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Feedback Enhances Simultaneous Energy and
Information Transmission in Multiple Access

Channels
Selma Belhadj Amor, Samir M. Perlaza, Ioannis Krikidis, and H. Vincent Poor

Abstract—In this paper, the fundamental limits of simultaneous
information and energy transmission in the two-user Gaussian
multiple access channel with feedback are fully characterized.
A simple achievability scheme based on power-splitting and
Ozarow’s scheme is shown to be optimal. Finally, the maximum
individual information rates and the information sum-capacity
that are achievable given a minimum energy rate constraint
of b energy-units per channel use at the input of the energy
harvester are identified. An interesting conclusion is that for a
fixed information transmission rate, feedback can at most double
the energy transmission rate with respect to the case without
feedback.

I. INTRODUCTION

For decades, a common engineering practice has been to
exclusively use radio frequency (RF) signals for information
transmission. However, this practice has been shown to be
suboptimal [1]. Indeed, an RF signal carries both energy
and information. From this standpoint, a variety of modern
wireless systems suggest that RF signals can be simulta-
neously used for information and energy transmission [2].
Nevertheless, information and energy transmission are often
conflicting tasks and thus subject to a trade-off between
the information transmission rate (bits per channel use) and
the energy transmission rate (energy-units per channel use).
This trade-off is evidenced in finite constellation schemes,
as highlighted in Popovski et al. [3]. Consider the noiseless
transmission of a 4-PAM signal over a point-to-point channel
in the alphabet {−2,−1, 1, 2}. If there is no received energy
rate constraint, one can clearly convey 2 bits per channel
use by choosing all available symbols with equal probability.
However, if one requires the received energy rate to be for
instance the maximum possible, the maximum transferable
information rate is 1 bit per channel use. This is basically
because communication takes place using only the symbols
carrying the maximum energy. From this simple example, it is
easy to see how additional energy rate constraints may change
the overall performance of the network. In the context of
multi-user channels, very little is known about the fundamental
limits of simultaneous energy and information transmission
(SEIT). Indeed, most of the existing results in this area have
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approached SEIT from a signal-processing or networking point
of view and focused mainly on feasibility aspects.

A. SEIT in Multiple Access Channels (MACs)

In the particular case of the discrete memoryless multiple
access channel (DM-MAC), the trade-off between information
rate and energy rate has been studied in [4]. Therein, Fouladgar
et al. characterized the information-energy capacity region
of the two-user DM-MAC, when a minimum energy rate
is required at the input of the receiver. Such a constraint
changes the dynamic of the communication system in the
sense that it requires additional transmitter coordination to
achieve the targeted energy rate. Recently, Belhadj Amor et
al. studied SEIT in the Gaussian MAC (G-MAC) without
feedback and derived the information-energy capacity region
as well as the maximum individual and sum rates that can be
achieved subject to a minimum energy rate b. Other types
of energy rate constraints for the G-MAC have also been
investigated. For instance, Gastpar [5] considered the G-MAC
under a maximum received energy rate constraint. Under this
assumption, channel-output feedback has been shown not to
increase the capacity region. However, in the G-MAC under a
minimum energy rate constraint, the effect of feedback is not
yet well understood from an energy transmission perspective.
More generally, the use of feedback in the K-user G-MAC,
even without energy rate constraints, has been shown to be of
limited impact in terms of sum-rate improvement. This holds
even in the case of perfect feedback. More specifically, the
use of feedback in the G-MAC increases the sum-capacity
by at most log2(K)

2 bits per channel use [6]. Hence, the use
of feedback is difficult to justify from the point of view of
information transmission.

B. Contributions

This paper studies the fundamental limits of SEIT in the
two-user G-MAC with feedback (G-MAC-F). It shows that
when the goal is to simultaneously transmit both information
and energy, feedback can significantly improve the global
performance of the system in terms of both information and
energy transmission rates. One of the main contributions is
the identification of all the achievable information and energy
transmission rates in bits per channel use and energy-units per
channel use, respectively. More specifically, the information-
energy capacity region with feedback is fully characterized
and it is shown to be achievable by a simple scheme based on
power-splitting and Ozarow’s capacity achieving scheme [7].
As a byproduct, the maximum individual information rates and
the information sum-capacity that are achievable when there
exists a minimum energy rate constraint are fully identified.
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Fig. 1. Two-user memoryless Gaussian MAC with feedback and energy
harvester.

Two of the most important observations in this work are: (a)
the information-energy capacity region of the G-MAC without
feedback is a proper subset of the information-energy capacity
region of the G-MAC-F, that is, the former is strictly contained
in the latter; and (b) feedback can at most double the energy
rate for a fixed information rate.

II. GAUSSIAN MULTIPLE ACCESS CHANNEL WITH
FEEDBACK

Consider the two-user memoryless G-MAC-F in Fig. 1.
Transmitter 1 and transmitter 2 aim at respectively sending
the message indices M1 and M2 to the receiver. At each
channel use t ∈ N, Xi,t denotes the real symbol sent by
transmitter i, with i ∈ {1, 2}. Let n ∈ N denote the
blocklength. The symbols Xi,1, . . . , Xi,n satisfy an average
input power constraint

1

n

n∑
t=1

E
[
X2

i,t

]
6 Pi, (1)

where the expectation is over the message indices and Pi

denotes the average transmit power of transmitter i in energy-
units per channel use. The receiver observes the real channel
output

Y1,t = h11X1,t + h12X2,t + Zt, (2)

and the energy harvester (EH) observes

Y2,t = h21X1,t + h22X2,t +Qt, (3)

where h1i and h2i are the corresponding constant non-negative
channel coefficients from transmitter i to the receiver and
EH, respectively. The channel coefficients must satisfy the
following L2-norm condition: ∀j ∈ {1, 2}, ‖hj‖2 6 1, with
hj , (hj1, hj2)T to ensure the principle of conservation of
energy. The noise terms Zt and Qt are realizations of two
identically distributed zero-mean unit-variance real Gaussian
random variables. In the following, there is no particular
assumption on the joint distribution of Qt and Zt.

A perfect feedback link from the receiver to transmitter i
allows at each channel use t, the observation of the channel
output Y1,t−1 at both transmitters.

The G-MAC-F above is fully described by the signal to
noise ratios (SNRs) – SNRji, with ∀(i, j) ∈ {1, 2}2, which
are defined as follows:

SNRji , |hji|2Pi, (4)

given the normalization over the noise powers.
Within this context, two main tasks are to be accomplished

simultaneously: information transmission and energy transmis-
sion.

A. Information Transmission
The goal of the communication is to convey the inde-

pendent messages M1 and M2 from transmitters 1 and 2
to the common receiver. The messages M1 and M2 are
independent of the noise terms Z1, . . . , Zn, Q1, . . . , Qn and
uniformly distributed over the sets M1 , {1, . . . , b2nR1c}
and M2 , {1, . . . , b2nR2c}, where R1 and R2 denote the
information rates. The existence of feedback links allows the
t-th symbol of transmitter i to be dependent on all previous
channel outputs Y1,1, . . . , Y1,t−1 as well as its message index
Mi. More specifically,

Xi,1 = f
(n)
i,1 (Mi) and (5)

Xi,t = f
(n)
i,t (Mi, Y1,1, . . . , Y1,t−1), t ∈ {2, . . . , n}, (6)

for some encoding functions f
(n)
i,1 : Mi → R and

f
(n)
i,t : Mi × Rt−1 → R. The receiver produces an estimate

(M̂
(n)
1 , M̂

(n)
2 ) = Φ(n)(Y n

1 ) of the message-pair (M1,M2) via
a decoding function Φ(n) : Rn →M1×M2, and the average
probability of error is

P (n)
error(R1, R2) , Pr

{
(M̂

(n)
1 , M̂

(n)
2 ) 6= (M1,M2)

}
. (7)

B. Energy Transmission
The expected energy transmission rate (in energy-units per

channel use) at the EH is

B(n) ,
1

n

n∑
t=1

E
[
Y 2
2,t

]
, (8)

where the expectation is over the message indices. The goal of
the energy transmission is to guarantee that the average energy
rate B(n) is not less than a given (constant) energy rate B that
must satisfy 0 < B 6 1+SNR21+SNR22+2

√
SNR21SNR22,

for the problem to be feasible. Hence, the probability of energy
outage is defined as follows:

P
(n)
outage(B) = Pr

{
B(n) < B − ε

}
, (9)

for some ε > 0 arbitrarily small.

C. Simultaneous Energy and Information Transmission
The G-MAC-F in Fig. 1 is said to operate at the information-

energy rate triplet (R1, R2, B) ∈ R3
+ considered if (a) reliable

communication at information rates R1 and R2 is ensured; and
(b) the average energy rate during the whole block-length is
not lower than B. Under these conditions, the information-
energy rate triplet (R1, R2, B) is said to be achievable.

Definition 1 (Achievable Rates). The triplet (R1, R2, B) ∈
R3

+ is achievable if there exists a sequence of encoding and de-
coding functions

{
{f (n)1,t }nt=1, {f

(n)
2,t }nt=1,Φ

(n)
}∞
n=1

such that
lim sup
n→∞

P (n)
error(R1, R2) = 0 and lim sup

n→∞
P

(n)
outage(B) = 0 for

any ε > 0.

From Def. 1, it is clear that for any achievable triplet
(R1, R2, B), whenever the targeted energy rate B is smaller
than the minimum energy rate required to guarantee reliable
communications at the information rates R1 and R2, the
energy rate constraint is vacuous. This is mainly because
the energy rate constraint is always satisfied, and thus the



transmitter can exclusively use the available power budget for
increasing the information rate. Alternatively, when the energy
rate B must be higher than what is strictly necessary to guar-
antee reliable communication, the transmitters face a trade-off
between information and energy rates. Often, increasing the
energy transmission rate implies decreasing the information
transmission rates and vice-versa. This trade-off is accurately
modeled by the notion of information-energy capacity region.

Definition 2 (Information-Energy Capacity Region). The
information-energy capacity region of the G-MAC-F
EFB(SNR11,SNR12,SNR21,SNR22) is the closure of all
achievable information-energy rate triplets (R1, R2, B).

III. MAIN RESULTS

A. Information-Energy Capacity Region with Feedback

The information-energy capacity region of the G-MAC-F is
fully characterized by the following theorem.

Theorem 1 (Information-Energy Capacity Region with Feed-
back). The perfect feedback information-energy capacity re-
gion EFB (SNR11,SNR12,SNR21,SNR22) of the G-MAC-F
is the set of non-negative information-energy rate triplets
(R1, R2, B) that satisfy

R1 6
1

2
log2

(
1 + β1 SNR11

(
1− ρ2

))
(10a)

R2 6
1

2
log2

(
1 + β2 SNR12

(
1− ρ2

))
(10b)

R1 +R26
1

2
log2

(
1 + β1 SNR11 + β2 SNR12

+2ρ
√
β1SNR11β2SNR12

)
(10c)

B 61 + SNR21 + SNR22 + 2ρ
√
β1SNR21 β2SNR22

+2
√

(1− β1)SNR21 (1− β2)SNR22, (10d)

with (ρ, β1, β2) ∈ [0, 1]
3.

Proof: The proof of Theorem 1 is presented in [8].
From an achievability standpoint, the parameters β1 and

β2 in Theorem 1 might be interpreted as the fractions of
power that transmitter 1 and transmitter 2 allocate for infor-
mation transmission, respectively. The remaining fraction of
power (1 − βi) is allocated by transmitter i for exclusively
transmitting energy to the EH. The information transmission
follows Ozarow’s perfect feedback capacity-achieving scheme
in [7]. The energy transmission is accomplished by random
symbols that are known at both transmitters and the receiver.
More specifically, transmitter i generates two signals: an
information-carrying (IC) signal with average power βiPi

energy-units per channel use; and a no-information-carrying
(NIC) signal with power (1− βi)Pi energy-units per channel
use. The role of the NIC signal is exclusively energy trans-
mission from the transmitter to the EH. Conversely, the role
of the IC signal is twofold: information transmission from the
transmitter to the receiver and energy transmission from the
transmitter to the EH.

The parameter ρ is the average Pearson correlation co-
efficient between the IC signals sent by both transmitters.
This parameter plays a fundamental role in both information
transmission and energy transmission. If β1 6= 0 and β2 6= 0,

let ρ?(β1, β2) be the unique solution in (0, 1) to the following
equality:

1 + β1 SNR11 + β2 SNR12 + 2ρ
√
β1SNR11β2SNR12

=
(
1 + β1 SNR11(1− ρ2)

) (
1 + β2 SNR12(1− ρ2)

)
; (11)

otherwise, let ρ?(β1, β2) = 0.
Note that for any power-splitting (β1, β2) ∈ (0, 1]2, the left

hand side of (11) is monotonically increasing in ρ whereas
the right hand side is monotonically decreasing in ρ. This
implies that ρ?(β1, β2) is a maximizer of the sum-rate. More
specifically, at ρ = ρ?(β1, β2), the sum of (10a) and (10b) is
equal to (10c) and it corresponds to the sum-capacity of the
G-MAC-F.

The Pearson correlation factor between the NIC signals
of both transmitters does not appear in Theorem 1 because
maximum energy transmission occurs using NIC signals that
are fully correlated, and thus the corresponding Pearson cor-
relation coefficient is one. Without loss of optimality, NIC
signals can be chosen to be independent of the messages
M1 and M2 as well as the noise sequences, and known by
both the receiver and the transmitters. Hence, NIC signals can
be independent of the IC signals and more importantly, the
interference they create at the receiver can be easily eliminated
via successive interference cancellation.

Under these assumptions, this coding scheme guarantees
the achievability of non-negative rate pairs (R1, R2) satisfying
(10a)-(10c).

At the EH, both the IC and NIC signals contribute to
the total energy harvested (8). The IC signal is able to
convey at most β1SNR21+β2SNR22+2ρ

√
β1SNR21β2SNR22

energy-units per channel use, while the NIC signal is able
to convey at most (1 − β1)SNR21 + (1 − β2)SNR22 +
2
√

(1− β1)SNR21(1− β2)SNR22 energy-units per channel
use. The sum of these two contributions as well as the
contribution of the noise at the EH justifies the upper-bound
on the energy transmission rate in (10d).

Remark 1. The information-energy capacity region
without feedback E (SNR11,SNR12,SNR21,SNR22)
derived in [9, Theorem 1] is identical to
EFB (SNR11,SNR12,SNR21,SNR22) in the case in which
channel inputs are chosen to be mutually independent, i.e.,
ρ = 0. Thus, for any non-zero SNR11, SNR12, SNR21, and
SNR22, it holds that

E(SNR11,SNR12,SNR21,SNR22)

⊂ EFB(SNR11,SNR12,SNR21,SNR22). (12)

Note that the inclusion here is strict. For instance, any rate
triplet (R1, R2, B) for which R1 + R2 equals the perfect
feedback sum-capacity cannot be achieved without feedback.

B. Information Transmission with Feedback Subject to Mini-
mum Energy Rate Constraint b

Let 0 6 b 6 1+SNR21 +SNR22 +2
√

SNR21SNR22 denote
the minimum energy rate that must be guaranteed at the input
of the EH in the G-MAC-F with parameters SNR11, SNR12,
SNR21, and SNR22. In the following, the maximum individual
information rates as well as the information sum-capacity that
are achievable given a minimum energy rate constraint of
b energy-units per channel use at the input of the EH are
identified.



1) Maximum Individual Information Rates with Feedback
and with Minimum Energy Rate Constraint b: The maximum
individual information rate RFB

i (b), with i ∈ {1, 2}, is the
solution to an optimization problem of the form

RFB
i (b) = max

(ri,rj ,c)∈EFB(SNR11,SNR12,SNR21,SNR22):c>b
ri. (13)

Proposition 1 (Maximum Individual Information Rates). For
a given required minimum energy rate b, transmitter i’s
maximum individual information rate with feedback coincides
with its maximum individual information rate without feedback
and is given by

RFB
i (b)=

1

2
log2 (1 + β?(b)SNR1i) , i ∈ {1, 2}, (14)

with β?(b) ∈ [0, 1] defined as follows:

β?(b) = 1−

(
(b− (1 + SNR21 + SNR22))

+

2
√

SNR21SNR22

)2

. (15)

Proof: The proof of Proposition 1 is provided in [8].
The rate RFB

i (b) is achieved by transmitter i, for instance,
when transmitter j uses all its available power for exclusively
transmitting energy to the EH (βj = 0) by using common
randomness; and transmitter i uses a power split in which the
part of power dedicated for exclusively transmitting energy to
the EH, 1− βi, is the fraction needed to satisfy

1+SNR21+SNR22+2
√

(1− β1)SNR21(1− β2)SNR22 > b,
(16)

with equality, that is, βi = β?(b) (when βj = 0).
2) Information Sum-Capacity with Feedback and with Min-

imum Energy Constraint b: The perfect feedback information
sum-capacity RFB

sum(b) is the solution to an optimization prob-
lem of the form

RFB
sum(b) = max

(r1,r2,c)∈EFB(SNR11,SNR12,SNR21,SNR22):c>b
r1 + r2. (17)

Proposition 2 (Information Sum-Capacity). The perfect feed-
back information sum-capacity of the G-MAC subject to a
minimum energy rate constraint b that must be guaranteed
at the input of the EH is

1) ∀b ∈
[
0,1+SNR21+SNR22+2ρ?(1,1)

√
SNR21SNR22

]
,

RFB
sum(b) =

1

2
log2(1+SNR11+SNR12+2ρ?(1, 1)

√
SNR11SNR12); (18)

2) ∀b ∈
(
1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22,

1 + SNR21 + SNR22 + 2
√

SNR21SNR22

)
,

RFB
sum(b) =

1

2
log2(1 + β?(b)SNR11) (19)

+
1

2
log2(1 + β?(b)SNR12); (20)

3) ∀b ∈
[
1 + SNR21 + SNR22 + 2

√
SNR21SNR22,∞],

RFB
sum(b) = 0, (21)

with β?(b) defined in (15) and ρ?(1, 1) is the unique solution
in (0, 1) to (11) when β1 = β2 = 1.

Proof: The proof of Proposition 2 is presented in [8].
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Fig. 2. Intersection of the planes B = b0, B = b1, B =
b2, and B = b3 with the information-energy capacity region
EFB (SNR11, SNR12, SNR21, SNR22), with SNR11 = SNR12 = SNR21 =
SNR22, b0 ∈

[
0, 1 + SNR21 + SNR22

]
, b1 ∈

[
1 + SNR21 + SNR22, 1 +

SNR21 + SNR22 + 2ρ?(1, 1)
√

SNR21SNR22

]
, b2 = 1 + SNR21 +

SNR22 + 2ρ?(1, 1)
√

SNR21SNR22 and b3 ∈
[
1 + SNR21 + SNR22 +

2ρ?(1, 1)
√

SNR21SNR22, 1 + SNR21 + SNR22 + 2
√

SNR21SNR22,
]
.

Note that even if feedback does not increase the maximal
individual rates that can be achieved for a given received
energy rate b, it increases the sum-rate that can be achieved
(See Proposition 2 in comparison to [9, Theorem 2]).

Fig. 2 shows a general example of the intersection of the
volume EFB (SNR11,SNR12,SNR21,SNR22), in the Cartesian
coordinates (R1, R2, B), with a plane B = b when SNR11 =
SNR12 = SNR21 = SNR22.

Case 1: In the case in which b ∈ [0, 1 + SNR21 + SNR22],
then β?(b) = 1, and thus the energy constraint does not add
any additional bound on the individual rates and the sum-rate
other than (10a), (10b), and (10c). In fact, in this case, any in-
tersection of the volume EFB (SNR11,SNR12,SNR21,SNR22),
in the Cartesian coordinates (R1, R2, B), with a plane B = b
corresponds to the set of triplets (R1, R2, b), in which the
corresponding pairs (R1, R2) form a set that is identical to
the information capacity region of the G-MAC-F, denoted by
CFB(SNR11,SNR12), which is achievable by using Ozarow’s
scheme without any power-splitting, i.e., β1 = β2 = 1.
In this case, transmitting information using all the avail-
able power budget is always enough to satisfy the energy
constraint. (See the intersection of the plane B = b0 and
the volume EFB (SNR11,SNR12,SNR21,SNR22), with b0 ∈[
0, 1 + SNR21 + SNR22

]
, in Fig. 2.)

Case 2: In the case in which b ∈ (1 + SNR21 + SNR22, 1 +
SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22], it follows that

1− (ρ?(1, 1))
2 6 β?(b) < 1, and thus the energy constraint

limits the individual rates. That is, transmitter i’s individual
rate is bounded away from 1

2 log2 (1 + SNR1i). Let B(b) ⊂
R2

+ be a box of the form

B(b)=
{

(R1, R2) ∈ R2
+ :

Ri 6
1

2
log2 (1 + β?(b)SNR1i) , i ∈ {1, 2}

}
.(22)

Any intersection of the volume
EFB (SNR11,SNR12,SNR21,SNR22) with a plane B = b is a
set of triplets (R1, R2, b) for which the corresponding pairs
(R1, R2) satisfy (R1, R2) ∈ B(b) ∩ CFB(SNR11,SNR12),
which form a proper subset of CFB(SNR11,SNR12). It is
important to highlight that in this case, this intersection
always includes the triplet (R1, R2, b), with R1 + R2 =
1
2 log2

(
1 + SNR11 + SNR12 + 2ρ?(1, 1)

√
SNR11SNR12

)
,

i.e., the information sum-capacity. That is, the power-split
β1 = β2 = 1 is always feasible. (See the corresponding



intersections of the planes B = b1 and B = b2 with
the volume EFB (SNR11,SNR12,SNR21,SNR22), where
b1 ∈ (1 + SNR21 + SNR22, 1 + SNR21 + SNR22 +
2ρ?(1, 1)

√
SNR21SNR22] and b2 = 1 + SNR21 + SNR22 +

2ρ?(1, 1)
√

SNR21SNR22, in Fig. 2).
Case 3: In the case in which b ∈ (1 + SNR21 +

SNR22 + 2ρ?(1, 1)
√

SNR21SNR22, 1 + SNR21 + SNR22 +
2
√

SNR21SNR22], it follows that 0 6 β?(b) < 1 −
(ρ?(1, 1))

2, and thus the individual rates are limited
by Ri < 1

2 log2

(
1 +

(
1− (ρ?(1, 1))

2
)

SNRi

)
. This im-

mediately implies that any intersection of the volume
EFB (SNR11,SNR12,SNR21,SNR22) with a plane B = b
is a set of triplets (R1, R2, b) for which the corresponding
pairs (R1, R2) satisfy (R1, R2) ∈ B(b). This is basically
due to the fact that B(b) = B(b) ∩ CFB(SNR11,SNR12),
since B(b) ⊂ CFB(SNR11,SNR12). In this case, there exists
a loss of sum-rate induced by the fact that at least one of the
fractions β1 and β2 is smaller than one. More specifically, for
these values of b, Ri <

1
2 log2

(
1 + (1− (ρ(1, 1)?)2)SNR1i

)
for at least one i ∈ {1, 2}, and thus this set does not
contain the information sum-capacity rate pair. Indeed, for any
b > 1 + SNR21 + SNR22 + 2ρ?(1, 1)

√
SNR21SNR22, the set

B(b) monotonically shrinks with b. This is clearly shown by
Fig. 2.

Finally, note that when b = 1 + SNR21 + SNR22 +
2(ρ?(1, 1) + ε)

√
SNR21SNR22, for some ε > 0, it holds that

β?(b) = 1 − (ρ?(1, 1) + ε)
2. Substituting this into (19) and

taking the limit when ε tends to 0, by the definition of ρ?(1, 1),
the resulting value is given by (18) and thus RFB

sum(b) is a
continuous function in b. Clearly, the maximum energy rate
is achieved when β1 = β2 = 0, which implies that no
information is conveyed from the transmitters to the receiver.

C. Energy Transmission Enhancement with Feedback
In this subsection, the enhancement of the energy transmis-

sion rate due to the use of feedback is quantified when the
information sum-rate is the information sum-capacity without
feedback. Denote by BNF = 1+SNR21+SNR22 the maximum
energy rate that can be guaranteed at the EH in the G-MAC
(without feedback) when the information sum-rate corresponds
to the information sum-capacity without feedback. Denote also
by BF the maximum energy rate that can be guaranteed at the
EH in the G-MAC-F when the information sum-rate is the
information sum-capacity without feedback. The exact value
of BF is given by the following lemma.

Lemma 1. The maximum energy rate BF that can be guaran-
teed at the EH in the G-MAC-F when the information sum-rate
is the information sum-capacity without feedback is

BF = 1 + SNR21 + SNR22 + 2
√

(1− γ)SNR21SNR22, (23)

with γ ∈ (0, 1) defined as follows:

γ=−SNR11 + SNR12

2SNR11SNR12

+

√(
SNR11 + SNR12

2SNR11SNR12

)2

+ 2

(
SNR11 + SNR12

2SNR11SNR12

)
. (24)

Proof: The proof of Lemma 1 is presented in [8].
The following theorem provides an upper bound on BF

BNF
.

Theorem 2 (Maximum Energy Rate Improvement with Feed-
back). Feedback can at most double the energy rate. That is,

1 6
BF

BNF
< 2. (25)

Proof: The proof of Theorem 2 follows immediately from
Lemma 1.

IV. CONCLUSION AND EXTENSIONS

This paper has characterized the information-energy capa-
city region of the two-user G-MAC-F and measured the energy
transmission enhancement induced by the use of feedback.
What is important to mention here is that SEIT requires ad-
ditional transmitter cooperation/coordination. From this view-
point, any technique that allows transmitter cooperation (i.e.,
feedback, conferencing, etc.) is likely to provide performance
gains in SEIT in general multi-user networks. For instance,
the results on the energy transmission enhancement induced
by feedback in the two-user G-MAC-F can be extended to
the arbitrary K-user G-MAC-F with K > 3. However, such a
cooperation is usually not natural, especially if the transmitters
do not share common information or are not co-located. Not
surprisingly, this requires the transmitters to be “altruistic”
and be always willing to cooperate to improve the overall
system throughput. Consequently, the fundamental limits on
SEIT take different forms depending on whether or not the
network is centralized. In a decentralized network [10], each
decision maker aims to maximize its own individual reward
and its individual choice does not necessarily achieve the
capacity of the network. In other words, the individual choice
is not necessarily optimal from a global viewpoint. Hence,
the information-energy capacity results are not sufficient to
describe the fundamental limits on SEIT in decentralized
networks.
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