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Abstra
t

Re
ognizing s
ene text is a 
hallenging problem, even more so than the re
ognition of s
anned do
uments. This problem

has gained signi�
ant attention from the 
omputer vision 
ommunity in re
ent years, and several methods based on

energy minimization frameworks and deep learning approa
hes have been proposed. In this work, we fo
us on the

energy minimization framework and propose a model that exploits both bottom-up and top-down 
ues for re
ognizing


ropped words extra
ted from street images. The bottom-up 
ues are derived from individual 
hara
ter dete
tions from

an image. We build a 
onditional random �eld model on these dete
tions to jointly model the strength of the dete
tions

and the intera
tions between them. These intera
tions are top-down 
ues obtained from a lexi
on-based prior, i.e.,

language statisti
s. The optimal word represented by the text image is obtained by minimizing the energy fun
tion


orresponding to the random �eld model. We evaluate our proposed algorithm extensively on a number of 
ropped

s
ene text ben
hmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and

show better performan
e than 
omparable methods. We perform a rigorous analysis of all the steps in our approa
h and

analyze the results. We also show that state-of-the-art 
onvolutional neural network features 
an be integrated in our

framework to further improve the re
ognition performan
e.

Keywords: S
ene text understanding, text re
ognition, lexi
on priors, 
hara
ter re
ognition, random �eld models.

1. Introdu
tion

The problem of understanding s
enes semanti
ally has

been one of the 
hallenging goals in 
omputer vision for

many de
ades. It has gained 
onsiderable attention over

the past few years, in parti
ular, in the 
ontext of street5

s
enes [1, 2, 3℄. This problem has manifested itself in var-

ious forms, namely, obje
t dete
tion [4, 5℄, obje
t re
ogni-

tion and segmentation [6, 7℄. There have also been signi�-


ant attempts at addressing all these tasks jointly [2, 8, 9℄.

Although these approa
hes interpret most of the s
ene su
-10


essfully, regions 
ontaining text are overlooked. As an

example, 
onsider an image of a typi
al street s
ene taken

from Google Street View in Fig. 1. One of the �rst things

we noti
e in this s
ene is the sign board and the text it 
on-

tains. However, popular re
ognition methods ignore the15

text, and identify other obje
ts su
h as 
ar, person, tree,

and regions su
h as road, sky. The importan
e of text in

images is also highlighted in the experimental study 
on-

du
ted by Judd et al. [10℄. They found that viewers �xate
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Figure 1 A typi
al street s
ene image taken from Google Street

View. It 
ontains very prominent sign boards with text on the build-

ing and its windows. It also 
ontains obje
ts su
h as 
ar, person, tree,

and regions su
h as road, sky. Many s
ene understanding methods

re
ognize these obje
ts and regions in the image su

essfully, but

overlook the text on the sign board, whi
h 
ontains ri
h, useful infor-

mation. The goal of this work is to address this gap in understanding

s
enes.

on text when shown images 
ontaining text and other ob-20

je
ts. This is further eviden
e that text re
ognition forms

a useful 
omponent in understanding s
enes.

In addition to being an important 
omponent of s
ene
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Figure 2 Challenges in s
ene text re
ognition. A few sample images from the SVT and IIIT 5K-word datasets are shown to highlight

the variation in view point, orientation, non-uniform ba
kground, non-standard font styles and also issues su
h as o

lusion, noise, and

in
onsistent lighting. Standard OCRs perform poorly on these datasets (as seen in Table 1 and [11, 12℄).

understanding, s
ene text re
ognition has many poten-

tial appli
ations, su
h as image retrieval, auto navigation,25

s
ene text to spee
h systems, developing apps for visu-

ally impaired people [13, 14℄. Our method for solving this

task is inspired by the many advan
ements made in the

obje
t dete
tion and re
ognition problems [4, 5, 7, 15℄.

We present a framework for re
ognizing text that exploits30

bottom-up and top-down 
ues. The bottom-up 
ues are

derived from individual 
hara
ter dete
tions from an im-

age. Naturally, these windows 
ontain true as well as false

positive dete
tions of 
hara
ters. We build a 
onditional

random �eld (CRF) model [16℄ on these dete
tions to de-35

termine not only the true positive dete
tions, but also the

word they represent jointly. We impose top-down 
ues

obtained from a lexi
on-based prior, i.e., language statis-

ti
s, on the model. In addition to disambiguating between


hara
ters, this prior also helps us in re
ognizing words.40

The �rst 
ontribution of this work is a joint framework

with seamless integration of multiple 
ues�individual 
har-

a
ter dete
tions and their spatial arrangements, pairwise

lexi
on priors, and higher-order priors�into a CRF frame-

work whi
h 
an be optimized e�e
tively. The proposed45

method performs signi�
antly better than other related

energy minimization based methods for s
ene text re
og-

nition. Our se
ond 
ontribution is devising a 
ropped

word re
ognition framework whi
h is appli
able not only to


losed vo
abulary text re
ognition (where a small lexi
on50


ontaining the ground truth word is provided with ea
h

image), but also to a more general setting of the prob-

lem, i.e., open vo
abulary s
ene text re
ognition (where

the ground truth word may or may not belong to a generi


large lexi
on or the English di
tionary). The third 
ontri-55

bution is 
omprehensive experimental evaluation, in 
on-

trast to many re
ent works, whi
h either 
onsider a subset

of ben
hmark datasets or are limited to the 
losed vo
ab-

ulary setting. We evaluate on a number of 
ropped word

datasets (ICDAR 2003, 2011 and 2013 [17℄, SVT [18℄, and60

IIIT 5K-word [19℄) and show results in 
losed and open

vo
abulary settings. Additionally, we analyzed the e�e
-

tiveness of individual 
omponents of the framework, the

in�uen
e of parameter settings, and the use of 
onvolu-

tional neural network (CNN) based features [20℄.65

The remainder of the paper is organized as follows. In

Se
tion 2 we dis
uss related work. Se
tion 3 des
ribes our

s
ene text re
ognition model and its 
omponents. We then

present the evaluation proto
ols and the datasets used in

experimental analysis in Se
tion 4. Comparison with re-70

lated approa
hes is shown in Se
tion 5, along with imple-

mentation details. We then make 
on
luding remarks in

Se
tion 6.

2. Related Work

The task of understanding s
ene text has gained a huge75

interest for more than a de
ade [11, 12, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 20, 31℄. It is 
losely related to the prob-

lem of Opti
al Chara
ter Re
ognition (OCR), whi
h has

a long history in the 
omputer vision and pattern re
og-

nition 
ommunities [32℄. However, the su

ess of OCR80

systems is largely restri
ted to text from s
anned do
u-

ments. S
ene text exhibits a large variability in appear-

an
e, as shown in Fig. 2, and 
an prove to be 
hallenging

even for the state-of-the-art OCR methods (see Table 1

and [11, 12℄). The problems in this 
ontext are: (1) text85

lo
alization, (2) 
ropped word re
ognition, and (3) isolated


hara
ter re
ognition. They have been ta
kled either in-

dividually [21, 27, 33℄, or jointly [11, 20, 23, 29℄. This

paper fo
uses on addressing the 
ropped word re
ognition

problem. In other words, given an image region (e.g., in90

the form of a bounding box) 
ontaining text, the task is

to re
ognize this 
ontent. The 
ore 
omponents of a typi-


al 
ropped word re
ognition framework are: lo
alize the


hara
ters, re
ognize them, and use statisti
al language

models to 
ompose the 
hara
ters into words. Our frame-95

work builds on these 
omponents, but di�ers from previous

work in several ways. In the following, we review the prior

art and highlight these di�eren
es. The reader is en
our-

aged to refer to [34℄ for a more 
omprehensive survey of

s
ene text re
ognition methods.100

A popular te
hnique for lo
alizing 
hara
ters in an OCR

system is to binarize the image and determine the potential


hara
ter lo
ations based on 
onne
ted 
omponents [35℄.

Su
h te
hniques have also been adapted for s
ene text

re
ognition [12℄, although with limited su

ess. This is105

mainly be
ause obtaining a 
lean binary output for s
ene

text images is often 
hallenging; see Fig. 3 for examples.

An alternative approa
h is proposed in [36℄ using gradient

information to �nd potential 
hara
ter lo
ations. More re-


ently, Yao et al. [31℄ proposed a mid-level feature based110

te
hnique to lo
alize 
hara
ters in s
ene text. We follow

2



an alternative strategy and 
ast the 
hara
ter lo
alization

problem as an obje
t dete
tion task, where 
hara
ters are

the obje
ts. We then de�ne an energy fun
tion on all the

potential 
hara
ters.115

One of the earliest works on large-s
ale natural s
ene


hara
ter re
ognition was presented in [27℄. This work de-

velops a multiple kernel learning approa
h using a set of

shape-based features. Re
ent work [11, 37℄ has improved

over this with histogram of gradient features [15℄. We per-120

form an extensive analysis on features, 
lassi�ers, and pro-

pose methods to improve 
hara
ter re
ognition further, for

example, by augmenting the training set. In addition to

this, we show that the state-of-the-art CNN features [20℄


an be su

essfully integrated with our word re
ognition125

framework to further boost its performan
e.

A study on human reading psy
hology shows that our

reading improves signi�
antly with prior knowledge of the

language [38℄. Motivated by su
h studies, OCR systems

have used, often in post-pro
essing steps [35, 39℄, statis-130

ti
al language models like n-grams to improve their per-

forman
e. Bigrams or trigrams have also been used in the


ontext of s
ene text re
ognition as a post-pro
essing step,

e.g., [40℄. A few other works [41, 42, 43℄ integrate 
hara
ter

re
ognition and linguisti
 knowledge to deal with re
ogni-135

tion errors. For example, [41℄ 
omputes n-gram proba-

bilities from more than 100 million 
hara
ters and uses a

Viterbi algorithm to �nd the 
orre
t word. The method

in [43℄, developed in the same year as our CVPR 2012

work [37℄, builds a graph on potential 
hara
ter lo
ations140

and uses n-gram s
ores to 
onstrain the inferen
e algo-

rithm to predi
t the word. In 
ontrast, our approa
h uses

a novel lo
ation-spe
i�
 prior (
f. (6)).

The word re
ognition problem has been looked at in

two 
ontexts� with [11, 25, 37, 44, 45℄ and without [22,145

19, 46℄ the use of an image-spe
i�
 lexi
on. In the 
ase of

image-spe
i�
 lexi
on-driven word re
ognition, also known

as the 
losed vo
abulary setting, a list of words is available

for every s
ene text image. The task of re
ognizing the

word now redu
es to that of �nding the best mat
h from150

this list. This is relevant in many appli
ations, e.g., re
og-

nizing text in a gro
ery store, where a list of gro
ery items


an serve as a lexi
on. Wang et al. [44℄ adapted a multi-

layer neural network for this s
enario. In [11℄, ea
h word

in the lexi
on is mat
hed to the dete
ted set of 
hara
ter155

windows, and the one with the highest s
ore is reported as

the predi
ted word. In one of our previous works [45℄, we


ompared features 
omputed on the entire s
ene text im-

age and those generated from syntheti
 font renderings of

lexi
on words with a novel weighted dynami
 time warping160

(wDTW) approa
h to re
ognize words. In [25℄ Rodriguez-

Serrano and Perronnin proposed to embed word labels and

word images into a 
ommon Eu
lidean spa
e, wherein the

text re
ognition task is posed as a retrieval problem to �nd

the 
losest word label for a given word image. While all165

these approa
hes are interesting, their su

ess is largely

restri
ted to the 
losed vo
abulary setting and 
annot be

easily extended to the more general 
ases, for instan
e,

Figure 3 Binarization results obtained with one of the state-of-the-

art methods [47℄ are shown for two sample images. We observed sim-

ilar poor performan
e on most of the images in s
ene text datasets,

and hen
e do not use binarization in our framework.

when image-spe
i�
 lexi
on is unavailable. Weinman et

al. [22℄ proposed a method to address this issue, although170

with a strong assumption of known 
hara
ter boundaries,

whi
h are not trivial to obtain with high pre
ision on the

datasets we use. The work in [46℄ generalizes their previous

approa
h by relaxing the 
hara
ter-boundary requirement.

It is, however, evaluated only on �roughly fronto-parallel�175

images of signs, whi
h are less 
hallenging than the s
ene

text images used in our work.

Our work belongs to the 
lass of word re
ognitionmeth-

ods whi
h build on individual 
hara
ter lo
alization, simi-

lar to methods su
h as [12, 48℄. In this framework, the180

potential 
hara
ters are lo
alized, then a graph is 
on-

stru
ted from these lo
ations, and then the problem of

re
ognizing the word is formulated as �nding an optimal

path in this graph [49℄ or inferring from an ensemble of

HMMs [48℄. Our approa
h shows a seamless integration of185

higher order language priors into the graph (in the form

of a CRF model), and uses more e�e
tive modern 
om-

puter vision features, thus making it 
learly di�erent from

previous works.

Sin
e the publi
ation of our original work in CVPR190

2012 [37℄ and BMVC 2012 [19℄ papers, several approa
hes

for s
ene text understanding (e.g., text lo
alization [50, 29,

51, 52℄, word re
ognition [20, 23, 30, 31, 53, 51℄ and text-

to-image retrieval [13, 51, 54, 55℄) have been proposed.

Notably, there has been an in
reasing interest in explor-195

ing deep 
onvolutional network based methods for s
ene

text tasks (see [20, 30, 44, 51, 52℄ for example). These ap-

proa
hes are very e�e
tive in general, but the deep 
onvo-

lutional network, whi
h is at the 
ore of these approa
hes,

la
ks the 
apability to elegantly handle stru
tured output200

data. To understand this with the help of an example, let

us 
onsider the problem of estimating human pose [56, 57℄,

where the task is to predi
t the lo
ations of human body

joints su
h as head, shoulders, elbows and wrists. These

lo
ations are 
onstrained by human body kinemati
s and205

in essen
e form a stru
tured output. To deal with su
h

stru
tured output data, state-of-the-art deep learning al-

gorithms in
lude an additional regression step [56℄ or a

graphi
al model [57℄, thus showing that these te
hniques

3



are 
omplementary to the deep learning philosophy. Sim-210

ilar to human pose, text is stru
tured output data [58℄.

To better handle this stru
tured data, we develop our en-

ergy minimization framework [19, 37℄ with the motivation

of building a 
omplementary approa
h, whi
h 
an further

bene�t methods built on the deep learning paradigm. In-215

deed, we see that 
ombining the two frameworks further

improves text re
ognition results (Se
tion 5).

3. The Re
ognition Model

We propose a 
onditional random �eld (CRF) model

for re
ognizing words. The CRF is de�ned over a set of N

random variables x = {xi|i ∈ V}, where V = {1, 2, . . . , N}.
Ea
h random variable xi denotes a potential 
hara
ter in

the word, and 
an take a label from the label set L =
{l1, l2, . . . , lk} ∪ ǫ, whi
h is the set of English 
hara
ters,

digits and a null label ǫ to dis
ard false 
hara
ter dete
-

tions. The most likely word represented by the set of


hara
ters x is found by minimizing the energy fun
tion,

E : Ln → R, 
orresponding to the random �eld. The en-

ergy fun
tion E 
an be written as sum of potential fun
-

tions:

E(x) =
∑

c∈C

ψc(xc), (1)

where C ⊂ P(V), with P(V) denoting the powerset of V .
Ea
h xc de�nes a set of random variables in
luded in sub-220

set c, referred to as a 
lique. The fun
tion ψc de�nes a 
on-

straint (potential) on the 
orresponding 
lique c. We use

unary, pairwise and higher order potentials in this work,

and de�ne them in Se
tion 3.2. The set of potential 
har-

a
ters is obtained by the 
hara
ter dete
tion step dis
ussed225

in Se
tion 3.1. The neighbourhood relations among 
har-

a
ters, modelled as pairwise and higher order potentials,

are based on the spatial arrangement of 
hara
ters in the

word image.

In the following we show an example energy fun
tion


omposed of unary, pairwise and higher order (of 
lique

size three) terms on a sample word with four 
hara
ters.

For a word to be re
ognized as �OPEN� the following en-

ergy fun
tion should be the minimum.

ψ(O,P,E,N) = ψ1(O) + ψ1(P ) + ψ1(E) + ψ1(N)

+ ψ2(O,P ) + ψ2(P,E) + ψ2(E,N)

+ ψ3(O,P,E) + ψ3(P,E,N).

The third order terms ψ3(O,P,E) and ψ3(P,E,N) are

de
omposed as follows.

ψ3(O,P,E) = ψa
1 (OPE) + ψa

2 (OPE,O)

+ ψa
2 (OPE,P ) + ψa

2 (OPE,E).

ψ3(P,E,N) = ψa
1 (PEN) + ψa

2 (PEN,P )

+ ψa
2 (PEN,E) + ψa

2 (PEN,N).

Figure 4 Typi
al 
hallenges in 
hara
ter dete
tion. (a) Inter-


hara
ter 
onfusion: A window 
ontaining parts of the two o's is

falsely dete
ted as x. (b) Intra-
hara
ter 
onfusion: A window 
on-

taining a part of the 
hara
ter B is re
ognized as E.

3.1. Chara
ter Dete
tion230

The �rst step in our approa
h is to dete
t potential lo-


ations of 
hara
ters in a word image. In this work we use

a sliding window based approa
h for dete
ting 
hara
ters,

but other methods, e.g., [31℄, 
an also be used instead.

Sliding window dete
tion. This te
hnique has been very235

su

essful for tasks su
h as, fa
e [59℄ and pedestrian [15℄

dete
tion, and also for re
ognizing handwritten words us-

ing HMM based methods [60℄. Although 
hara
ter dete
-

tion in s
ene images is similar to su
h problems, it has

its unique 
hallenges. Firstly, there is the issue of dealing240

with many 
ategories (63 in all) jointly. Se
ondly, there

is a large amount of inter-
hara
ter and intra-
hara
ter


onfusion, as illustrated in Fig. 4. When a window 
on-

tains parts of two 
hara
ters next to ea
h other, it may

have a very similar appearan
e to another 
hara
ter. In245

Fig. 4(a), the window 
ontaining parts of the 
hara
ters `o'


an be 
onfused with `x'. Furthermore, a part of one 
har-

a
ter 
an have the same appearan
e as that of another.

In Fig. 4(b), a part of the 
hara
ter `B' 
an be 
onfused

with `E'. We build a robust 
hara
ter 
lassi�er and adopt250

an additional pruning stage to over
ome these issues.

The problem of 
lassifying natural s
ene 
hara
ters typ-

i
ally su�ers from the la
k of training data, e.g., [27℄ uses

only 15 samples per 
lass. It is not trivial to model the

large variations in 
hara
ters using only a few examples.255

To address this, we add more examples to the training set

by applying small a�ne transformations [61, 62℄ to the

original 
hara
ter images. We further enri
h the training

set by adding many non-
hara
ter negative examples, i.e.,

from the ba
kground. With this strategy, we a
hieve a260

signi�
ant boost in 
hara
ter 
lassi�
ation a

ura
y (see

Table 3).

We 
onsider windows at multiple s
ales and spatial lo-


ations. The lo
ation of the ith window, di, is given by

its 
enter and size. The set K = {c1, c2, . . . , ck}, denotes265

label set. Note that k = 63 for the set of English 
hara
-

ters, digits and a ba
kground 
lass (null label) in our work.

Let φi denote the features extra
ted from a window lo
a-

tion di. Given the window di, we 
ompute the likelihood,

p(cj |φi), of it taking a label cj for all the 
lasses in K. In270

our implementation, we used expli
it feature representa-

tion [63℄ of histogram of gradient (HOG) features [15℄ for

φi, and the likelihoods p are (normalized) s
ores from a one

vs rest multi-
lass support ve
tor ma
hine (SVM). Imple-

mentation details of the training pro
edure are provided275

4
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Figure 5 Distribution of aspe
t ratios of few digits and 
hara
ters:

(a) 0 (b) 2 (
) B (d) Y. The aspe
t ratios are 
omputed on 
hara
ter

from the IIIT-5K word training set.

in Se
tion 5.1.

This basi
 sliding window dete
tion approa
h produ
es

many potential 
hara
ter windows, but not all of them are

useful for re
ognizing words. We dis
ard some of the weak

dete
tion windows using the following pruning method.280

Pruning windows. For every potential 
hara
ter window,

we 
ompute a s
ore based on: (i) SVM 
lassi�er 
on�-

den
e, and (ii) a measure of the aspe
t ratio of the 
hara
-

ter dete
ted and the aspe
t ratio learnt for that 
hara
ter

from training data. The intuition behind this s
ore is that,

a strong 
hara
ter window 
andidate should have a high


lassi�er 
on�den
e s
ore, and must fall within some range

of the sizes observed in the training data. In order to de-

�ne the aspe
t ratio measure, we observed the distribution

of aspe
t ratios of 
hara
ters from the IIIT-5K word train-

ing set. A few examples of these distributions are shown in

Fig. 5. Sin
e they follow a Gaussian distribution, we 
hose

this s
ore a

ordingly. For a window di with an aspe
t

ratio ai, let cj denote the 
hara
ter with the best 
lassi�er


on�den
e value given by Sij . The mean aspe
t ratio for

the 
hara
ter cj 
omputed from training data is denoted

by µaj
. We de�ne a goodness s
ore (GS) for the window

di as:

GS(di) = Sij exp

(

−
(µaj

− ai)
2

2σ2
aj

)

, (2)

where σaj
is the varian
e of the aspe
t ratio for 
hara
ter

cj in the training data. A low goodness s
ore indi
ates

a weak dete
tion, whi
h is then removed from the set of


andidate 
hara
ter windows.

We then apply 
hara
ter-spe
i�
 non-maximum sup-285

pression (NMS), similar to other sliding window dete
tion

methods [5℄, to address the issue of multiple overlapping

dete
tions for ea
h instan
e of a 
hara
ter. In other words,

for every 
hara
ter 
lass, we sele
t dete
tions whi
h have a

high 
on�den
e s
ore, and do not overlap signi�
antly with290

any of the other stronger dete
tions of the same 
hara
ter


lass. We perform NMS after aspe
t ratio pruning to avoid

wide windows with many 
hara
ters suppressing weaker

single 
hara
ter windows they overlap with. The pruning

and NMS steps are performed 
onservatively, to dis
ard295

only the obvious false dete
tions. The remaining false pos-

itives are modelled in an energy minimization framework

with language priors and other 
ues, as dis
ussed below.

3.2. Graph Constru
tion and Energy Formulation

We solve the problem of minimizing the energy fun
-300

tion (1) on a 
orresponding graph, where ea
h random

variable is represented as a node in the graph. We begin

by ordering the 
hara
ter windows based on their horizon-

tal lo
ation in the image, and add one node ea
h for every

window sequentially from left to right. The nodes are then305


onne
ted by edges. Sin
e it is not natural for a window on

the extreme left to be strongly related to another window

on the extreme right, we only 
onne
t windows whi
h are


lose to ea
h other. The intuition behind 
lose-proximity

windows is that they 
ould represent dete
tions of two sep-310

arate 
hara
ters. As we will see later, the edges are used to

en
ode the language model as top-down 
ues. Su
h pair-

wise language priors alone may not be su�
ient in some


ases, for example, when an image-spe
i�
 lexi
on is un-

available. Thus, we also integrate higher order language315

priors in the form of n-grams 
omputed from the English

di
tionary by adding an auxiliary node 
onne
ting a set of

n 
hara
ter dete
tion nodes.

Ea
h (non-auxiliary) node in the graph takes one label

from the label set L = {l1, l2, . . . , lk} ∪ ǫ. Re
all that ea
h320

lu is an English 
hara
ter or digit, and the null label ǫ is

used to dis
ard false windows that represent ba
kground

or parts of 
hara
ters. The 
ost asso
iated with this label

assignment is known as the unary 
ost. The 
ost for two

neighbouring nodes taking labels lu and lv is known as the325

pairwise 
ost. This 
ost is 
omputed from bigram s
ores

of 
hara
ter pairs in the English di
tionary or an image-

spe
i�
 lexi
on. The auxiliary nodes in the graph take

labels from the extended label set Le. Ea
h element of

Le represents one of the n-grams present in the di
tionary330

and an additional label to assign a 
onstant (high) 
ost to

all n-grams that are not in the di
tionary. The proposed

model is illustrated in Fig. 6, where we show a CRF of

order four as an example. On
e the graph is 
onstru
ted,

we 
ompute its 
orresponding 
ost fun
tions as follows.335

3.2.1. Unary 
ost

The unary 
ost of a node taking a 
hara
ter label is

determined by the SVM 
on�den
e s
ores. The unary term

ψ1, whi
h denotes the 
ost of a node xi taking label lu, is

de�ned as:

ψ1(xi = lu) = 1− p(lu|xi), (3)

where p(lu|xi) is the SVM s
ore of 
hara
ter 
lass lu for

node xi, normalized with Platt's method [64℄. The 
ost of

5



Figure 6 The proposed model illustrated as a graph. Given a word image (shown on the left), we evaluate 
hara
ter dete
tors and obtain

potential 
hara
ter windows, whi
h are then represented in a graph. These nodes are 
onne
ted with edges based on their spatial positioning.

Ea
h node 
an take a label from the label set 
ontaining English 
hara
ters, digits, and a null label (to suppress false dete
tions). To integrate

language models, i.e., n-grams, into the graph, we add auxiliary nodes (shown in red), whi
h 
onstrain several 
hara
ter windows together

(sets of 4 
hara
ters in this example). Auxiliary nodes take labels from a label set 
ontaining all valid English n-grams and an additional

label to enfor
e high 
ost for an invalid n-gram.

xi taking the null label ǫ is given by:

ψ1(xi = ǫ) = max
u

p(lu|xi) exp

(

−
(µau

− ai)
2

σ2
au

)

, (4)

where ai is the aspe
t ratio of the window 
orresponding

to node xi, µau
and σau

are the mean and varian
e of

the aspe
t ratio respe
tively of the 
hara
ter lu, 
omputed

from the training data. The intuition behind this 
ost340

fun
tion is that, for taking a 
hara
ter label, the dete
ted

window should have a high 
lassi�er 
on�den
e and its

aspe
t ratio should agree with that of the 
orresponding


hara
ter in the training data.

3.2.2. Pairwise 
ost345

The pairwise 
ost of two neighbouring nodes xi and xj
taking a pair of labels lu and lv respe
tively is determined

by the 
ost of their joint o

urren
e in the di
tionary. This


ost ψ2 is given by:

ψ2(xi = lu, xj = lv) = λ
l

exp(−βp(lu, lv)), (5)

where p(lu, lv) is the s
ore determining the likelihood of the
pair lu and lv o

urring together in the di
tionary. The pa-

rameters λ
l

and β are set empiri
ally as λ
l

= 2 and β = 50
in all our experiments. The s
ore p(lu, lv) is 
ommonly


omputed from joint o

urren
es of 
hara
ters in the lexi-350


on [41, 42, 43, 65℄. This prior is e�e
tive when the lexi
on

size is small, but it is less so as the lexi
on in
reases in size.

Furthermore, it fails to 
apture the lo
ation-spe
i�
 infor-

mation of pairs of 
hara
ters. As a toy example, 
onsider

a lexi
on with only two words CVPR and ICPR. Here,355

the 
hara
ter pair (P,R) is more likely to o

ur at the end

of the word, but a standard bigram prior model does not

in
orporate this lo
ation-spe
i�
 information.

To over
ome the la
k of lo
ation-spe
i�
 information,

we devise a node-spe
i�
 pairwise 
ost by adapting [66℄360

to the s
ene text re
ognition problem. We divide a given

word image into T parts, where T is an estimate of the

number of 
hara
ters in the image. This estimate T is

given by the image width divided by the average 
hara
ter

window width, with the average 
omputed over all the de-365

te
ted 
hara
ters in the image. To determine the pairwise


ost involving windows in the t th image part, we de�ne

a region of interest (ROI) whi
h in
ludes the two adja
ent

parts t− 1, t+1, in addition to t. With this, we do a ROI

based sear
h in the lexi
on. In other words, we 
onsider all370

the 
hara
ter pairs involving 
hara
ters in lo
ations t− 1,
t and t + 1 in all the lexi
on words to 
ompute the likeli-

hood of a pair o

urring together. Note that the extreme


ases (involving the leftmost and rightmost 
hara
ter in

the lexi
on word) are treated appropriately by 
onsidering375

only one of the two pairs.

This pairwise 
ost using the node-spe
i�
 prior is given

by:

ψ2(xi = lu, xj = lv) =

{

0 if (lu, lv) ∈ roi,

λ
l

otherwise.
(6)

We evaluated our approa
h with both the pairwise terms

(5) and (6), and found that the node-spe
i�
 prior (6)

a
hieves better performan
e. The 
ost of nodes xi and xj
taking label lu and ǫ respe
tively is de�ned as:

ψ2(xi = lu, xj = ǫ) = λ
o

exp(−β(1−O(xi, xj))
2), (7)

where O(xi, xj) is the overlap fra
tion between windows


orresponding to the nodes xi and xj . The pairwise 
ost

ψ2(xi = ǫ, xj = lu) is de�ned similarly. The parameters

are set empiri
ally as λ
o

= 2 and β = 50 in our experi-380

ments. This 
ost ensures that when two 
hara
ter windows

overlap signi�
antly, only one of them are assigned a 
har-

a
ter/digit label in order to avoid parts of 
hara
ters being

labelled.

3.2.3. Higher order 
ost385

Let us 
onsider a CRF of order n = 3 as an example

to understand this 
ost. An auxiliary node 
orresponding

6



to every 
lique of size 3 is added to represent this third

order 
ost in the graph. The higher order 
ost is then

de
omposed into unary and pairwise terms with respe
t

to this node, similar to [67℄. Ea
h auxiliary node in the

graph takes one of the labels from the extended label set

{L1, L2, . . . , LM}∪LM+1, where labels L1 . . . LM represent

all the trigrams in the di
tionary. The additional label

LM+1 denotes all those trigrams whi
h are absent in the

di
tionary. The unary 
ost ψa
1 for an auxiliary variable yi

taking label Lm is:

ψa
1 (yi = Lm) = λ

a

exp(−βP (Lm)), (8)

where λ
a

is a 
onstant. We set λ
a

= 5 empiri
ally, in all

our experiments, unless stated otherwise. The parameter

β 
ontrols penalty between di
tionary and non-di
tionary

n-grams, and is empiri
ally set to 50. The s
ore P (Lm)
denotes the likelihood of trigram Lm in the English, and

is further des
ribed in Se
tion 3.2.4. The pairwise 
ost be-

tween the auxiliary node yi taking a label Lm = lulvlw and

the left-most non-auxiliary node in the 
lique, xi, taking

a label lr is given by:

ψa
2 (yi = Lm, xi = lr) =







0 if r = u

0 if lr = ǫ

λ
b

otherwise,

(9)

where λ
b

penalizes a disagreement between the auxiliary

and non-auxiliary nodes, and is empiri
ally set to 1. The
other two pairwise terms for the se
ond and third nodes

are de�ned similarly. Note that when one or more xi's

take null label, the 
orresponding pairwise term(s) be-390

tween xi(s) and the auxiliary node are set to 0.

3.2.4. Computing language priors

We 
ompute n-gram based priors from the lexi
on (or

di
tionary) and then adapt standard te
hniques for smooth-

ing these s
ores [41, 68, 69℄ to the open and 
losed vo
ab-395

ulary 
ases.

Our method uses the s
ore denoting the likelihood of

joint o

urren
e of pair of labels lu and lv represented

as P (lu, lv), triplets of labels lu, lv and lw denoted by

P (lu, lv, lw) and even higher order (e.g., fourth order). Let
C(lu) denote the number of o

urren
es of lu, C(lu, lv) be
the number of joint o

urren
es of lu and lv next to ea
h

other, and similarly C(lu, lv, lw) is the number of joint o
-

urren
es of all three labels lu, lv, lw next to ea
h other.

The smoothed s
ores [68℄ P (lu, lv) and P (lu, lv, lw) are

now:

P (lu, lv) =







0.4 if lu, lv are digits,
C(lu,lv)
C(lv)

if C(lu, lv) > 0,

αluP (lv) otherwise,

(10)

P (lu, lv, lw) =















0.4 if lu, lv, lw are digits,
C(lu,lv ,lw)
C(lv,lw) if C(lu, lv, lw) > 0,

αluP (lv, lw) else if C(lu, lv) > 0,
αlu,lvP (lw) otherwise,

(11)

Table 1 Our IIIT 5K-word dataset 
ontains a few less 
hallenging

(Easy) and many very 
hallenging (Hard) images. To present anal-

ysis of the dataset, we manually divided the words in the training

and test sets into easy and hard 
ategories based on their visual ap-

pearan
e. The re
ognition a

ura
y of a state-of-the-art 
ommer
ial

OCR � ABBYY9.0 � for this dataset is shown in the last 
olumn.

Here we also show the total number of 
hara
ters, whose annotations

are also provided, in the dataset.

Training Set

#words #
hara
ters ABBYY9.0(%)

Easy 658 - 44.98

Hard 1342 - 16.57

Total 2000 9658 20.25

Test Set

#words #
hara
ters ABBYY9.0(%)

Easy 734 - 44.96

Hard 2266 - 5.00

Total 3000 15269 14.60

Image-spe
i�
 lexi
ons (small or medium) are used in the


losed vo
abulary setting, while in the open vo
abulary


ase we use a lexi
on 
ontaining half a million words (hen
e-

forth referred to as large lexi
on) provided by [22℄ to 
om-400

pute these s
ores. The parameters αlu and αlu,lv are learnt

on the large lexi
on using SRILM toolbox.

3

They deter-

mine the low s
ore values for n-grams not present in the

lexi
on. We assign a 
onstant value (0.4) when the labels

are digits, whi
h do not o

ur in the large lexi
on.405

3.2.5. Inferen
e

Having 
omputed the unary, pairwise and higher order

terms, we use the sequential tree-reweighted message pass-

ing (TRW-S) algorithm [70℄ to minimize the energy fun
-

tion. The TRW-S algorithm maximizes a 
on
ave lower410

bound of the energy. It begins by 
onsidering a set of trees

from the random �eld, and 
omputes probability distribu-

tions over ea
h tree. These distributions are then used

to reweight the messages being passed during loopy belief

propagation [71℄ on ea
h tree. The algorithm terminates415

when the lower bound 
annot be in
reased further, or the

maximum number of iterations has been rea
hed.

In summary, given an image 
ontaining a word, we:

(i) lo
ate the potential 
hara
ters in it with a 
hara
ter

dete
tion s
heme, (ii) de�ne a random �eld over all these420

potential 
hara
ters, (iii) 
ompute the language priors and

integrate them into the random �eld model, and then (iv)

infer the most likely word by minimizing the energy fun
-

tion 
orresponding to the random �eld.

3

Available at: http://www.spee
h.sri.
om/proje
ts/srilm/

7
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Table 2 Analysis of the IIIT 5K-word dataset. We show the per-


entage of non-di
tionary words (Non-di
t.), in
luding digits, and

the per
entage of words 
ontaining only digits (Digits) in the �rst

two rows. We also show the per
entage of words that are 
omposed

from valid English trigrams (Di
t. 3-grams), four-grams (Di
t. 4-

grams) and �ve-grams (Di
t. 5-grams) in the last three rows. These

statisti
s are 
omputed using the large lexi
on.

IIIT 5K train IIIT 5K test

Non-di
t. words 23.65 22.03

Digits 11.05 7.97

Di
t. 3-grams 90.27 88.05

Di
t. 4-grams 81.40 79.27

Di
t. 5-grams 68.92 62.48

4. Datasets and Evaluation Proto
ols425

Several publi
 ben
hmark datasets for s
ene text un-

derstanding have been released in re
ent years. ICDAR [17℄

and Street View Text (SVT) [18℄ datasets are two of the

initial datasets for this problem. They both 
ontain data

for text lo
alization, 
ropped word re
ognition and iso-430

lated 
hara
ter re
ognition tasks. In this paper we use

the 
ropped word re
ognition part from these datasets.

Although these datasets have served well in building in-

terest in the s
ene text understanding problem, they are

limited by their size of a few hundred images. To address435

this issue, we introdu
ed the IIIT 5K-word dataset [19℄,


ontaining a diverse set of 5000 words. Here, we provide

details of all these datasets and the evaluation proto
ol.

SVT. The street view text (SVT) dataset 
ontains images

taken from Google Street View. As noted in [72℄, most of440

the images 
ome from business signage and exhibit a high

degree of variability in appearan
e and resolution. The

dataset is divided into SVT-spot and SVT-word, meant

for the tasks of lo
ating and re
ognizing words respe
tively.

We use the SVT-word dataset, whi
h 
ontains 647 word445

images.

Our basi
 unit of re
ognition is a 
hara
ter, whi
h

needs to be lo
alized before 
lassi�
ation. Failing to dete
t


hara
ters will result in poorer word re
ognition, making it

a 
riti
al 
omponent of our framework. To quantitatively450

measure the a

ura
y of the 
hara
ter dete
tion module,

we 
reated ground truth data for 
hara
ters in the SVT-

word dataset. This ground truth dataset 
ontains around

4000 
hara
ters of 52 
lasses, and is referred to as as SVT-


har, whi
h is available for download [73℄.455

ICDAR 2003 dataset. The ICDAR 2003 dataset was orig-

inally 
reated for text dete
tion, 
ropped 
hara
ter 
las-

si�
ation, 
ropped and full image word re
ognition, and

other tasks in do
ument analysis [17℄. We used the part


orresponding to the 
ropped word re
ognition 
alled ro-460

bust word re
ognition. Following the proto
ol of [11℄, we

ignore words with less than two 
hara
ters or with non-

alphanumeri
 
hara
ters, whi
h results in 859 words over-

all. For subsequent dis
ussion we refer to this dataset

as ICDAR(50) for the image-spe
i�
 lexi
on-driven 
ase465

(
losed vo
abulary), and ICDAR 2003 when this lexi
on

is unavailable (open vo
abulary 
ase).

ICDAR 2011/2013 datasets. These datasets were intro-

du
ed as part of the ICDAR robust reading 
ompetitions [74,

75℄. They 
ontain 1189 and 1095 word images respe
tively.470

We show 
ase-sensitive open vo
abulary results on both

these datasets. Also, following the ICDAR 
ompetition

evaluation proto
ol, we do not ex
lude words 
ontaining

spe
ial 
hara
ters (su
h as &, :), and report results on the

entire dataset.475

IIIT 5K-word dataset. The IIIT 5K-word dataset [19, 73℄


ontains both s
ene text and born-digital images. Born-

digital images�
ategory of images whi
h has gained in-

terest in ICDAR 2011 
ompetitions [74℄�are inherently

low-resolution, made for online transmission, and have a480

variety of font sizes and styles. This dataset is not only

mu
h larger than SVT and the ICDAR datasets, but also

more 
hallenging. All the images were harvested through

Google image sear
h. Query words like billboard, sign-

board, house number, house name plate, movie poster485

were used to 
olle
t images. The text in the images was

manually annotated with bounding boxes and their 
orre-

sponding ground truth words. The IIIT 5K-word dataset


ontains in all 1120 s
ene images and 5000 word images.

We split it into a training set of 380 s
ene images and490

2000 word images, and a test set of 740 s
ene images and

3000 word images. To analyze the di�
ulty of the IIIT

5K-word dataset, we manually divided the words in the

training and test sets into easy and hard 
ategories based

on their visual appearan
e. An annotation team 
onsisting495

of three people have done three independent splits. Ea
h

word is then tagged as either being easy or hard by tak-

ing a majority vote. This split is available on our proje
t

page [73℄. Table 1 shows these splits in detail. We observe

that a 
ommer
ial OCR performs poorly on both the train500

and test splits. Furthermore, to evaluate 
omponents like


hara
ter dete
tion and re
ognition, we also provide anno-

tated 
hara
ter bounding boxes. It should be noted that

around 22% of the words in this dataset are not in the

English di
tionary, e.g., proper nouns, house numbers, al-505

phanumeri
 words. This makes this dataset suitable for

open vo
abulary 
ropped word re
ognition. We show an

analysis of di
tionary and non-di
tionary words in Table 2.

Evaluation proto
ol. We evaluate the word re
ognition a
-


ura
y in two settings: 
losed and open vo
abulary. Fol-510

lowing previous work [11, 53, 19℄, we evaluate 
ase-insensitive

word re
ognition on SVT, ICDAR 2003, IIIT 5K-word,

and 
ase-sensitive word re
ognition on ICDAR 2011 and

ICDAR 2013. For the 
losed vo
abulary re
ognition 
ase,

we perform a minimum edit distan
e 
orre
tion, sin
e the515

ground truth word belongs to the image-spe
i�
 lexi
on.

On the other hand, in the 
ase of open vo
abulary re
ogni-

tion, where the ground truth word may or may not belong

8



Table 3 Chara
ter 
lassi�
ation a

ura
y (in %). A smart 
hoi
e of features, training examples and 
lassi�er is key to improving 
hara
ter


lassi�
ation. We enri
h the training set by in
luding many a�ne transformed (AT) versions of the original training data from ICDAR

and Chars74K (
74k). The three variants of our approa
h (H-13, H-31 and H-36) show noti
eable improvement over several methods. The


hara
ter 
lassi�
ation results shown here are 
ase sensitive (all rows ex
ept the last two). It is to be noted that [27℄ only uses 15 training

samples per 
lass. The last two rows show a 
ase insensitive (CI) evaluation. ∗We do not evaluate the 
onvolutional neural network 
lassi�er

in [20℄ (CNN feat+
lassi�er) on the 
74K dataset, sin
e the entire dataset was used to train the network.

Method SVT ICDAR 
74K IIIT 5K Time

Exempler SVM [76℄ - 71 - - -

Elagouni et al. [43℄ - 70 - - -

Coates et al. [77℄ - 82 - - -

FERNS [11℄ - 52 47 - -

RBF [37℄ 62 62 64 61 3ms

MKL+RBF [27℄ - - 57 - 11ms

H-36+AT+Linear 69 73 68 66 2ms

H-31+AT+Linear 64 73 67 63 1.8ms

H-13+AT+Linear 65 72 66 64 0.8ms

H-36+AT+Linear (CI) 75 77 79 75 0.8ms

CNN feat+
lassi�er [20℄ (CI) 83 86 ∗ 85 1ms

to the large lexi
on, we do not perform edit distan
e based


orre
tion. We perform many of our analyses on the IIIT520

5K-word dataset, unless otherwise stated, sin
e it is the

largest dataset for this task, and also 
omes with 
hara
-

ter bounding box annotations.

5. Experiments

Given an image region 
ontaining text, 
ropped from525

a street s
ene, our task is to re
ognize the word it 
on-

tains. In the pro
ess, we develop several 
omponents (su
h

as a 
hara
ter re
ognizer) and also evaluate them to jus-

tify our 
hoi
es. The proposed method is evaluated in

two settings, namely, 
losed vo
abulary (with an image-530

spe
i�
 lexi
on) and open vo
abulary (using an English

di
tionary for the language model). We 
ompare our re-

sults with the best-performing re
ent methods for these

two 
ases. For baseline 
omparisons we 
hoose 
ommer
ial

OCR namely ABBYY [78℄ and a publi
 implementation of535

a re
ent method [79℄ in 
ombination with an open sour
e

OCR.

5.1. Chara
ter Classi�er

We use the training sets of ICDAR 2003 
hara
ter [17℄

and Chars74K [27℄ datasets to train the 
hara
ter 
lassi-540

�ers. This training set is augmented with 48× 48 pat
hes
harvested from s
ene images, with buildings, sky, road and


ars, whi
h do not 
ontain text, as additional negative

training examples. We then apply a�ne transformations

to all the 
hara
ter images, resize them to 48 × 48, and545


ompute HOG features. Three variations (13, 31 and 36-

dimensional) of HOG were analyzed (see Table 3). We

then use an expli
it feature map [63℄ and the χ2
kernel to

learn the SVM 
lassi�er. The SVM parameters are esti-

mated by 
ross-validating on a validation set. The expli
it550

feature map not only allows a signi�
ant redu
tion in 
las-

si�
ation time, 
ompared to non-linear kernels like RBF,

but also a
hieves a good performan
e.

The two main di�eren
es from our previous work [37℄

in the design of the 
hara
ter 
lassi�er are: (i) enri
hing555

the training set, and (ii) using an expli
it feature map

and a linear kernel (instead of RBF). Table 3 
ompares

our 
hara
ter 
lassi�
ation performan
e with [11, 27, 37,

76, 77, 43℄ on several test sets. We a
hieve at least 4%

improvement over our previous work (RBF [37℄) on all560

the datasets, and also perform better than [11, 27℄. We

are also 
omparable to a few other re
ent methods [43,

76℄, whi
h show a limited evaluation on the ICDAR 2003

dataset. Following an evaluation insensitive to 
ase (as

done in a few ben
hmarks, e.g., [20, 53℄, we obtain 77% on565

ICDAR 2003, 75% on SVT-
har, 79% on Chars74K, and

75% on IIIT 5K-word. It should be noted that feature

learning methods based on 
onvolutional neural networks,

e.g., [77, 20℄, show an ex
ellent performan
e. This inspired

us to integrate them into our framework. We used publi
ly570

available features [20℄. This will be further dis
ussed in

Se
tion 5.3. We 
ould not 
ompare with other related

re
ent methods [30, 23℄ sin
e they did not report isolated


hara
ter 
lassi�
ation a

ura
y.

In terms of 
omputation time, linear SVMs trained575

with HOG-13 features outperform others, but sin
e our

main fo
us is on word re
ognition performan
e, we use the

most a

urate 
ombination, i.e., linear SVMs with HOG-

36. We observed that this smart sele
tion of training data

and features not only improves 
hara
ter re
ognition a
-580


ura
y but also improves the se
ond and third best pre-

di
tions for 
hara
ters.

5.2. Chara
ter Dete
tion

Sliding window based 
hara
ter dete
tion is an impor-

tant 
omponent of our framework, sin
e our random �eld585

model is de�ned on these dete
tions. We use windows of

9



aspe
t ratio ranging from 0.1 to 2.5 for sliding window

and at every possible lo
ation of the sliding window, we

evaluate a 
hara
ter 
lassi�er. This provides the likeli-

hood of the window 
ontaining the respe
tive 
hara
ter.590

We pruned some of the windows based on their aspe
t ra-

tio, and then used the goodness measure (2) to dis
ard

the windows with a s
ore less than 0.1 (refer Se
tion 3.1).

Chara
ter-spe
i�
 NMS is done on the remaining windows

with an overlap threshold of 40%, i.e., if two dete
tions595

have more than 40% overlap and represent the same 
har-

a
ter 
lass, we suppress the weaker dete
tion. We evalu-

ated the 
hara
ter dete
tion results with the interse
tion

over union measure and a threshold of 50%, following IC-

DAR 2003 [17℄ and PASCAL-VOC [80℄ evaluation proto-600


ol. Our sliding window approa
h a
hieves re
all of 80%

on the IIIT 5K-word dataset, signi�
antly better than us-

ing a binarization s
heme for dete
ting 
hara
ters and also

superior to te
hniques like MSER [81℄ and CSER [79℄ (see

Table 7 and Se
tion 5.4).605

5.3. Word Re
ognition

Closed vo
abulary re
ognition. The results of the proposed

CRF model in 
losed vo
abulary setting are presented

in Table 4. We 
ompare our method with many re
ent

works for this task. To 
ompute the language priors we610

use lexi
ons provided by authors of [11℄ for SVT and IC-

DAR(50). The image-spe
i�
 lexi
on for every word in the

IIIT 5K-word dataset was developed following the method

des
ribed in [11℄. These lexi
ons 
ontain the ground truth

word and a set of distra
tors obtained from randomly 
ho-615

sen words (from all the ground truth words in the dataset).

We used a CRF with higher order term (n=4), and similar

to other approa
hes, applied edit distan
e based 
orre
tion

after inferen
e. The 
onstant λ
a

in (8) to 1, given the small

size of the lexi
on.620

The gain in a

ura
y over our previous work [37℄, seen

in Table 4, 
an be attributed to the higher order CRF and

an improved 
hara
ter 
lassi�er. The 
hara
ter 
lassi�er

uses: (i) enri
hed training data, and (ii) an expli
it feature

map, to a
hieve about 5% gain (see Se
tion 5.1 for details).625

Other methods, in parti
ular, our previous work on holis-

ti
 word re
ognition [45℄, label embedding [25℄ a
hieve a

reasonably good performan
e, but are restri
ted to the


losed vo
abulary setting, and their extension to more

general settings, su
h as the open vo
abulary 
ase, is un-630


lear. Methods published sin
e our original work [37℄, su
h

as [23, 53℄, also perform well. Very re
ently, methods based

on 
onvolutional neural networks [30, 20℄ have shown very

impressive results for this problem. It should be noted

that su
h methods are typi
ally trained on mu
h larger635

datasets, for example, 10M 
ompared to 0.1M typi
ally

used in state-of-the-art methods, whi
h are not publi
ly

available [30℄. Inspired by these su

esses, we use a CNN


lassi�er [20℄ to re
ognize 
hara
ters, instead of our SVM


lassi�er based on HOG features (see Se
. 3.1). We show640

results with this CNN 
lassi�er on SVT, ICDAR 2003 and

IIIT-5K word datasets in Table 4 and observe signi�
ant

Table 4 Word re
ognition a

ura
y (in %): 
losed vo
abulary set-

ting. We present results of our proposed higher order model (�This

work�) with HOG as well as CNN features. See text for details.

Method A

ura
y

ICDAR 2003 (50) dataset

Baseline (ABBYY) [78℄ 56.04

Baseline (CSER+tessera
t) [79℄ 57.27

Novikova et al. [24℄ 82.80

Our Holisti
 re
ognition [45℄ 89.69

Deep learning approa
hes

Wang et al. [44℄ 90.00

Deep features [20℄ 96.20

Other energy min. approa
hes

PLEX [11℄ 72.00

Shi et al. [53℄ 87.04

Our variants:

Pairwise CRF [37℄ 81.74

Higher order [This work, HOG℄ 84.07

Higher order [This work, CNN℄ 88.02

SVT-Word dataset

Baseline(ABBYY) [78℄ 35.00

Baseline (CSER+tessera
t) [79℄ 37.71

Novikova et al. [24℄ 72.90

Our Holisti
 re
ognition [45℄ 77.28

Deep learning approa
hes

Wang et al. [44℄ 70.00

PhotoOCR [30℄ 90.39

Deep features [20℄ 86.10

Other energy min. approa
hes

PICT [72℄ 59.00

PLEX [11℄ 57.00

Shi et al. [53℄ 73.51

Weinman et al. [23℄ 78.05

Our variants:

Pairwise CRF [37℄ 73.26

Higher order [This work, HOG℄ 75.27

Higher order [This work, CNN℄ 78.21

IIIT 5K-Word (Small)

Baseline(ABBYY) [78℄ 24.50

Baseline (CSER+tessera
t) [79℄ 33.07

Rodriguez & Perronnin [25℄ 76.10

Strokelets [31℄ 80.20

Our variants:

Pairwise CRF [37℄ 66.13

Higher order [This work, HOG℄ 71.80

Higher order [This work, CNN℄ 78.07

improvement in a

ura
y, showing its 
omplementary na-

ture to our energy based method. However, there remains

a di�eren
e in performan
e between the deep feature based645

method [20℄ and [This work, CNN℄. This is primarily due

to use of CNN features for learning 
lassi�ers for individ-

ual 
hara
ter as well as bi-grams in [20℄. In 
ontrast, our

method only uses the pre-trained 
hara
ter 
lassi�er pro-

10



vided by [20℄. Nevertheless, the improvement observed650

over [This work, HOG℄ does show the 
omplementary na-

ture of the two approa
hes, and integrating the two further

would be an interesting avenue for future resear
h.

Open vo
abulary re
ognition. In this setting we use a lexi-


on of 0.5 million words from [22℄ instead of image-spe
i�
655

lexi
ons to 
ompute the language priors. Many 
hara
-

ter pairs are equally likely in su
h a large lexi
on, thereby

rendering pairwise priors is less e�e
tive than in the 
ase

of a small lexi
on. We use priors of order four to ad-

dress this (see also analysis on the CRF order in Se
-660

tion 5.4). Results on various datasets in this setting are

shown in Table 5. We 
ompare our method with re
ent

work by Feild and Miller [26℄ on the ICDAR 2003 dataset,

where our method with HOG features shows a 
omparable

performan
e. Note that [26℄ additionally uses web-based665


orre
tions, unlike our method, where the results are ob-

tained dire
tly by performing inferen
e on the higher order

CRF model. On the ICDAR 2011 and 2013 datasets we


ompare our method with the top performers from the

respe
tive 
ompetitions. Our method outperforms the IC-670

DAR 2011 robust reading 
ompetition winner (TH-OCR

method) method by 17%. This performan
e is also better

than a re
ently published work from 2014 by Weinman et

al. [23℄. On the ICDAR 2013 dataset, the proposed higher

order model is signi�
antly better than the baseline and675

is in the top-5 performers among the 
ompetition entries.

The winner of this 
ompetition (PhotoOCR) uses a large

proprietary training dataset, whi
h is unavailable publi
ly,

making it infeasible to do a fair 
omparison. Other meth-

ods (NESP [82℄, MAPS [83℄, PLT [84℄) use many prepro-680


essing te
hniques, followed by o�-the-self OCR. Su
h pre-

pro
essing te
hniques are highly dataset dependent and

may not generalize easily to all the 
hallenging datasets

we use. Despite the la
k of these prepro
essing steps, our

method shows a 
omparable performan
e. On the IIIT685

5K-word dataset, whi
h is large (three times the size of

ICDAR 2013 dataset) and 
hallenging, the only published

result to our knowledge is Strokelets [31℄ from CVPR 2014.

Our method performs 7% better than Strokelets. Using

CNN features instead of HOG further improves our word690

re
ognition a

ura
y, as shown in Table 5.

The main fo
us of this work is on evaluating datasets


ontaining s
ene text images or a mixture of s
ene text

and born-digital images. Nevertheless, we also tested our

method on the born-digital image dataset from the re
ent695

ICDAR 2013 
ompetition. Our approa
h with pre-trained

CNN features a
hieves 78% a

ura
y on this dataset, whi
h

is 
omparable to other top performers (80.40%, 80.26%,

79.40%), and lower than PhotoOCR (82%), the 
ompeti-

tion winner using an end-to-end deep learning approa
h.700

To sum up, our proposed method performs well 
onsis-

tently on several popular s
ene text datasets. Fig. 7 shows

the qualitative performan
e of the proposed method on a

few sample images. The higher order CRF outperforms

the unary and pairwise CRFs. This is intuitive due to705

the better expressiveness of the higher order potentials.

One of the failure 
ases is shown in the last row in Fig. 7,

where the higher order potential is 
omputed from a lex-

i
on whi
h does not have su�
ient examples to handle

alphanumeri
 words.710

5.4. Further Analysis

Lexi
on size. The size of the lexi
on plays an important

role in the word re
ognition performan
e. With a small-

size lexi
on, we obtain strong language priors whi
h help

over
ome ina

urate 
hara
ter dete
tion and re
ognition715

in the 
losed vo
abulary setting. A small lexi
on provides

mu
h stronger priors than the large lexi
on in this 
ase, as

the performan
e degrades with in
rease in the lexi
on size.

We show this behaviour on the IIIT 5K-word dataset in

Table 6 with small (50), medium (1000) and large (0.5720

million) lexi
ons. We also 
ompare our results with a

state-of-the-art methods [25, 31℄. We observe that [25, 31℄

shows better re
ognition performan
e with the small lex-

i
on, when we use HOG features, but as the size of the

lexi
on in
reases, our method outperforms [25℄.725

Alternatives for 
hara
ter dete
tion.. While our sliding

window approa
h for 
hara
ter dete
tion performs well in

several s
enarios, in
luding text that is not aligned with

the image axes to a small extent (e.g., rows 4 - 6 in Fig-

ure 7), there are other alternatives. In parti
ular, we inves-730

tigated the use of binarization, MSER [81℄, and CSER [49℄

algorithms. In the �rst experiment, we repla
ed our dete
-

tion module with a binarization based 
hara
ter extra
tion

s
heme � either a traditional binarization te
hnique [85℄ or

a more re
ent random �eld based approa
h [47℄. A 
on-735

ne
ted 
omponent analysis was performed on the binarized

images to obtain a set of potential 
hara
ter lo
ations. We

then de�ned the CRF on these 
hara
ters and performed

inferen
e to get the text 
ontained in the image. These

results are summarized in Table 7. We observe that bina-740

rization based methods perform poorly 
ompared to our

model using a sliding window dete
tor, both in terms of


hara
ter-level re
all and word re
ognition. They fail in

extra
ting 
hara
ters in the presen
e of noise, blur or large

foreground-ba
kground variations. MSER [81℄ or related745

algorithms (e.g., CSER [49℄) may also help to deal with

text that is not axis-oriented, but they are not ne
essar-

ily ideal for 
hara
ter extra
tion 
ompared to a sliding

window method. To study this, we repla
ed our sliding

window based 
hara
ter dete
tion s
heme with either one750

of these approa
hes. From Table 7 we observe that slid-

ing window 
hara
ter extra
tion is marginally better than

CSER and signi�
antly better than MSER. One of the

reasons for this is that the 
lassi�er used in the sliding

window dete
tor is trained on a large variety of 
hara
ter755


lasses and is less prone to errors than the MSER equiv-

alent. These results further justify our 
hoi
e of sliding

window based 
hara
ter dete
tion, although the 
halleng-

ing problem of e�e
tively dealing with text that is not

axis-oriented remains an interesting task for the future.760
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Table 5 Word re
ognition a

ura
y (in %): open vo
abulary

setting. The results of our proposed higher order model (�This

work�) with HOG as well as CNN features are presented here.

Sin
e the network used here to 
ompute CNN features, i.e. [20℄,

is learnt on data from several sour
es (e.g., ICDAR 2013), we

evaluated with CNN features only on ICDAR 2003 and IIIT-5K

word datasets, as re
ommended by the authors. Note that we

also 
ompare with top performers (as given in [74, 75℄) in the

ICDAR 2011 and 2013 robust reading 
ompetitions. We follow

standard proto
ols for evaluation � 
ase sensitive on ICDAR

2011 and 2013 and 
ase insensitive on ICDAR 2003 and IIIT

5K-Word.

Method A

ura
y

ICDAR 2003 dataset

Baseline (ABBYY) 46.51

Baseline (CSER+tessera
t) [79℄ 50.99

Feild and Miller [26℄ 62.76

Our variants

Pairwise [37℄ 50.99

Higher order [This work, HOG℄ 63.02

Higher order [This work, CNN℄ 67.67

ICDAR 2011 dataset

Baseline (ABBYY) 46.00

Baseline (CSER+tessera
t) [79℄ 51.98

Weinman et al. [23℄ 57.70

Feild and Miller [26℄ 48.86

ICDAR'11 
ompetition [74℄

TH-OCR System 41.20

KAIST AIPR System 35.60

Neumann's Method 33.11

Our variants

Pairwise [37℄ 48.11

Higher order [This work, HOG℄ 58.03

ICDAR 2013 dataset

Baseline (ABBYY) 45.30

Baseline (CSER+tessera
t) [79℄ 50.26

ICDAR'13 
ompetition [75℄

PhotoOCR [30℄ 82.83

NESP [82℄ 64.20

MAPS [83℄ 62.74

PLT [84℄ 62.37

Pi
Read [24℄ 57.99

POINEER [22, 23℄ 53.70

Field's Method [26℄ 47.95

TextSpotter [12, 29, 49℄ 26.85

Our variants

Pairwise [37℄ 49.86

Higher order [This work, HOG℄ 60.18

IIIT 5K-Word

Baseline (ABBYY) 14.60

Baseline (CSER+tessera
t) [79℄ 25.00

Stroklets [31℄ 38.30

Our variants

Pairwise [37℄ 32.00

Higher order [This work, HOG℄ 44.50

Higher order [This work, CNN℄ 46.73

E�e
t of pruning. We propose a pruning step to dis
ard


andidates based on a 
ombination of 
hara
ter-spe
i�


Table 6 Studying the in�uen
e of the lexi
on size � small (S),

medium (M), large (L) � on the IIIT 5K-word dataset in the 
losed

vo
abulary setting.

Method S M L

Rodriguez & Perronnin [25℄ 76.10 57.50 -

Strokelets [31℄ 80.20 69.30 38.30

Higher order [This work, HOG℄ 71.80 62.17 44.50

Higher order [This work, CNN℄ 78.07 70.13 46.73

aspe
t ratio and 
lassi�
ation s
ores (2), instead of sim-

ply using extreme aspe
t ratio to dis
ard 
hara
ter 
andi-

dates. This pruning helps in removing many false positive765

windows, and thus improves re
ognition performan
e. We


ondu
ted an experiment to study the e�e
t of pruning

on the IIIT-5K dataset in the open vo
abulary setting,

and observed a gain of 4.23% (46.73% vs 42.50%) due to

pruning.770

CRF order. We varied the order of the CRF from two to

six and obtained a

ura
y of 32%, 43%, 45%, 43%, 42% re-

spe
tively on the IIIT 5K-word dataset in the open vo
ab-

ulary setting. In
reasing the CRF order beyond four for
es

a re
ognized word to be one from the di
tionary, whi
h775

leads to poor re
ognition performan
e for non-di
tionary

words, and thus deteriorates the overall a

ura
y. Empir-

i
ally, the fourth order prior shows the best performan
e.

Limits of statisti
al language models. Statisti
al language

models have been very useful in improving traditional OCR780

performan
e, but they are indeed limited [65, 86℄. For in-

stan
e, using a large weight for language prior potentials

may bias the re
ognition towards the 
losest di
tionary

word. This is espe
ially true when the 
hara
ter re
ogni-

tion part of the pipeline is weak. We study su
h impa
t785

of language models in this experiment. Our analysis on

the IIIT 5K-word dataset suggests that many of the non-

di
tionary words are 
omposed of valid English n-grams

(see Table 2). However, there are few ex
eptions, e.g.,

words like 35KM, 21P, whi
h are 
omposed of digits and790


hara
ters; see last row of Fig. 7. Using language mod-

els has an adverse e�e
t on the re
ognition performan
e

in su
h 
ases. This results in inferior re
ognition perfor-

man
e on non-di
tionary words as 
ompared to di
tionary

words, e.g. on IIIT-5K dataset our method a
hieves 51%795

and 24% word re
ognition a

ura
y on di
tionary and non-

di
tionary words respe
tively.

6. Summary

This paper proposes an e�e
tive method to re
ognize

s
ene text. Our model 
ombines bottom-up 
ues from800


hara
ter dete
tions and top-down 
ues from lexi
on. We

jointly infer the lo
ation of true 
hara
ters and the word

they represent as a whole. We evaluated our method ex-

tensively on several 
hallenging street s
ene text datasets,

namely SVT, ICDAR 2003/2011/2013, and IIIT 5K-word805
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Test Image Unary Pairwise Higher order(=4)

TWI1IOHT TWILIOHT TWILIGHT

SRISNTI SRISNTI SRISHTI

LIIIIPUT LIIIIPUT LILLIPUT

EUMMER EUMMER SUMMER

IDTERNAL IDTERNAL INTERNAL

364203903105S 3642039031055 3642039031055

REGHT REGHT RIGHT

83KM BOKM BOOM

Figure 7 Results of our higher order model on a few sample images. Chara
ters in red represent in
orre
t re
ognition. The unary term

alone, based on the SVM 
lassi�er, yields poor a

ura
y, and adding pairwise terms to it improves this. Due to their limited expressiveness,

they do not 
orre
t all the errors. Higher order potentials 
apture larger 
ontext from the English language, and help address this issue. Note

that our method also deals with non-di
tionary words (e.g., se
ond row) and non-horizontal text (sixth row). A typi
al failure 
ase 
ontaining

alphanumeri
 words is shown in the last row. (Best viewed in 
olour).

Table 7 Chara
ter re
all (C. re
all) and re
ognition a

ura
y, with

unary only (Unary), unary and pairwise (Pairwise) and the full

higher order (H. order) models, (all in %), on the IIIT 5K-word

dataset with various 
hara
ter extra
tion s
hemes (Char. method).

See text for details.

Char. method C. re
all Unary Pairwise H. order

Otsu [85℄ 56 17.07 20.20 24.87

MRF model [47℄ 62 20.10 22.97 28.03

MSER [81℄ 72 23.20 28.50 34.70

CSER [49℄ [79℄ 78 24.50 30.00 42.87

Sliding window 80 25.83 32.00 44.50

and showed that our approa
h signi�
antly advan
es the

energy minimization based approa
h for s
ene text re
og-

nition. In addition to presenting the word re
ognition re-

sults, we analyzed the di�erent 
omponents of our pipeline,

presenting their pros and 
ons. Finally, we showed that810

the energy minimization framework is 
omplementary to

the resurgen
e of 
onvolutional neural network based te
h-

niques, whi
h 
an help build better s
ene understanding

systems.
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