R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato et al., Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 1994.

E. Carson and J. Demmel, A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of $s$-Step Krylov Subspace Methods, SIAM Journal on Matrix Analysis and Applications, vol.35, issue.1, pp.22-43, 2014.
DOI : 10.1137/120893057

E. Carson, N. Knight, and J. Demmel, Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace Methods, SIAM Journal on Scientific Computing, vol.35, issue.5, pp.42-61, 2013.
DOI : 10.1137/120881191

A. T. Chronopoulos and C. W. , s-step iterative methods for symmetric linear systems, Journal of Computational and Applied Mathematics, vol.25, issue.2, pp.153-168, 1989.
DOI : 10.1016/0377-0427(89)90045-9

URL : http://doi.org/10.1016/0377-0427(89)90045-9

A. T. Chronopoulos and A. B. Kucherov, Block s-step Krylov iterative methods. Numerical Linear Algebra with Applications, pp.3-15, 2010.
DOI : 10.1002/nla.643

A. T. Chronopoulos and C. D. Swanson, Parallel iterative S-step methods for unsymmetric linear systems, Parallel Computing, vol.22, issue.5, pp.623-641, 1996.
DOI : 10.1016/0167-8191(96)00022-1

E. and D. Sturler, A parallel variant of GMRES(m), Proceedings of the 13th IMACS World Congress on Computational and Applied Mathematics, 1991.

E. , D. Sturler, H. A. Van, and . Vorst, Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers, Applied Numerical Mathematics, vol.18, issue.4, pp.441-459, 1995.

J. W. Demmel, M. T. Heath, and H. A. , Parallel numerical linear algebra, Acta Numerica, vol.10, pp.111-197, 1993.
DOI : 10.1007/BF01932738

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Dongarra and M. A. Heroux, Toward a new metric for ranking high performance computing systems, Sandia National Laboratories Technical Report, pp.2013-4744, 2013.

J. Dongarra, M. A. Heroux, and P. Luszczek, HPCG benchmark: a new metric for ranking high performance computing systems, 2015.
DOI : 10.1093/nsr/nwv084

P. R. Eller and W. Gropp, Non-blocking preconditioned Conjugate Gradient methods for extreme-scale computing, Conference proceedings. 17th Copper Mountain Conference on Multigrid Methods, 2015.
DOI : 10.1109/sc.2016.17

]. J. Erhel, A parallel GMRES version for general sparse matrices, Electronic Transactions on Numerical Analysis, vol.3, issue.12, pp.160-176, 1995.

P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose, Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines, SIAM Journal on Scientific Computing, vol.35, issue.1, pp.48-71, 2013.
DOI : 10.1137/12086563X

P. Ghysels and W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm, Parallel Computing, vol.40, issue.7, pp.224-238, 2014.
DOI : 10.1016/j.parco.2013.06.001

A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences, Linear Algebra and its Applications, vol.113, pp.7-63, 1989.
DOI : 10.1016/0024-3795(89)90285-1

A. Greenbaum, Estimating the Attainable Accuracy of Recursively Computed Residual Methods, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.3, pp.535-551, 1997.
DOI : 10.1137/S0895479895284944

M. H. Gutknecht and Z. Strako?, Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers, SIAM Journal on Matrix Analysis and Applications, vol.22, issue.1, pp.213-229, 2000.
DOI : 10.1137/S0895479897331862

N. Halko, P. G. Martinsson, and J. A. Tropp, Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM Review, vol.53, issue.2, pp.217-288, 2011.
DOI : 10.1137/090771806

M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for solving linear systems, Journal of Research of the National Bureau of Standards, vol.14, issue.6, 1952.

N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, 2002.
DOI : 10.1137/1.9780898718027

URL : http://eprints.ma.man.ac.uk/238/04/covered/MIMS_ep2006_75_Book_Covers.pdf

J. Liesen and Z. Strako?, Krylov Subspace Methods: Principles and Analysis, 2012.
DOI : 10.1093/acprof:oso/9780199655410.001.0001

G. Meurant and Z. Strako?, The Lanczos and conjugate gradient algorithms in finite precision arithmetic, Acta Numerica, vol.15, pp.471-542, 2006.
DOI : 10.1017/S096249290626001X

Y. Notay, On the convergence rate of the conjugate gradients in presence of rounding errors, Numerische Mathematik, vol.48, issue.156, pp.301-317, 1993.
DOI : 10.1007/BF01385754

C. C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, 1971.

C. C. Paige, Computational Variants of the Lanczos Method for the Eigenproblem, IMA Journal of Applied Mathematics, vol.10, issue.3, pp.373-381, 1972.
DOI : 10.1093/imamat/10.3.373

C. C. Paige, Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix, IMA Journal of Applied Mathematics, vol.18, issue.3, pp.341-349, 1976.
DOI : 10.1093/imamat/18.3.341

C. C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem, Linear Algebra and its Applications, vol.34, pp.235-258, 1980.
DOI : 10.1016/0024-3795(80)90167-6

G. L. Sleijpen, H. A. Van, and . Vorst, Zuverl????lich berechnete Residuen in hybriden Bi-CG Verfahren, Computing, vol.15, issue.2, pp.141-163, 1996.
DOI : 10.1007/BF02309342

G. L. Sleijpen, H. A. Van-der, J. Vorst, and . Modersitzki, Differences in the Effects of Rounding Errors in Krylov Solvers for Symmetric Indefinite Linear Systems, SIAM Journal on Matrix Analysis and Applications, vol.22, issue.3, pp.726-751, 2001.
DOI : 10.1137/S0895479897323087

E. Stiefel, Relaxationsmethoden bester Strategie zur L??sung linearer Gleichungssysteme, Commentarii Mathematici Helvetici, vol.29, issue.1, pp.157-179, 1955.
DOI : 10.1007/BF02564277

URL : http://www.digizeitschriften.de/download/PPN358147735_0029/PPN358147735_0029___log14.pdf

Z. Strako? and P. Tich, Tich`y. On error estimation in the Conjugate Gradient method and why it works in finite precision computations, Electronic Transactions on Numerical Analysis, vol.13, pp.56-80, 2002.

C. Tong and Q. Ye, Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear systems, Mathematics of Computation, vol.69, issue.232, pp.1559-1575, 2000.
DOI : 10.1090/S0025-5718-99-01171-0

H. A. Van-der-vorst and Q. Ye, Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals, SIAM Journal on Scientific Computing, vol.22, issue.3, pp.835-852, 2000.
DOI : 10.1137/S1064827599353865

J. H. Wilkinson, Rounding errors in algebraic processes, Courier Corporation, 1994.