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Abstract—A signi cant impediment to the uptake of formal veri cation is mathematically based, it has been the main focus
re nement-based methods among practitioners is the challenge of designers of formal methods so far. Current frameworks
of validating that the formal specications of these methods provide many tools and techniques to help developers produce

capture the desired intents. Animation of speci cations is widely  yerj ed texts, but far less to help produce validated texts.
recognized as an effective way of addressing such validation.

However, animation tools are unable to directly execute (and thus As compared to validation, veri cation of a speci cation is
animate) the typical uses of several of the speci cation constructs g well-de ned process. It ensures that involved expressions do
often found in ideal formal speci cations. To address this problem ot contradict with each other and maintain certain properties.
we have developed transformation heuristics that, starting with an Additionally, we also have a set of well-engineered assistant
ideal formal speci cation, guide its conversion into an animatable tools at our, disposal. Theorem provers like ACL2 [2], PVS

form. We show several of these heuristics, and address the need to - -
prove that the application of these transformations preserves the [3], HOL [4] and Isabelle([5], and model checkers like BLAST

relevant behavior of the original speci cation. Portions of several [6l, Nl_JSMV_W]a PRISM (€] and SPIN[[9] are already well- )
case studies illustrate this approach established in the industry and have been successfully used in

. N . several industrial projects [10], [11], [12], [13].
Keywords—Formal methods, Requirements speci cations, Vali-

dation, Animation, Event-B Casting requirements into predicates allows one to use
proof techniques to assess the consistency. Formalisms, such
|. INTRODUCTION as Z [14], B [15] or Event-B[[16], provide us with further help

. through the notion of re nement which breaks huge proofs into
To be correct, a requirements document must be bothyan"smaller ones. Yet, writing the speci cation and showing
complete and consistent. The former property concems the fagk consistency requires a considerable amount of interaction,
that the document references all the important requirementggrorts, and technical skills and know-how. As non-technical
The latter property concemns the fact that no requiremen{iyeholders usually lack these skills and know-how, it is
contradicts another one. very dif cult to integrate such stakeholders into the modeling
While there is no mathematical answer to the issue oProcess unless the formal model is presented to them in a
completeness, formal techniques can be effectively used teomprehensible form.
determine the consistency of requiremerits [1]. During this

: . ) . The case with validation is different. First, it is highly
process, requirements are specied using mathematics- ang .o e ‘Second, we have fewer tools available for it. Third,
logic-based notations. There are operative de nitions of the

notions of veri ability and soundness for texts using such€ven the available tools, particularly those which can execute a

notations. The consistency of the requirements can then deeL like CoreASMLIL], Asmeta tool-seL [18], VDMTools

. X ] . 19], or ProB [20] have limitations such as unsupported
ﬁqu(jeésgﬁevg:(tm;he help of techniques like theorem proving a onstructs, unbounded expressions, or purely implicitly de ned

functions and operations.

However, when a document is written in a formal or
semi-formal language, a third property must also be checke
validity. It concerns the fact that the formal speci cation

d: The tools which are most helpful to validate a speci cation
rely on creating, running and evaluating scenarios on a formal

expresses the actual customers requirements. This properfj)odél- Among those, animation is a process of executing a
can best be attained by involving customers in the formaPPECi cation by invoking its operational semantics. It is mainly
modeling process. an automated process where an animator reveals the behavior

of a formal speci cation either textually or graphically. This

Traditionally, software engineers distinguish between veritechnique is similar to structure exploration technigliel [21]

cation and validation. The former activity checks that a text where a formal model containing collection of constraints is
enjoys some given formal, provable, properties. The latter acfed to an analyzer. The analyzer then explores the model by
tivity checks that the artifact answers the customer's needs. Agenerating sample structures and check properties of the model
The writing of this article is partly supported by the Austrian Ministry -by gener_atlng counterexamples_. This technique of validation
for Transport, Innovation and Technology, the Federal Ministry of S(:ience,IS appgahng even for no.n_te.Chmcal St?‘kehdders' However, the

Research and Economy, and the Province of Upper Austria in the frame dfatch is that not all speci cations are directly animatable; some

the COMET center SCCH. need to be transformed to achieve execution [22], [23]. During




the process of transformation, the non-nimatable expressions 1) Formally specify the requirements by grouping them

are replaced by equivalent but animatable counterparts. Then into observation levels,
the question is: are these transformations sound enough so that 2)  Verify the speci cation:
the judgments made on such transformed speci cations can be a) Discharge all Proof-Obligations (POs), and
considered trustworthy as far as validation is concerned? b)  Perform model checking when needed,

The main aim of this work is to introduce an animation ~3) Transform each non-animatable element of the spec-
process based on behavior-preserving transformations for val- I cation:
idation of formal speci cations. Like an intractable proof can a) Choose the matching heuristic from the list,
be broken down into a sequence of many smaller proofs, the b) Check that its applicability conditions hold,
validation of a speci cation can also be associated with its c) Prove its application, and
re nement-based development steps. This methodology then d) Apply the heuristic,
provides us with means to check the compliance of a formal 4) Validate the specication by its animation. If an
speci cation, that in its initial form may not be animatable due unacceptable behavior is encountered, modify the
to the inherent non-executable nature of its contents, to actual requirements and restart from step one.

customers' requirements.

To determine the full-correctness of formal speci cations, COFTECtEdf"':W
we employ the framework VTA[24] in which speci cations requirements
are rst checked for consistency and then animated. VTA relies

on theorem provers and model checkers for analyzing the ) II Abstract
consistency of speci cations. Once a speci cation is veri ed, model

it then proceeds for validation by animation. During the ani- —
mation process, the speci cation that contain non-animatable ' Y

traits is transformed to achieve its execution in such a way that Observation-
its behavior can be analyzed and reasoned about. The result level-driven

formal modeling

v

of the whole correctness-assessment process is a speci cation
which is both veri ed and validated.

Observation-
level-driven
formal model

We aim to reap bene ts of this methodology in two ways.
First, this methodology enables early detection of requirements

Remove
consistency errors

problems (say, misunderstanding about a certain behavior). Vosiieskion
Second, users can be involved in the process of checking the 1
correctness right from the start. Users can join the validation

part during the animation process, while leaving the technical Verified _
proving to the technical experts. m°dfe"J__ ot e

The paper is organized as follows: We rst present a brief
overview of the VTA framework in sectidnlll. Sectign]lll dis-
cusses the difference between classes of speci cations. Section
[[V]discusses how the class of a speci cation can be changed.
Sectior] Y presents some transformational heuristics along with Remove
their semantics. Sectign VI demonstrates the application of unwanted behaviors
transformations on three case studies. Se¢tioh VII presents an
evaluation of the proposed animation process. Segtion Vil _ | Corect
provides some related work. Finally, the paper is concluded . el

with some proposed future work.

Transformed
model

# Animation

Fi

g. 1. The VTA framework: structure of a re nement step
1. VTA

VTA (Verify-Transform-Animate) is a framework for rig- A. Observation-level-driven formal modeling
orous veri cation and validation of requirements speci cations
written in a formal re nement-based method. One of the
major roles of re nement is to break the veri cation process

In VTA, an abstract requirements model is transformed into
a formal speci cation through a technique that is based on

into small assessments and to integrate it with the stepwisgoServation levels [24]. An observation level is de ned as a
development process of the speci cation. VTA, powered by ocus on a speci ¢ part of the model describing a unique aspect

the techniques of veri cation, transformation and animation,SUCh @s @ speci ¢ protocol or a physical decomposition of the
is based on the same principle. VTA allows the correctnessystem. Grouping re nements into observation levels provides

of a speci cation to be assessed throughout the developme Speci cation with a super-structure which eases the under-
process. standing of the model. This arrangement re ects either the

“natural” structure of the system being modeled, particularly

The ow through the steps of the VTA framework is shown when there are physical components, or of its behaviors, i.e.,
within the rectangle in Figurg] 1. It consists of the following the evolutions of its state. This break-down facilitates both
steps: comprehension and animation of formal requirements. With



this approach, the important properties are introduced at the I11. A NIMATABILITY VERSUS PROVABILITY
desired level of observation. Each observation level contains
one or several re nements. We recommend animation of at o P ,
least one re nement per observation level. Our rationale is thap! @ SPECi cation. Both depend on intrinsic properties of

observation levels are correlated to fundamental characteristid8dels and on the power of the tools used. Animatability is

of models which have strong impacts on behaviors. Checkin a”‘cu'a'f'y dependent on the tools. Therefore, a speci cation
ay fall into one of four classes shown by Fig{ite 2.

that the speci ed behaviors are the valid ones, and that there
no bad emerging behavior, is of particular importance. Please

Animatability and provability are distinct characteristics

see [25] for the detailed discussion. Nonsasimatabie Animatable
Non-provable and Non-provable but

o Non-provable non-animatable animatable

B. Veri cation Provable but Provable and

Provable non-animatable animatable

The next step of our proposed framework is based on
veri cation of speci cations. While verifying a speci cation,
both deductive veri cation and model checking are important.
The VTA framework supports the usage of both verication ¢t as a faulty program can be executed, an incorrect
techniques where appropriate. We rmly believe that veri ca- gha cation can also be animated. Of course, neither would
tion must be the starting step because there is no point in thgs an agmissible solution to the problem at hand. However, ob-
validation of an inconsistent speci cation. servations of the program's execution can provide developers

with precious insights later contributing towards the correct

) solution. Likewise, animation that reveals a speci cation to

C. Transformation be invalid provides guidance to the developers on how the
speci cation needs correction.

Fig. 2. Classes of speci cations

As soon as the speci cation is veri ed, we prepare it for
animation. If some unsupported features of the language or Some important ingredients, often found in formal speci-
non-executable elements, such as non-constructive de nitionsgations are among the list of constructs which render these
are encountered, they are transformed using the proposegeci cations non-animatable. For example, non-constructive
heuristics (discussed in sectip V). de nitions, in nite sets or complex quanti ed logic expres-

sions make speci cations non-animatable. As animation, by

If & problem is discovered, we inspect it and try to matchpatyre, heavily depends on tools, so any limitation of the
the case with the list of heuristics. This inspection and matchygg| will also be a restriction on the class of animatable

ing practice includes checking if the heuristic's applicationgpeci cations.

condition holds. The application of a heuristic may raise a

PO. We are then required to justify this application. This One can always try to produce from the start a spec-

justi cation can either be provided in the form of a formal ication which belongs to the animatable class “Provable

proof (discharge of the PO) or by a rigorous argument that th@nd animatable.” However, this is not a good idea for wo

application of the heuristic would not alter the behavior of themain reasons. The rst reason is that the specier should

speci cation. avoid overspeci cation[[26]. The second reason concerns the
re nement principles that encourage us to use liberally abstract
de nitions, non-determinism, and small re nement steps [27].

D. Animation A well-written speci cation can later, of course, be brought

Once the transformations have been applied, the speci C%t_o the right class for the sake of animation. However, during

tion should now be animatable. Animation would demonstrat Ee prlocesstof b;l_n%mg Speci cat|onst|nt8_anhanlmaFt)aol:)Ie classt,)
the behavior of the speci cation. If the demonstrated behavio € elements which aré necessary (o discharge S may be

is as per expectations then we have the veri ed and validateg!t"€d Of éven suppressed. By compromising on proofs, we
speci cation in our hands. However, if this is not the case@r® at a risk of generating inconsistent speci cations. In fact,
and a closer look at the speci cation has revealed deviation§OMetimes we cannot prove within the_ formal rules of the
from the intended behavior, then we need to go back to thﬁ:\/en formal method that a transformation does not modify

initial speci cation to correct the unacceptable behavior. Thisthe or{glnalf beh?ylor. Th'sj[ l|)mpl|es tthzt t';]he pLOV?E'“ty of
triggers a loop, i.e., re-proving, re-application of heuristics ese transtormations must beé asserte rough other means.

and re-animation until the speci cation conforms to actual " SUCh cases, the mathematical tradition of providing rigorous
requi and convincing arguments as a paper-and-pencil proof of the

quirements. : ; . L
preservation of the behavior for each transformation heuristic

The animation cycle stops when all the scenarios that weréan be followed.
designed from the informal requirements have been executed
and the behavior of the specication has been approved by IV. RENDERING A SPECIFICATION ANIMATABLE

stakeholders. o
We may have to change the form of a specication to

First two steps are out of scope of this paper. Rest of thenake it animatable. We do this primarily by reformulating its
paper will focus only on transformation and animation stepsexpressions and adding some constructive elements to it. The
of the VTA framework. techniques to do this (depicted by Figlife 3) are the following.



2) The new events do not introduce a divergence. Tech-
nically, we must prove there is no in nite chain of

Non-animatable - (BahnesnEst Animatable new events.
specification . specification
Rewriting
_—

Inlining C. Rewriting

Approximation

Rewriting is the process of replacing either some sub-terms
Fig. 3. Types of class changing techniques or the whole formula with equivalent terms. In VTA, term
rewriting is used to simplify non-animatable complex formulas
to make them animatable. Application of this technique is
A. Approximation fruitful for formalisms such as B or Z, where generalized
. ) , substitutions are used to describe state modi cations. Ani-
Approximation is a standard technique to modify a modelyators often nd it dif cult to compute the state transition
so that the transformed model is not only close to the originaje|ation if it contains dynamic functions whose parameters are
model but also has better computational properties. For oUsassed non-deterministically at runtime and depend upon the
purpose, we look for approximations which can be ef ciently computations performed by guards. As a solution, the non-
executed. In our transformations, we use two types of approxspmputable formula is then partly or completely rewritten by

imations: under-approximation and over-approximation. Thes equivalent counterpart in set algebra or Conjunctive Normal
former is the idea of taking a reasonable subset of the origingtorm (CNF).

model, whereas the latter takes a superset. These approxima-
tion techniques are based on abstract interpretation [28] and o
are often used to address state explosion problems in mod&. Inlining

checking. Inline/macro expansion is an optimization technique to

Under-approximation can be used to address the problem é¢place a call of a function by its body. While writing
non-termination. This is a speci ¢ kind of termination which is Speci cations, this is a common practice to use functions for
based on enumeration of values. When a formula is based dggadability and simplifying proofs. A function based on a case-
an unbounded value an animator may continue enumeratingnalysis has multiple de nitions and cannot be enumerated
it inde nitely. Consequently, animation fails. Restricting the straightforwardly, thus, failing the execution of the incorporat-
enumeration within nite bounds addresses the problem. Iring speci cation. This problem can be solved by using inline
other cases, where a formula is constituted of complex an@xpansion technique, i.e., to replace the function call by its
composite data structures, such as sequences or lists, thedy. Thus, enumeration is no longer required and the animator
technique of over-approximation can be exploited to simplifyproceeds with its normal operation.
the formula and achieve its execution. For instance, a list,
which is a total function on an interval of integers, can be
over-approximated by a partial function on integers.

Inline expansion, in fact, is based on two previously
de ned transformation techniques: rewriting and re nement.
It is rewriting because the function call is being replaced
The rationale of using approximation for model checkingby its body which means semantically both expressions are
is applicable here as well. For example, if some property existeéquivalent. Of course, proper care has to be exerted with the
in the abstract (over-approximate) speci cation then it holds inuse of the involved variables. It can be de ned as re nement
the concrete speci cation. However, if the property does notsince the PO of enabledness preservation (see Sectign V-B)
hold in the former, we do not know if the latter violates this Which must be discharged, requires us to prove that if a
property. transition is enabled in the transformed speci cation then it
should also be enabled in the intial speci cation, and vice-
versa. Formally, the enabledness preservation PO is de ned
B. Re nement by a conjunction where the rst formula is a standard Event-B

Re nement is an established formal activity to transform PO for event re nement:
an abstract formal specication into a concrete executable
program. When possible, VTA uses re hement to transform
non-executable high-level non-constructive formulas and ex8S,;Ca; S, ; Cr;Va; Vi Xa; X ANA AN A ) (G ) Gy)

pressions into lower-level animatable and executable elements.
AN

When a specication is re ned, we need to prove the
abstract-re nement relationship between the two models. Thi Qe N\ v v A AA AL A
amounts to establish two properties: 8Sa;Cai S CriVai iXai X Aa A a1 ) (Ga) Gi)

1) The rened model maintains the invariant of the Where S,;, C4, S; and C; represent sets and constants
abstract model. We must prove that the re ned guard=f the abstract and re ned speci cations respectivaly. and
are stronger than the original. Furthermore, the reV; denote variables of the abstract and re ned speci cations
sulting actions do not lead to an incorrect state in therespectivelyx, andx; represent local variables of the abstract
abstract speci cation. We must also prove that theand re ned state transition relation respectivelys, A;, 14,
new events are re nement of the SKIP event (i.e.,l,, G;, G, are axioms, invariants and guards of the abstract
the “do-nothing” event). and re ned speci cations respectively.



V. TRANSFORMATIONAL HEURISTICS AND THEIR further points should be noted. First, we can restrict the relation
SEMANTICS to a form of inclusion of behaviors rather than a strict equality.

We can “lose” behaviors (e.g., by restricting some ranges),

“add” behaviors (e.g., by allowing transitions).

; A h L %econd, during an animation, we can look only at two things:
speci ¢ speci cation language and a speci ¢ animation tOOLeEg

) Y : e enabledness status of all transitions, and the values of state
The transformational heuristics ensure that behaviors 0bservegl iapies S0, we should express the relationship with these
plurmg the animation of a Fransformed speci cation are specy, - features of the execution.
i ed in the original non-animatable speci cation, possibly at
the expense of other formal properties such as provability. The o
correctness of heuristics and of their application then become8. The heuristics

an izsue ﬁt tvs;}o Ievsls. At torlle usl,g%e Ieve(lj, users rrlnus_t be Dburing our experimentation with valuation-based anima-
con dent that they chose and applied an adequate heuristi¢, s - guch as Bramd [29], we have encountered ten kinds

At the formal level, we must guarantee that the behaviors o impediments to animation of formal speci cations, and
the transformed model are the same as those of the Or'g'nﬁLsigned heuristics to deal with each of tem. In the interest

model. We address this issue of correctness using a two-step brevity, in this paper we discuss four of them in detail, and

approach. summarize the other six. The reader is referred to [30] for a
a) Step 1:We present the heuristics using a pattern ancfetailed description of all ten of them.

give rigorous arguments to justify their use. We assume that

they are applied to an already veri ed formal text. The patterngg

is shown in Figurg 4.

Table[] contains the list of symbols used in the following
ctions.

Symbol | Meaning Symbol | Meaning
j Such that \ Intersection
Heuristic pattern 9 There exists 8 For all
! Total function T Partial function
Rationale: What causes the problem, i.e., the logical basis of 2 Element of Subset of
the animation failure N Set of natural numberg N1 Set of +ve natural number
Symptom: What reveals the situation, i.e., the error message P Power set 7 Maplet
generated by the animation engine Domain restriction Total injection
Transform: The expression schema of the original specification , Logical equivalence ) Logical implication
and its transformed counterpart n Logical conjunction _ Logical disjunction
Caution: Description of the application conditions, hypotheses 6 Not equal to = Equal to
to check, possible effects and precautions to follow = Becomes equal to ] Becomes such that
Justification: A rigorous argument about the validity of the > Greater than ; Empty set
transformation B Boolean Cartesian product
TABLE I. THE SYMBOL TABLE

Fig. 4. The heuristic pattern

Heuristic 1: Generalize expressions involving complex it-
For each heuristic, we rst describe theymptom, i.e.,  erations

what indication from the animator of its inability to execute . . . . . .
a speci cation would prompt the use of this heuristic. It also _11IS heuristics is motivated by the dif culty of iterating
indicates the construct of the model, such as axiom, guar® el complex nested predicated expressions. Such expressions
or transition statement, where the problem lies and which i$°Me occur when models use types such as lists or trees.
susceptible to modi cation. Théransform explains how the
original statement must be transformed in order to be anisymptom: Failure of an animator to build iterators of a
matable. Each transform is based on the execution techniquggedicate. The problem lies often with list-like types.
discussed in Section |VCaution is the description of the _
applicability conditions, the assumptions to check, the possibldransform: Take the super-set of the expression.
effects, and the precautions to follow. In tjusti cation part,
we provide a rigorous argument about the validity of the
transformation. Transformedvar 2 P(N 7 y)

Original var = fxj9n:n 2 Ny A x 2 1::n! yg

b) Step 2: We de ne a formal semantics of transfor- Caution: This transformation loosens the constraints on the
mations to give a proof of soundness of their applicationvalues, some of which maybe essential to the behavior. For
The proof indicates under which conditions both the originalinstance, the property that all integer numbers between 1
and transformed speci cations are behaviorally equivalent, i.e.and the length of the sequence belong to the domain of the
provided same values, the same sequences of state transitidoaction. An animator may not ensure any more that this
can be followed on both speci cations. property holds. The burden of the check is passed onto the
input of the values. It must be ensured that animation is
performed on a shared set of values between the original and
(teransformed speci cations.

Animating a speci cation is all about observing the behav-
ior of a model, i.e., its evolution during its execution. Then,
the property we want to assure is: “what is observed on th
animation of the transformed speci cation would have beenJusti cation: On the subset of shared values, that is, those
observed on the animation of the initial speci cation.” Two values respecting the constraints left out by the generalization,



both speci cations must have the same behavior. Two casedusti cation: This is the case of re nement. In a mathematical
must be considered: context, the valud (v) is equal to its de nition expression

] ) ) ) where v has been substituted t®; both expressions are
the value is associated with a constant: it does nofnterchangeable.

change during the animation and it keeps its proper-
ties,

the value is associated with a variable: at least one of
the POs in the initial speci cation deals with proving Heuristic 4: Replicate transitions which use functions
that the result of the computation belongs to the setde ned “by cases”

Since the initial speci cation is veri ed, the values in

the modi ed speci cation have the same property. Some formal methods do not support conditional constructs

such asif-then-else Speciers must de ne functions with
This is an example of abstraction because the transforme@ases” through axioms written as disjunctive formulas.

formula is an abstraction of the original one. In abstraction

framework, this technique is known as over-approximation. Symptom: Same as Heuristic 3 plus a case analysis.

Transform:

Heuristic 2: Avoid expressions involving mapping of vari Original (in axiom) &x:x 2. S ) (p0J ) T(x) =
' © expression(x) ™ g(x f (x) = expressiond(x
ables in substitutions P ()% akx)) T(x) P ()
Original (in t i
Some animators have dif culty with computing set values rgina (”_1_ ransition)
de ned by comprehension. This can often be overcome by Transition A

rewriting as Cartesian product. WHERE ..f(v)... THEN ...f(v)...END

Transformed (in axiomjrue

Symptom: Failure of an animator to compute sets of tuples in
substitutions. The problem lies in substitutions of the model.  Transformed (in transitions)

Transform: Rewrite the substitution to avoid mapping. Transition Al
Original fx;y:x 2 X "y 2 Yjx 7! yg WHERE ... grdCasel p(v) THEN ... END
Transformedx 2 Xjxg f y 2 Yjyg Transition A2
QQsti cation: '!'he transformatior_w is simply rewritin_g of the. WHERE ... grdCase2 q(v) THEN ... END
initial expression as a formula in set algebra. This heuristic _ i . L
can also be used in guards and axioms. Caution: This heuristic must be followed by the application

of Heuristic 3. Check that all cases have been covered. Be
particularly careful if the function is applied to several different
actual parameters; this may require several applications of this
heuristic.

Heuristic 3: Inline the function de nition in events

Some formal methods do not distinguish between function%" This heuristic entails a major surgery in a speci cation. A

de ned as nite maps and functions de ned by an analytical nd application may introduce many copies of state transition

expressions. The latter are de ned as constants using axiojglat'pn.s' By grouping several functions into one trgnsforma—
which can not be assigned a value by enumeration-bas Ipn, it is possible to reduce the number of duplications.
animators. Justi cation: This is a case of re nement. The predicates
used in “by case” de nitions are equivalent to guards in state

Symptom: Failure of an animator to assign the start up valuedransitions. They have the same form and are used for the

. eSame purpose. The state transition relations A1 and A2 are
the copies of A, except for the new guard, their union is
equivalent to A. Hence, the transformed speci cation has the
Transform: Substitute function calls by their inline equivalent same behavior as the original speci cation.

axioms of the model which de ne analytical functions.

Original (in axiom)8x:x 2 S) f(x) = expression(x)
Original (in transition)f (v) The six other heuristics are summarized below.

Transformed (in axiomjrue Removing thefinite axioms. Such axioms are introduced

Transformed (in transition) Add a new guavd2 S and in speci cations just to discharge the related POs; however,
replacef (v) with expression(v) they do not not alter the behavior of the speci cation. Hence,

. . S it is safe to remove them.
Caution: All occurrences off in the speci cation must be

replaced; be consistent when replacing formal parameters Bypecifying the niteness of a quanti ed domain. For example,
actual values. if the range is of natural numbers, specifying a nite range



between a minimum and a maximum. This is the issue ofvhere Pr; denotes thé™ projection of the quadruples. We
decidability that is a common animation problem. Our solutionnote B, as the set of all behaviors of the speci catiGpeg.
to x it by stating that any variable, parameter, or constant can

only take nitely possible values is a standard solution for such _R€lation: the two compared speci cations may not have

problems. exactly same events, so we need to introduce a relation
between eventRel, de ned as:

Explicitly providing the typing information of all variables 0.0

and constants used in a predicate. While proving theorems, 8e"e” 2 Events(Speg) ) 0

provers can automatically infer the typing information of 9e:e2 Events(Speg) " €°7! e 2 Rel

involved variables and constants; however, this is not the case 8e:e2 OEvoents(SpeQ,) ) .

with valuation-based animators which explicitly require this 9e"e’2 Events(Speg) " €°7! e 2 Rel

information to set up the iteration process. where Events(SpeQ denotes the set of all events of the

Avoiding dynamic function computation in substitutions. This speci cation Spec
heuristic is similar to Heuristic 2 and requires the same

treatment: rewriting. Shared statea state where all the variables common to

both speci cations have the same values:
Complex invariant predicates. Invariants are conditions that

must be adhered by the behavior of a speci cation. In the Sy = fsis2 SoiN¢\ Ny sg

case of failure to be able to compute then, either they can Sy = f50332 OStJNt\ No sg

be rewritten like heuristic 2 or can also be removed from the Sc= S\ §

speci cation under the assumption that they already have been

taken care of during the veri cation process. Shared behaviorghe behaviors which go through the same

Introduction of observation variables. These variables are reﬁequtenlgel ofthstate? by rlnngevle?tsbrehIatgd B?I'h Let us h
quired due to the limitation of the communication protocol 9€M0t€R€l the extension olxel 1o behaviors where eac

between the animator and the external graphical environmergVentin a behavior is related to the event at the same position

such as Adobe Flash, which has limited support for date{h the other one:

structures. Our solution in this case is to transform the unsup-8h,;b:by 2 Bo* b 2 Bi " I 7! bh 2 Rel

ported output values by external graphical environment into (8i:i 2 dom(hy) ) (Pra(by(i)) 7! Pra(la(i)) 2 Rel))
the supported ones.

The shared behaviors between two speci catidgeg

B. Formal semantics of transformations and Speg, seen from theSpeg perspective are de ned as:

The transformational heuristics proposed in VTA actually o
modify the original speci cation. Therefore, we need to show B; = fhjb 2B~ (Rel '[fbg Bo)g
that, as far as animation is concerned, what is observable on
the transformed speci cation would have been observable on Behavior preservationa speci cationSpeg preserves the
the original speci cation. behavior ofSpeg if all the behaviors observed dBpeg are
hared behaviors. This intuitive de nition is slightly too broad

Our work is based on a kind of trace semantics where Wgnd should be qualied on two aspects. First, the starting

consider sequences of states and transitions. In the followin 9
Speg denotes a speci cation. The basic elements of the tate must be a shared state. Second, all non-deterministic

X - parameters must be admissible in both speci cations. This
semantics are then: property is expressed by the following predicates:
State:a mapping of names from skt to values from sev/, . o _ AR
constrained by the invariant (variables) or axioms (constants) ValidParam (v;s;e;Re) = Ge(s; V)

of the speci cation e2 ran(Rel) ) (9€%e°2 Rel '[feg]® Geo(s;V)) 7
e2 dom(Rel) ) (9e*e°2 Rel[feg]* Geo(s;V))
S=NI! V "8s:s2S) Inv(s) validParam (b; Spec;Re) =
” _ 8 (si;e;visti):(si;a;vi;ti) 2 b)
Event: a transition from one state to another de ned with validParam (vi;si; e ; Rel)

the help of a guard@. and a state transitiobe
e= When Gg(s;Vv) Then Ug(s;v) End So, the formal de nition of behavior preservation is:

wheres denotes the state anddenotes the non-deterministic

B
values (i.e., parameters) used by the event. We note the ring SPeG ~ jrel SPEG ,

of an event as 8h:bh 2B s 2 SN
s fV) ¢ validParam (b;Speg;Rel)) h 2 B!
Behavior: a sequence of states and event ring, starting This de nition then needs to be connected to what is actu-
from an initial state ally observed during an animation: which events are enabled
b2sedS E P(V) S)7 and what are the values in the states.

8i:i 2 dom(b) ) (Pra(l(i)) =Pr 1(b(i +1)) ~

_ . SameEnablednessexpresses the idea that on the shared
Pro(Ki)) Pra(b(i))(Pr 3(b(i)))

Pra(b(i)) states, events in both specications have the same status



(enabled or not); formally, the guard of both events is true.
SameEnablednesgSpeg; Speg; Rel)”

SameEnablednesgSpeg; Speg; Rel) , SameReachability(Speg; Speg; Rel)?
(8s;e;vis2 Sc " e2 Events(Speg)” SameClosure(Speg; Speg; Rel) )
validParam (v;s; e; Rel) ® Gg(v;s)) Spec B .o, Spe
(9€%e”2 Events(Speg) *» €°7! €2 Rel* Geo(V;S)) A PEG jrel SPEG

(8s;€%vis2 S, 22 Events(Speg)” [ ]
validP aram (v; s; €® Rel) * Geo(V;S) )
(9e:e2 Events(Spee) " €°7! €2 Rel * Ge(v;9))) VI. DEMONSTRATION OF THE APPROACH ON CASE
STUDIES

SameReachability expresses the fact that all states that .
can be reached from a shared state in a speci cation can also We applied the VTA framework to assess the correctness

be reached in the other one. Iof three sp;izgl] C'?'tri]()né all WBritten ri]n (tjhfa Even;B s_peci ?aﬂonB
. ] ) anguage([16]. The Event-B method is an offspring of the
Sargellflegcha_btnétys(slf)eqz,SEpeQ,,tReg) C A\ method [15] and is designed for system-level modeling and
(8sit & vis; c” € ven S(\(I) peG) analysis of large reactive systems. It uses set-theory and rst-
validParam (v;s;e;Rel) " s Yt ) order logic as the speci cation notation. It also uses the notions
5 X

0.0 0 &°(v) of re nements (to represent systems at different levels of
8 (?.e 'O_e 2 _'f‘;egtsﬁsggﬂ)z“ et7!SeZ R?\I hsg)n abstraction) and theorem proving (to prove the consistency be-
(8sit et vis; c” € venos( peg) tween various re nement levels). Its development is supported
validParam (v;s;é® Rel) * s 7 ¢ ) by the RODIN platform[[311]. For animation purposes, we used

(9e:e2 Events(Speg) * €971 €2 Rel A s PV 0) the valuation-based animators Brarhal [29] and ArfimB
An Event-B speci cation is composed @ontextswhich
SameClosure states the idea that a behavior with valid specify the static part of the requirements model Ktaathines
parameters reaches only shared states from a shared state.which specify the dynamic part of the model. The re nement
) ) relation is calledre nementbetween machines, arektension
SameClosure(Speg; Speg; Rel) , between contexts. All machines have a special event, INITIAL-
8S;,€;Vis2 S " 12 S0 ™ e2 Events(Speg) ISATION, which speci es the initial state.

N H [P N N N F(V)
validParam (v;s; e;Re) % Ge(vis)* s 7 t) 12 S The rst case study is about a land transport domain

These de nitions allow us to give the observation theorem'mOdeI [32], [33]. The second case study is about the landing
9 'system of an aircraft[ [34]. The third case study is about

If two speci cations have the three precgdlng properties, thea platooning system [35]. All case studies are available at
rst preserve the behavior of the second: -

http://dedale.loria.fr.
SameEnablednes{Speg; Speg; Re)”
SameReachability(Speg; Speg; Rel)*
SameClosure(Speg; Speg; Rel) )

The VTA framework explicitly requires all speci cations
to be proven before proceeding with their animation. The
speci cations are then animated by creating reasonable be-

Speg ° jRel Speg havioral scenarios representing the protocols that would have
been observed in the reality. The animators are provided with
Proof: startup values accordingly.

Let Speg be the original specication andSpeg be Not all re nements are animated. Some re nements based
the transformed speci cation. LeRel be the relation be- on small incremental steps are uninteresting from the anima-
tween these specications. LeB; = Behavior(Speg) tjon's point of view because they do not bring much informa-
and B, = Behavior(Speg): Let bib:b 2 Bt ™  ton in terms of new behaviors. At least one re nement per
b 2 Bo: Now if SameEnablednes¢Spec; Speg;Rel) *  gpservation level was subjected to animation. An interesting
SameReachability(Speg; Speg; Rel) ) 9 B¢:by; b 2 B point to note is that a speci cation may not be animatable

Same enabledness and reachability means speci catiot¥hile its re nement may be; there is no monotonicity in
share behaviors. However, some events may lead to non-sharggneral.
states, therefore we take closure to consider only the shared The result of the application of heuristics is an animatable

states of both speci cations, i.e., speci cation. In the following, the application of heuristics on
8s;t;e;vis2 Sc A t 2 Sy~ e2 Events(Speg) formal speci cations is presented in a before-after state clearly
A validp s eReD A Gu(v:s) A s IV 53 indicating how the speci cation has been transformed. When
validParam (v;s;e;Rel) * Ge(vis) " s t) t2 S necessary, the application of heuristics is justi ed in the form

If the specication has also the same closure (i.e., noof a formal proof.
transition leads to a non-shared state) in addition to the
same enabledness and reachability (shared behaviors) then the Case study 1: The land transport domain model
speci cations are behaviorally equivalent, i.e., any behavior
which is observed in the transformed speci cation would also
be observed in the original speci cation.

The speci cation in this case study is about modeling
of the land transportation domain. The term “transportation”

Therefore, http:/Aww.animb.org
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[ Location J [ Vehicle ] The fourth re nement belongs to the third observation level
¥ A that decomposes the protocol ofossing a hubinto further

[ - J [Staﬂsme M M‘“"‘WH J‘ sub-protocols oéntrance in a hupleaving a pathandwaiting
163 StartState5
} 3
[y

Movement2

. to enter in a hub The sixth and seventh re nements model
\ a path leaving a hubmoving on a pathandwaiting to move
| J//)/ /77,/*’ Obsevation level 1 "‘ at this level.
St 3L M B3 | | . . - . .
M ovimen,/ ! This speci cation exhibits several properties which call for
\

‘ the fourth observation level that decomposes the protocol of
i on a path MachineMovement7 completes the introduction
[ prve——rl animation as the mean to check their validity, namely:
Ne7/ Msmﬁa‘éM MW / complex data with behavioral constraints (following a

e

R | traversing a pathinto further sub-protocols afait to enter on
I of time into the model and concerns the events and situations
|

— route, for instance),
Observation Ie'yel 3
""""" - RN protocols and iterations (travel as a sequence of hub
crossing and path traversing protocols, for instance),
P and

V

Fig. 5. Event-B model of the land transport domainl[25]

non-deterministic interaction between elements (au-
tonomous vehicles, for instance).

Observation level 4

The second re nement of the model introduces the notion
of routes in the contexiet2 as shown by the left hand side

of Figure[6. The constanbutes is a set of sequences of
refers to the movement of people or goods by vehicles fronpaths ; a path is an edge in the graph between tabs

one location to another. Many important transportation con{stations) which are the vertices. The set of routes is introduced
cepts, such as vehicles, hubs (stations, junctions), connectiogs follows:

(paths, routes), and movement, appear in this de nition of
transportation. They must be de ned in the domain description.
In the speci cation, we also express properties that any system  seqpP aths= fseg9n:n 2 Ny~ seq2 1:n  paths
working within the domain is expected to meet and maintain.

A inite (seg " card(seg = ng
In this specication effort, the focus is on the formal

de nition of domain's laws, protocols and properties, rather  aAs sequence is not a primitive data type in Event-B data
than on the implementation of a particular system. Re nemenktrycture, we must provide its de nition. This de nition uses

is used to introduce new notions; the proof obligations (POsyouble quanti cation which the employed animator was unable
serve to guarantee the consistency of the model. to support when we tried to animate the model. To make the

The domain model contains one abstract machinémdel animatable, we employ Heuristic 1 to transform the
Movement0 and its seven re nements. All machines of the 3XI0M to use the following superset of its expression:

model are shown by green blocks. In parallel with machines,
two contexts are being re ned. The rst is the conteyét,
which models the static properties of the network (its topology,

quantities associated with its elements, etc.). The second is Since the type information of seqPaths has been changed,
the contextStartState  which helps to set and prove the the model propertiegrol andpro2 (see the left hand side of
INITIALISATION event of the machines. The contexts of Figure@) expressed in terms of the original type information
the model are shown by blue blocks. Extension betweemnay no longer hold. Actually, these properties state that valid
contexts and re nement between machines are shown by singl§rigin and destination hubs of a route are stations (and not
arrow lines; whereas, the use of contexts by machines iginctions), both hubs belong to the same network, both hubs
depicted in Figuré]5 by dashed lines. are connected to each other, and both hubs forbid cyclic
The development is structured into four different Obser_connections (it is a domain restriction to avoid in nite circular
. paths). The properties use functions de ned in previous re ne-
vation levels. The abstract model, the rst two re nements ments, such asonnectionOrigin/Destination and
and the fth re nement sit at the rst observation level that obsNe'tHubs which provide the connections and the hubs
de nes thetravejl protpcol which means a vehicle can move of a network respectively. Bothrol andpro2 are removed.
between two distinctive geographical points (hubs). Thougho, o the speci cation is now animatable. Figlre 6 shows the
technically realized as th_e re nement dflovementd, the contextNet2 before and after the application of Heuristic 1.
fth re nement step is logically situated at the rst level of
observation; it introduces time and concerns only the events The most important effect of the application of Heuristic
at the rst level. The third re nement belongs to the secondl is the invalidation of all proofs, either iNet2 or in

level of observation that decomposes the travel protocol intdovement2 and their subsequent re nements, which relied
further two sub-protocolsrossing hubsandtraversing paths  on the essential property of sequences:

seqP aths2 P(N 7 paths)



CONTEXT CONTEXT

Net2 Net2
EXTENDS EXTENDS
Netl Netl
CONSTANTS CONSTANTS
paths, routes, isRoute, seqPaths paths, routes, isRoute, seqPaths
AXIOMS AXIOMS
typl paths  Connections typl paths  Connections
typ2 seqPaths =f seqj9 n. n2 N1~ seq2 1.n  paths”? typ2 seqPaths 2 P(N 7 paths)
nite (seq) " card(seq) = ng
typ3 isRoute 2 segPaths! B typ3 isRoute 2 seqPaths! B
typ4 routes = f spj sp 2 seqPaths * isRoute(sp) = TRUEg typ4 routes = f spjsp2 seqPaths © isRoute(sp) = TRUEg

prol 8r.r2 seqPaths *
((connectionOrigin(r(1)) 2 stations
connectionDestination(r(card(r ))) 2 stations”
(obsNetHubs][f connectionOrigin(r(1))g] \
obsNetHubs[f connectionDestination(r(card(r)))g] 6 ? )"
(8i.i22..card(r)  connectionDestination(r(i 1)) = connectionOrigin(r(i)))
~ connectionOrigin(r(1))6 connectionDestination(r(card(r))) *
(8i1,i2.i12 1..card(r) ~ i22 1..card(r) ~ i1 6 i2)
connectionOrigin(r(il)) & connectionOrigin(r(i2)))
A (81i1,i2.i12 1..card(r) ~ i22 1..card(r) ~ i16 i2
) connectionDestination(r(i1)) 6
connectionDestination(r(i2 )))) , isRoute(r) = TRUE)

pro2 8c.c2 Connections )
(connectionDestination(c)2 stations * connectionOrigin(c) 2 stations )
(9r.r2routes * connectionOrigin(c) = connectionOrigin(r(1)) »
connectionDestination(c) = connectionDestination(r(card(r )))))

END END

Fig. 6. The contexiNet2 before (left) and after (right) the application of Heuristic 1

are also being re ned. The former contains the information
8s:s 2 seqPaths) dom(s) =1 ::card(s) necessary to set and prove thEITIALISATION event
of the machines. The latter contains the description of the
Proof of application of Heuristic 1: Animation requires hardware con guration and status, such as description of
us to provide actual values faegPath . Since segPath landing sets as front, left and right, and handle states as
is a constant, we just need to ensure that the actual values and down. Additionally, the contextockpitHardware
conform to the axioms of the origindllet2 . Then, since contains the description of the pilot interface and the context
the Movement2 machine is veri ed, we are garanteed that Phase_ldent  contains the information regarding readings
animation will only reach shared legal states. of the sensors. The contexts of the system are shown by blue
blocks. Extension between contexts and re nement between
machines are shown by single arrow lines, whereas the use of

. contexts by machines is depicted by dashed lines.
B. Case study 2: The landing gear system

Figure [T also shows three levels of observations. The

The second case study deals with the speci cation of %bstract model sits at the rst observation level that deals
Landing Gear System (LGS) of an aircraft. The LGS is inwith the status of the plane: ready to land or y. The rst,

charge of maneuvering landing gears and associated door, ;
The LGS is composed of 3 landing sets: front, left ar]d§econd and third re nement of the model belongs to the

faht. Bach landin ¢ contain door landing- ¢ an econd _observation level that deals with the movement of the
ght. Each landing set contains a door, a 'anding-gear anf, o .panjcal elements of the landing gears (doors, legs, locks,

associated hydraulic cylinders. The main parts of the LGS arg;. y “the fourth re nement sits at the third observation level

as following: that was introduced when we wanted to model the reading of

1) a mechanical part that contains all the mechanicalh€ sensors.
devices and the three landing sets,

2) adigital part including the control software,

3) and a pilot interface.

An interesting feature of the LGS case study is a re-
guirement that the maneuvers can be interrupted and reversed
at any time. So, exercising the events which model the

The corresponding Event-B model speci es the pilot inter-feversal is an important part of the validation. One such
face, the digital part, and the mechanical and hydraulic part§vent, restore_up , introduced in the third re nement,
of the system. Additionally, it describes the hardware (gears-andingSystem_3 , updates the related variables using the
doors, sensors, lights, electro-valve, etc.), the normal workingPllowing pattern:
of the hardware and software, and the safety properties (normal
and emergency modes).

. . i 92 LANDING _SETS! SENSOR_OUTPUTS?
As shown by Figur¢]7, the Event-B model of the landing \(/gég; gal_rANDING SETS)) (varg)= sfalse))

gear system contains one abstract macheredingSystem or
and its four re nements, all shown by green blocks. In parallel var :jvar®2 LANDING _SETS! SENSOR_OUTPUTS?
with machines, two contextSontextInit andHardware (8g:g2 LANDING _SETS)) (var%g)= strue))
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Platoon_1: decomposes the event into one which

moves the leader vehicle and one which moves the
followers. This organizes the basic “iteration along the

platoon” of each move.

Platoon_2: computes the length of each basic move.
This leads to the introduction of kinematic functions
in the contexts and to the re nement of move events
into several ones, each corresponding to a different
situation (whether the maximum and minimum speeds
are reached or not). This models thetion part of the
SMA.

Platoon_3: introduces the notion oflecisionof the
SMA model into the speci cation. Two events, one for
the leader, and one for the followers, are introduced

Fig. 7. Event-B model of the landing gear systémi| [25]

wheresfalseand strue model the binary information sent by and integrated in the control loop.

the sensors. Platoon_4: introduces the notion gberceptionwhich
During animation, the animator fails to execute these allows decision events to be rened so the actual

substitutions due to its inability to dynamically map variables computation of the parameters of the control law

to each other. We then rewrote the actions using Heuristic 2 (acceleration) can be performed.

as following to achieve their execution. . .
Although the last re nement is very close to an implemen-

tation, in spirit if not in form, yet we decided to use animation
LANDING _SETS f sfalseg to validate the speci cation for several reasons. The rst was
curiosity as the heavy use of functions was challenging, the
second was to compare the results of the animation with the
results of simulations that had been previously made, and the

Figure@ shows the evemestore up before and after |aSt was to conrm that a Certain “formal approxima’[ion" was

var
or
var

LANDING _SETS f strueg

the application of Heuristic 2. legitimate.
The last reason is a consequence of using discrete tools
C. Case study 3: The platooning system to model what is inherently continuous. In this case, all POs

were discharged, assuming one property, nanx€ly=z) =
The third case study deals with the specication of a(xy)=z, holds. True inR, this property is false itN. However,
platooning system. Platooning is a mode of moving wherehe difference becomes actually negligible when numerators
vehicles are synchronized and follow one another closely. Agre much bigger than denominators. Animation with realistic
platoon can be seen as a road-train where cars are linked Rglues gives insight on the validity of the “approximation” and
software, instead of hardware. Platooning has several potentigh the solidity of the model.
uses in an urban mobility system: augmenting throughput,

herding unused cars to stations, or running transient buses, The context of the model contains the notionsspeed
for instance. and acceleration Several constants and axioms have been

introduced into the context to help introducing the kinematics
Several platooning control systems are being developegf a platooning system. The de nition of the kinematics is
and experimented. One locally developed is based on Situate®mprised of complex mathematical functions and de nitions
Multi-Agent (SMA) theory. Each car has its own local control which are non-animatable. Their non-animatability is primarily
algorithm which uses a perception/decision/action loop; thejue to the complex de nition of the functions. It does not allow
platooning behavior is an emerging propeity|[36].1{37]. the assignment of a single start-up value to the constant for
animation. In fact, some of the functions are based on multiple

An Event-B speci cation of the local model has been o : )
de nitions, each corresponding to a different case.

written [35], [38], [39]. Contrary to the rst case study, the
structure of the development in this case study can be inter- The rst complexity arose in the re nemerlatoon_2
preted as a sequence of re nements toward an implementatiogith the de nition of thenew_xpos function:

Each re nement decomposes some events to make explicit a

part of the general computation. 8xpos0; speed); accel:
((xposO 2 N” speed 2 0::MAX _SPEED"
The Event-B model of the speci cation is presented by acceD2 MIN _ACCEL:MAX _ACCEL))
Figure[9. The speci cation consists of ve machines (four (new_xpos(xpos0 7! speed 7! accel) =
re nements): xpos0 + speed + (acceD=2)))
Platoon: de nes platoons and sets the basic safetywhich models the kinematic law of computing a new position
property. It contains only one evensll_move |, of a vehicle based on its acceleration and speed. It was used in
where all vehicles change positions while keeping safesome event guards in the following form and naturally could
distance. not be computed because actual values were required by the
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restore_up b restore_up b

REFINES REFINES
restore_up restore_up

WHERE WHERE
grd1_all_gear_down gear_position = all_up grd1_all_gear_down gear_position = all_up
grd2_nominal_mode operating_mode = normal grd2_nominal_mode operating_mode = normal
grd3_abort_command continuation_mode = continue grd3_abort_command continuation_mode = continue
grd4_all_raised 89.92 LANDING_SETS ) (gear_movement(g) = locked_up grd4_all_raised 89.92 LANDING_SETS ) (gear_movement(g) = locked_up

_ gear_movement(g) = stored_up) _ gear_movement(g) = stored_up)

grd5_handle_down handle_state = handle_up grd5_handle_down handle_state = handle_up

THEN THEN
actl_door_open door_open :j door_open' 2 LANDING_SETS ! actl_door_open gear_extended := LANDING_SETS f sfalseg

SENSOR_OUTPUT * (8g. g2 LANDING_SETS )
(door_open'(g) = sfalse))

act2_all_gears_up gear_position := all_up act2_all_gears_up gear_position := all_up

act3_all_stored gear_movement := f Front 7! stored_up, Left 7! stored_up, act3_all_stored gear_movement := f Front 7! stored_up, Left 7! stored_up,
Right 7! stored_upg Right 7! stored_upg

act4_normal_mode operating_mode := normal act4_normal_mode operating_mode := normal

act5_continue continuation_mode := continue act5_continue continuation_mode := continue

act6_light_maneveur_off light_maneuver := light_off act6_light_maneveur_off light_maneuver := light_off

act7_gear_extended gear_extended :j gear_extended' 2 LANDING_SETS ! act7_gear_extended gear_extended := LANDING_SETS f sfalseg

SENSOR_OUTPUT ” (8g. g2 LANDING_SETS)
(gear_extended'(g) = sfalse))

act8_gear_retracted gear_retracted :j gear_retracted' 2 LANDING_SETS ! act8_gear_retracted gear_retracted := LANDING_SETS f strueg
SENSOR_OUTPUT * (8g. g2 LANDING_SETS)
(gear_retracted'(g) = strue))

act9_door_closed door_closed :j door_closed' 2 LANDING_SETS ! act9_door_closed door_closed := LANDING_SETS f strueg
SENSOR_OUTPUT * (8g. g2 LANDING_SETS))
(door_closed'(g) = strue))

act10_presurized circuit_presurized :j circuit_presurized'2 SENSOR_OUTPUT act10_presurized circuit_presurized :j circuit_presurized'2 SENSOR_OUTPUT

A ( circuit_presurized ' = sfalse) A ( circuit_presurized ' = sfalse)
actll_switch analog_switch :j analog_switch' 2 SWITCH_POSITIONS actll_switch analog_switch :j analog_switch' 2 SWITCH_POSITIONS
(analog_switch' =open) (analog_switch' = open)
END END

Fig. 8. The eventestore_up  before (left) and after (right) the application of Heuristic 2

animators instead of a calling a function in the context.

nxpos = new_xpos(xpos(vehicle) 7! speedvehicle) 7!
magic_accel

wheremagic acceldenotes a free variable for this re nement,
which will be replaced by a state variable further on down the
development. Using Heuristic 3, we rewrote the guards as

nxpos = xpos(vehicle) + speedvehicle) + ( magic_accel=2))

Proof of application of Heuristic 3: The PO indicates
that theG, ) G must be proven. Fig. 9. The Event-B model of the platooning systém [35]

nxpos = new_xpos(xpos(vehicle) 7! speedvehicle) 7!
magic_acce) (G) i.e., either the particular vehicle is accelerating or not:

8xpos0; speed; accel:

The functionnew_xpos is de ned as:
((xposO0 2 N~ speed 2 0::MAX _SPEED"

new_xpos(xposO0 7! speed 7! acceD) = xposO + acceD2 MIN _ACCEL::MAX _ACCEL))

speed + (accelD=2) (acceD=0) new_xpos_max
(xposO 7! speed 7! accel) =

Inlining the de nition of function intoG with the corre- xpos0 + MAX _SPEED )"
sponding local variables: (accel6 0 ) new_xpos_max
. . sO 7! @ 7! D) =

nXpos = xpos(vehicle) + speedvehicle) + %%%OJr Msg);e Sp EaEcge )
(magic_accel=2)) (Gr) ((MAX _SPEED  speed)

(MAX _SPEED speed))=(2=acceD))))

The events usingiew_xpos_max function had to be dupli-
cated (Heuristic 4), one with the guaadcel=0 and the other
Vlvtith its negation.

Therefore,G; ) G. ]

The most important complication came with another kine-
matic functionnew_xpos_max that calculates the position of
a vehicle when its speed has already reached the maximum.
is quite similar tonew_xpos , except there is a case de nition, The prime example of such cases is the eveotvel_max
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which is shown by Figuré 11. Thguard3 of the original GO states:

event calculates the new speed of a vehicle as: grd® magic_accel6 0

nspeed= new_speedspeedvehicle) 7! magic_acce) grdS nxpos = xpos(vehicle) + MAX _SPEED
((MAX _SPEED speedvehicle))
The speed is then checked against the maximum allowed speed (MAX _SPEED speedvehicle)))=(2 magic_acce))
guard4 and consequently a new position for the vehicle is

determined inguard5 as: G%states:
NXpos = new_xpos_max (xpos(vehicle) 7! speedvehicle) grd®magic_accel=0
7! magic_accel grd5 nxpos = xpos(vehicle) + MAX _SPEED
To solve the issue, the cases dened to calculate Therefore,G° G%) Gg(v). [ ]

new_xpos_max are broken down into two events, each cater-
ing for one particular case. Figure]12 shows the transformegiS
movel max event.

The major breakthrough of the animation activity was the

covery of oscillation in the platoon, i.e., the propagation of a

wave inside the platoon without stabilization. The last vehicles

The original and the transformed cont&ntext 2 that  of the platoon had to adjust their acceleration frequently while

tells which functions have been relocated to machines arthe ones in the front run smoothly. Animation shows that this

shown by Figur¢ 70. speci cation needs to be improved on this account as this is
an undesirable feature.

movel_max b
REFINES
movel VII. EVALUATION OF THE ANIMATION PROCESS
ANY . . .
magic_accel, nspeed, nxpos Breuer et al. [[40] listed three qualitative measures that
WHI(EEE e = 1 can be used to evaluate any animation process. In addition to
grdl1 vehicle = . .
grd2 magic._accel 2 MIN_ACCEL..MAX_ACCEL completeness, they mention coverage, i.e., how many language
grd3 nspeed = new_speed(speed(vehicle)7! magic_accel) constructs are handled; efciency, i.e., how quickly is an
grd4 nspeed > MAX_SPEED _ animation process is performed; and sophistication, i.e., how
grd5 nxpos = new_xpos_max(xpos(vehicle)7! . . K
speed(vehicle)7! magic,_accel) many of the animation processes actually terminate.
WITH . . . L
varl magic_xpos_vehicle = nxpos In addition, [41] provides further criteria to strengthen the
THEN _ evaluation of an animation process, i.e., interactivity, trans-
actl vehicle := vehicle+1 . . . . .
act2 xpos(vehicle) := nxpos parency and operational equivalence. Interactivity is the idea
act3 speed(vehicle) = MAX_SPEED that a user should be able to interact with the animator in order
END to perform better exploration of the speci cation. Transparency

is directly related to the intermediate transformations that
help achieve animations of speci cations. Finally, operational
equivalence of an animator is ensured when its performed

Proof of application of Heuristic 4:The PO needs to be operations are equivalent to the speci cation, instead of its
proved is achieved re nements.

Fig. 11. The evenmovel max before the application of Heuristics 3 & 4

The VTA framework meets most of the stipulated criteria
for a desirable animation process. As described in this paper,

Ge(Vv) ) 9 €%€°2 Rel[feg]® G(v) » (8e%G%(v) ) Ge(v))  we are able to compensate for an animation tool's inability to
execute speci cations. For example, if a speci cation language
construct is not supported by a tool, we promote its rewriting
into an equivalent formula that not only extends its coverage
NXpos = new_xpos_max (xpos(vehicle) 7! speedvehicle) but also contribute towards its ef ciency and sophistication.

The non-animatable expression is the following:

7! magic_acce)(Ge) Our heuristics that deal with the simpli cation of formulas,
providing missing types, inlining function values, etc., also

The functionnew_xpos_max is de ned as: help achieve ef ciency and sophistication.

If accel0=0) VTA not only inpre_zases the_ interactivity of users with tools
new_xpos_max (xpos0 7! speed 7! accel) = py proposing heuristics but with the help of provided seman-
xpos_o+ MAX SPEED tics one can also reason about transparency of the proposed

else if accel0 60 )‘ transformations. In some cases, transformations are identity
new_xpos_max (xpos0 7! speed 7! accel) = functions, so they are highly transparent. However, in case of
xpos_0+ MAX SPEED non-supported eIements' where speci cations need to undergo
((MAX _SP EED speed) some structural reordering and optimizations, our proposed
(MAX SPEED speed))=(2=acceD)) semantics provide a basis to argue abou'g the soundness and,

- consequently, transparency of transformations.
Inlining the de nition of function intoG, while splitting It is not always possible to maintain the operational equiv-
it into G% and G alence between the original and the transformed speci cation,
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CONTEXT
Context2
EXTENDS
Contextl
CONSTANTS
MAX_SPEED, MIN_ACCEL, MAX_ACCEL,
initial_speed, new_speed, new_xpos,
new_xpos_max, New_xpos_min
AXIOMS
typ01 MAX_SPEED 2 N1
typ02 MAX_ACCEL 2 N1
typ03 MIN_ACCEL 2 INT

CONTEXT
Context2
EXTENDS
Contextl
CONSTANTS
MAX_SPEED, MIN_ACCEL, MAX_ACCEL,
initial_speed ,

AXIOMS
typ01 MAX_SPEED 2 N1
typ02 MAX_ACCEL 2 N1
typ03 MIN_ACCEL 2 INT

pro01 MIN_ACCEL < 0 pro01 MIN_ACCEL < 0

pro02 initial_speed 2 1..VEHICLES'! pro02 initial_speed 2 1..VEHICLES'!
0..MAX_SPEED 0..MAX_SPEED

pro03 8 vehiO.(vehi02 1..VEHICLES ) (9 speedO. pro03 8 vehiO.(vehi02 1..VEHICLES )
(speed0 2 0..MAX_SPEED " (9 speedO . (speed0 2 0..MAX_SPEED *
initial_speed (vehi0) = speed0))) initial_speed (vehiO) = speed0)))

pro04 new_speed 2 (0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL) ! INT

pro05 8 speedl,accell .
(speed12 0..MAX_SPEED * accell2
MIN_ACCEL..MAX_ACCEL )
new_speed(speedl17! accell) =
speedl + accell)

pro06 new_xpos 2 (N X 0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL)! N

pro07 8 xpos0,speed0,accel0 . (xpos02 N*
speed0 2 0..MAX_SPEED *
accel0 2 MIN_ACCEL..MAX_ACCEL) )
(new_xpos(xpos07! speed07! accel0) =
xpos0 + speed0 + (accel0 / 2)))

pro08 new_xpos_max 2 N X 0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL! N

pro09 8 xpos0,speed0,accel0 . (xpos0 2 N
~ speed0 2 0..MAX_SPEED *
accel0 2 MIN_ACCEL..MAX_ACCEL )
((accelo=0)
new_xpos_max(xpos07! speed07! accel0)
= xpos0 + MAX_SPEED) *
(accelo 6 0)
new_xpos_max(xpos07! speed07! accelO) =
xpos0 + MAX_SPEED
(((MAX_SPEED speed0)
(MAX_SPEED speed0))/(2 accel0)))))

pro10 new_xpos_min 2 N X 0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL! N

proll 8 xpos0,speed0,accel0 . (xpos0 2 N ”
speed0 2 0..MAX_SPEED "
accel0 2 MIN_ACCEL..MAX_ACCEL )
((accel0=0)
new_xpos_min(xpos07! speed07! accel0) =
xpos0) N (accel0 & 0)
new_xpos_min(xpos07! speed07! accel0) =
xposO  ((speed0  speed0)/
(2 accel0)))))

END END

Fig. 10. The contex€Context_2 before (left) and after (right) the application of Heuristic 3

for example, in case of re nement and approximation. In  Executability of specications is a controversial issue.
the transformation process, one can lose certain behaviorBjore than two decades ago, Hayes etlall [44] objected to the
for example, by restricting some inputs, but one can notdea of speci cation execution. They argued that executability
have additional behaviors such as new state transitions. Wauppresses the expressiveness of a language and as far as
have, therefore, introduced the notion of delity which, once speci cations are concerned, the latter quality of a speci cation
proved, ensures that observations made on the transformetiould be preferred over the former. In addition, they stated
speci cation equate with the original speci cation. that executable speci cations can negatively affect implemen-
tations.

VIIl. RELATED WORK . o
© In response to these concerns,|[45] replied that it is the

The concept of speci cation animation is not a new one.issue of correctness which is the major challenge in soft-
Program visualizations have been previously used for desigrware development and not the expressiveness of speci cation
ing, developing, monitoring and debugging software. Somdanguages. A technique like animation is, in fact, a very
notable visualization environments spanning across differermiowerful method to ensure that speci cations are validatable
areas of interest are graphics interface development [42]y customers as early as possible, thus, minimizing the chances
visualization of concurrent processés|[43], etc. of software faults.
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movel_max b

REFINES REFINES

movel movel
ANY ANY

magic_accel, nspeed, nxpos magic_accel, nspeed, nxpos
WHERE WHERE

grdl vehicle =1

grd2 magic_accel 2 MIN_ACCEL..MAX_ACCEL

grd' magic_accel 8 0

grd3 nspeed = new_speed(speed(vehicle)7!

magic_accel)

grd4 nspeed > MAX_SPEED

grd5 nxpos = xpos(vehicle) +
MAX_SPEED  (((MAX_SPEED
speed(vehicle)) (MAX_SPEED
speed(vehicle))) / (2 ~magic_accel))

WITH WITH

varl magic_xpos_vehicle = nxpos varl magic_xpos_vehicle = nxpos
THEN THEN

actl vehicle := vehicle+1 actl vehicle := vehicle+1

act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX_SPEED
END

movel_max_zero b

grdl vehicle =1

grd2 magic_accel 2 MIN_ACCEL..MAX_ACCEL

grd" magic_accel =0

grd3 nspeed = new_speed(speed(vehicle)7!
magic_accel)

grd4 nspeed > MAX_SPEED

grd5 nxpos = xpos(vehicle) + MAX_SPEED

act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX_SPEED
END

Fig. 12. The evenimovel max after the application of Heuristics 3 & 4

Our approach addresses both issues. Our rules help speci {3] S. Owre, J. M. Rushby, , and N. Shankar, “PVS: A prototype veri cation

cations achieve their animation and at the same time we ensure
that they remain consistent. Our work can be seen as an exten-
sion of the approach presented in][46]. This work highlights
the steps of converting a formal problem speci cation to a 4l
nal program by applying semantics-preserving transformation
rules.

(5]

IX. CONCLUSION [6]

We have presented an animation-based process for val-

idation of formal requirements specications. The idea of 7]
stepwise development is further enriched by a proposition of
an auxiliary animation step associated with (preferably) each
re nement.

mation is that not all speci cations are animatable, at least, not
directly. However, a speci cation can be “downgraded” into a
behaviorally-equivalent animatable speci cation. We have then
proposed several transformations to realize this idea. Naturally
the validity of such a technique depends on semantics of thelg]
transformations. We have then developed a specic formr;h !
notion of delity, based on the behavior-preservation propert

of a model, to guarantee that the transformations can be trusted.

Despite having transformation rules, animators may still

fail to execute a speci cation. For the validation of such Specq
i cations, the technique of simulation _[47], where users can
safely complete the program generated form the speci cation,
best suits the purpose. In future, we plan to extend the VTA12]
framework in this direction. Implementation of the proposed
heuristics in the form of a tool is also a future work.
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