New Evolutionary Classifier Based on Genetic Algorithms and Neural Networks: Application to the Bankruptcy Forecasting Problem

Abstract : Artificial neural networks (ANNs) have been widely applied in data mining as a supervised classification technique. The accuracy of this model is mainly provided by its high tolerance to noisy data as well as its ability to classify patterns on which they have not been trained. Moreover, the performance to ANN based models mainly depends both on the ANN parameters and on the quality of input variables. Whereas, an exhaustive search on either appropriate parameters or predictive inputs is very computationally expansive. In this paper, we propose a new hybrid model based on genetic algorithms and artificial neural networks. Our evolutionary classifier is capable of selecting the best set of predictive variables, then, searching for the best neural network classifier and improving classification and generalization accuracies. The designated model was applied to the problem of bankruptcy forecasting, experiments have shown very promising results for the bankruptcy prediction in terms of predictive accuracy and adaptability.
Type de document :
Article dans une revue
Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2007, 6, pp.57-68
Liste complète des métadonnées

https://hal.inria.fr/hal-01262350
Contributeur : Coordination Episciences Iam <>
Soumis le : mardi 26 janvier 2016 - 16:05:13
Dernière modification le : lundi 18 avril 2016 - 16:43:44
Document(s) archivé(s) le : mercredi 27 avril 2016 - 13:14:24

Fichier

arima00605.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01262350, version 1

Collections

Citation

M.A. Esseghir. New Evolutionary Classifier Based on Genetic Algorithms and Neural Networks: Application to the Bankruptcy Forecasting Problem. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2007, 6, pp.57-68. 〈hal-01262350〉

Partager

Métriques

Consultations de la notice

136

Téléchargements de fichiers

675