Eigenvectors of Non-Linear Maps on the Cone of Positive Semidefinite Matrices Application to Stability Analysis

Nikolas Stott 1, 2 Xavier Allamigeon 1, 2 Stéphane Gaubert 1, 2 Eric Goubault 3 Sylvie Putot 3
1 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We show that the problem of synthesis of a common Lyapunov function for some classes of switched linear systems can be approached by solving an eigenproblem involving a nonlinear map on the cone of positive semidefinite matrices. This map involves the selection of a maximal lower bound of a family of matrices in this cone. We present some variants of the power algorithm, allowing one to solve the nonlinear eigenproblem in a scalable way.
Type de document :
Communication dans un congrès
SIAM Conference on Control and its Applications (SIAM CT’15), Jul 2015, Paris, France. 〈http://www.siam.org/meetings/ct15/index.php〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01263384
Contributeur : Marianne Akian <>
Soumis le : mercredi 27 janvier 2016 - 16:53:41
Dernière modification le : jeudi 10 mai 2018 - 02:06:49

Identifiants

  • HAL Id : hal-01263384, version 1

Citation

Nikolas Stott, Xavier Allamigeon, Stéphane Gaubert, Eric Goubault, Sylvie Putot. Eigenvectors of Non-Linear Maps on the Cone of Positive Semidefinite Matrices Application to Stability Analysis. SIAM Conference on Control and its Applications (SIAM CT’15), Jul 2015, Paris, France. 〈http://www.siam.org/meetings/ct15/index.php〉. 〈hal-01263384〉

Partager

Métriques

Consultations de la notice

302