Maximal Lower Bounds in the Loewner order

Nikolas Stott 1, 2 Xavier Allamigeon 1, 2 Stéphane Gaubert 1, 2
1 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We show that the set of maximal lower bounds of two symmetric matrices with respect to Loewner order can be identified to the quotient set O(p,q)/(O(p)×O(q)). Here, (p,q)denotes the inertia of the difference of the two matrices, O(p) is the p-th orthogonal group, and O(p,q) is the indefinite orthogonal group arising from a quadratic form with inertia (p,q). We discuss the application of this result to the synthesis of ellipsoidal invariants of hybrid dynamical systems.
Type de document :
Communication dans un congrès
2015 SIAM Conference on Applied Linear Algebra, Oct 2015, Atlanta, United States. 〈http://www.siam.org/meetings/la15/〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01263476
Contributeur : Marianne Akian <>
Soumis le : mercredi 27 janvier 2016 - 17:24:18
Dernière modification le : jeudi 10 mai 2018 - 02:04:42

Identifiants

  • HAL Id : hal-01263476, version 1

Citation

Nikolas Stott, Xavier Allamigeon, Stéphane Gaubert. Maximal Lower Bounds in the Loewner order. 2015 SIAM Conference on Applied Linear Algebra, Oct 2015, Atlanta, United States. 〈http://www.siam.org/meetings/la15/〉. 〈hal-01263476〉

Partager

Métriques

Consultations de la notice

267