Generic Uniqueness of the Bias Vector of Mean-Payoff Zero-Sum Games

Antoine Hochart 1, 2 Marianne Akian 2, 1 Stéphane Gaubert 2, 1
2 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : Under some ergodicity conditions, finite state space mean payoff zero-sum games can be solved using a nonlinear fixed point problem, involving a vector (bias or potential), which determines the optimal strategies. A basic issue is to check when the bias is unique. We show that this is always the case for generic values of the payments of the game. We also discuss the application of this result to the perturbation analysis of policy iteration.
Type de document :
Communication dans un congrès
SIAM Conference on Control and its Applications (SIAM CT’15), Jul 2015, Paris, France. 〈http://www.siam.org/meetings/ct15/index.php〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01263363
Contributeur : Marianne Akian <>
Soumis le : mercredi 27 janvier 2016 - 16:42:31
Dernière modification le : jeudi 10 mai 2018 - 02:04:38

Identifiants

  • HAL Id : hal-01263363, version 1

Citation

Antoine Hochart, Marianne Akian, Stéphane Gaubert. Generic Uniqueness of the Bias Vector of Mean-Payoff Zero-Sum Games. SIAM Conference on Control and its Applications (SIAM CT’15), Jul 2015, Paris, France. 〈http://www.siam.org/meetings/ct15/index.php〉. 〈hal-01263363〉

Partager

Métriques

Consultations de la notice

160