 magic xpos vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX SPEED

END

Fig. 12. The eventmove1_max after the application of Heuristics 3 & 4

Our approach addresses both issues. Our rules help speci�-
cations achieve their animation and at the same time we ensure
that they remain consistent. Our work can be seen as an exten-
sion of the approach presented in [46]. This work highlights
the steps of converting a formal problem speci�cation to a
�nal program by applying semantics-preserving transformation
rules.

IX. CONCLUSION

We have presented an animation-based process for val-
idation of formal requirements speci�cations. The idea of
stepwise development is further enriched by a proposition of
an auxiliary animation step associated with (preferably) each
re�nement.

One limiting factor associated with the technique of ani-
mation is that not all speci�cations are animatable, at least, not
directly. However, a speci�cation can be “downgraded” into a
behaviorally-equivalent animatable speci�cation. We have then
proposed several transformations to realize this idea. Naturally,
the validity of such a technique depends on semantics of the
transformations. We have then developed a speci�c formal
notion of �delity, based on the behavior-preservation property
of a model, to guarantee that the transformations can be trusted.

Despite having transformation rules, animators may still
fail to execute a speci�cation. For the validation of such spec-
i�cations, the technique of simulation [47], where users can
safely complete the program generated form the speci�cation,
best suits the purpose. In future, we plan to extend the VTA
framework in this direction. Implementation of the proposed
heuristics in the form of a tool is also a future work.

REFERENCES

[1] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, “Automated consis-
tency checking of requirements speci�cations,”ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 5, no. 3, pp.
231–261, 1996.

[2] M. Kaufmann and J. S. Moore, “ACL2: An Industrial Strength Version
of Nqthm,” in Proceedings of the Eleventh Annual Conference on
Computer Assurance (COMPASS-96), 1996.

[3] S. Owre, J. M. Rushby, , and N. Shankar, “PVS: A prototype veri�cation
system,” in 11th International Conference on Automated Deduction
(CADE), ser. Lecture Notes in Arti�cial Intelligence, D. Kapur, Ed.,
vol. 607. Saratoga, NY: Springer-Verlag, jun 1992, pp. 748–752.

[4] M. J. C. Gordon and T. F. Melham,Introduction to HOL: A Theorem-
Proving Environment for Higher-Order Logic. Cambridge University
Press, 1993.

[5] L. C. Paulson,Isabelle: a Generic Theorem Prover, ser. Lecture Notes
in Computer Science. Springer – Berlin, 1994.

[6] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The Software
Model Checker BLAST: Applications to Software Engineering,”Int. J.
Softw. Tools Technol. Transf., vol. 9, no. 5, pp. 505–525, Oct. 2007.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An OpenSource
Tool for Symbolic Model Checking,” inComputer Aided Veri�cation,
ser. Lecture Notes in Computer Science, E. Brinksma and K. Larsen,
Eds. Springer Berlin Heidelberg, 2002, vol. 2404, pp. 359–364.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
A Tool for Automatic Veri�cation of Probabilistic Systems,” inTools
and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, H. Hermanns and J. Palsberg, Eds.
Springer Berlin Heidelberg, 2006, vol. 3920, pp. 441–444.

[9] G. J. Holzmann, “The Model Checker SPIN,”IEEE Trans. Software
Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[10] R. Butler, J. Caldwell, V. Carreno, C. Holloway, P. S. Miner, and
B. Di Vito, “NASA Langley's research and technology-transfer program
in formal methods,” inComputer Assurance, 1995. COMPASS '95.
Systems Integrity, Software Safety and Process Security. Proceedings
of the Tenth Annual Conference on, Jun 1995, pp. 135–149.

[11] M. Kaufmann and J. Moore, “An industrial strength theorem prover
for a logic based on Common Lisp,”Software Engineering, IEEE
Transactions on, vol. 23, no. 4, pp. 203–213, Apr 1997.

[12] A. Cimatti, “Industrial applications of model checking,” inModeling
and Veri�cation of Parallel Processes, ser. Lecture Notes in Computer
Science, F. Cassez, C. Jard, B. Rozoy, and M. Ryan, Eds. Springer
Berlin Heidelberg, 2001, vol. 2067, pp. 153–168. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45510-86

[13] J. Bormann, J. Lohse, M. Payer, and G. Venzl, “Model checking
in industrial hardware design,” inProceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, ser. DAC '95. New
York, NY, USA: ACM, 1995, pp. 298–303. [Online]. Available:
http://doi.acm.org/10.1145/217474.217545

[14] J. M. Spivey,Understanding Z: a speci�cation language and its formal
semantics. Cambridge University Press, 1988.

[15] J.-R. Abrial,The B Book. Cambridge University Press, 1996.

15

[16] ——, Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, 2010.

[17] R. Farahbod, V. Gervasi, and U. Glässer, “CoreASM: An Extensible
ASM Execution Engine,”Fundam. Inf., vol. 77, no. 1-2, pp. 71–103,
Jan. 2007.

[18] A. Gargantini, E. Riccobene, and P. Scandurra, “A Metamodel-based
Language and a Simulation Engine for Abstract State Machines,”
vol. 14, no. 12, pp. 1949–1983, jun 2008.

[19] J. Fitzgerald, P. G. Larsen, and S. Sahara, “VDMTools: Advances
in Support for Formal Modeling in VDM,” SIGPLAN Not.,
vol. 43, no. 2, pp. 3–11, Feb. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1361213.1361214

[20] M. Leuschel and M. Butler, “ProB: An Automated Analysis Toolset
for the B Method,” Journal Software Tools for Technology Transfer,
vol. 10, no. 2, pp. 185–203, 2008.

[21] D. Jackson,Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[22] A. Mashkoor, J.-P. Jacquot, and J. Souqui�eres, “Transformation Heuris-
tics for Formal Requirements Validation by Animation,” in2nd In-
ternational Workshop on the Certi�cation of Safety-Critical Software
Controlled Systems (SafeCert'09), York, UK, 2009.

[23] A. Mashkoor and J.-P. Jacquot, “Stepwise validation of formal spec-
i�cations,” in 18th Asia-Paci�c Software Engineering Conference
(APSEC'11), Ho Chi Minh City, Vietnam, 2011.

[24] ——, “Utilizing Event-B for Domain Engineering: A Critical Analysis,”
Requirements Engineering, vol. 16, no. 3, pp. 191–207, 2011.

[25] ——, “Observation-Level-Driven Formal Modeling,” inHigh-
Assurance Systems Engineering (HASE), 2015 IEEE 16th International
Symposium on, 2015, pp. 158–165.

[26] B. Meyer, “On formalism in speci�cations,”Software, IEEE, vol. 2,
no. 1, pp. 6–26, Jan 1985.

[27] A. Mashkoor and J.-P. Jacquot, “Guidelines for Formal Domain Model-
ing in Event-B,” inHigh-Assurance Systems Engineering (HASE), 2011
IEEE 13th International Symposium on, 2011, pp. 138–145.

[28] P. Cousot and R. Cousot, “Abstract interpretation: a uni�ed lattice
model for static analysis of programs by construction or approximation
of �xpoints,” in POPL '77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. New
York, NY, USA: ACM, 1977, pp. 238–252.

[29] T. Servat, “BRAMA: A New Graphic Animation Tool for B Models,” in
B 2007: Formal Speci�cation and Development in B. Springer-Verlag,
2006, pp. 274–276.

[30] A. Mashkoor, “Formal Domain Engineering: From Speci�cation to
Validation,” Ph.D. dissertation, Université de Lorraine, Jul. 2011.
[Online]. Available: http://tel.archives-ouvertes.fr/tel-00614269/en/

[31] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin, “An open
extensible tool environment for Event-B,” inProceedings of the 8th
international conference on Formal Methods and Software Engineering,
ser. ICFEM'06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 588–
605.

[32] A. Mashkoor, J.-P. Jacquot, and J. Souqui�eres, “B Ev́enementiel
pour la Mod́elisation du Domaine: Application au Transport,” inAp-
proches Formelles dans l'Assistance au Développement de Logiciels
(AFADL'09), Toulouse, France, 2009, pp. 1–19.

[33] A. Mashkoor and J.-P. Jacquot, “Domain Engineering with Event-B:
Some Lessons We Learned,” inRequirements Engineering Conference
(RE), 2010 18th IEEE International, Sept 2010, pp. 252–261.

[34] F. Boniol and V. Wiels, “The landing gear system case study,” in
ABZ 2014: The Landing Gear Case Study, ser. Communications
in Computer and Information Science, F. Boniol, V. Wiels,
Y. Ait Ameur, and K.-D. Schewe, Eds. Springer International
Publishing, 2014, vol. 433, pp. 1–18. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-07512-91

[35] A. Lanoix, “Event-B Speci�cation of a Situated Multi-Agent System:
Study of a Platoon of Vehicles,” in2nd International Symposium
on Theoretical Aspects of Software Engineering (TASE'08), Nanjing,
China, 2008.

[36] P. Daviet and M. Parent, “Longitudinal and Lateral Servoing of Ve-
hicles in a Platoon,” inProceedings of the IEEE Intelligent Vehicles
Symposium, 1996, pp. 41–46.

[37] A. Scheuer, O. Simonin, and F. Charpillet, “Safe Longitudinal Platoons
of Vehicles without Communication,” INRIA, Research Report RR-
6741, 2008. [Online]. Available: http://hal.inria.fr/inria-00342719/en/

[38] S. Colin, A. Lanoix, O. Kouchnarenko, and J. Souqui�eres, “Towards
Validating a Platoon of Cristal Vehicles using CSPkB,” in 12th Interna-
tional Conference on Algebraic Methodology and Software Technology
(AMAST 2008), ser. LNCS, J. Meseguer and G. Rosu, Eds., no. 5140.
Springer-Verlag, Jul. 2008, pp. 139–144.

[39] ——, “Using CSPkB Components: Application to a Platoon of Vehi-
cles,” in 13th International ERCIM Wokshop on Formal Methods for
Industrial Critical Systems (FMICS 2008), ser. LNCS. Springer-Verlag,
Sep. 2008.

[40] P. Breuer and J. Bowen, “Towards correct executable semantics for Z,”
in Z User Workshop, Cambridge 1994, ser. Workshops in Computing,
J. Bowen and J. Hall, Eds. Springer London, 1994, pp. 185–209.

[41] M. Utting, “Animating Z: interactivity, transparency and equivalence,”
in Software Engineering Conference, 1995. Proceedings., 1995 Asia
Paci�c, 1995, pp. 294–303.

[42] E. Clemons and A. Green�eld, “The sage system architecture: A system
for the rapid development of graphics interfaces for decision support,”
IEEE Computer Graphics and Applications, vol. 5, pp. 38–50, 1985.

[43] G.-C. Roman and K. C. Cox, “A declarative approach to visualizing
concurrent computations,”Computer, vol. 22, no. 10, pp. 25–36, 1989.

[44] I. Hayes and C. Jones, “Speci�cations are not (necessarily) executable,”
Software Engineering Journal, vol. 4, pp. 330–338, November 1989.

[45] N. E. Fuchs, “Speci�cations are (preferably) executable,”Software
Engineering Journal, vol. 7, pp. 323–334, September 1992.

[46] H. A. Partsch,Speci�cation and transformation of programs: a formal
approach to software development. New York, NY, USA: Springer-
Verlag New York, Inc., 1990.

[47] F. Yang, J.-P. Jacquot, and J. Souqui�eres, “The case for using simu-
lation to validate Event-B speci�cations,” inProceedings of the 2012
19th Asia-Paci�c Software Engineering Conference - Volume 01, ser.
APSEC'12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 85–90.

16

	Introduction
	VTA

