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Exercice de style

Pierre Karpman*

Abstract

We present the construction and implementation of an 8-bit S-box with a differential and
linear branch number of 3. We show an application by designing FLy, a simple block cipher
based on bitsliced evaluations of the S-box and bit rotations that targets the same platforms
as PRIDE, and which can be seen as a variant of PRESENT with 8-bit S-boxes. It achieves the
same performance as PRIDE on 8-bit microcontrollers (in terms of number of instructions per
round) while having 1.5 times more equivalent active S-boxes. The S-box also has an efficient
implementation with SIMD instructions, a low implementation cost in hardware and it can be
masked efficiently thanks to its sparing use of non-linear gates.

Keywords. Block cipher design, Lai-Massey S-box, bitsliced implementation, SPN.

1 Introduction

Since the late 1990’s and the end of the AES competition, the academic community and the
industry have been provided with excellent block ciphers. In most cases where a cipher is needed,
AES [Nat01] can readily be used and there is currently little need for a replacement. Consequently,
the symmetric cryptographic community shifted focus to e.g. the wider picture of authenticated
encryption through the CAESAR competition, or to more specific niche applications of block ciphers.
In the latter case, a popular topic is the design of “lightweight” block ciphers intended to be
implemented on low-cost, resource-constraint devices. An early successful example following this
trend is the block cipher PRESENT [BKLT07], which can be implemented in small hardware circuits.
Most lightweight algorithms similarly target one (or a few) platform(s) on which they are expected
to perform particularly well; good performance in other cases are however not usually expected and
lightweight ciphers are in general not very versatile. Typical platforms of interest include hardware
circuits and 8-bit to 32-bit microcontrollers.

In this work, we design a conceptually simple block cipher targeting efficient implementations
on 8-bit microcontrollers while also being expected to achieve reasonable performance in hardware.
The chief academic proposal to date for this scenario is the PRIDE block cipher, that was presented
at CRYPTO 2014. Our block cipher is built around LITTLUN-1, a compact 8-bit S-box with branch
number 3. This allows to define a round function similar to a scaled-up variant of PRESENT,
composing the S-box application with a simple bit permutation'. This offers a trade-off between
hardware and light software implementations: LITTLUN-1 is more expensive in hardware than (two
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number” which plays a role similar to the minimum distance of the linear codes used in AES-like designs.
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applications of) the S-box of PRESENT, but the bit permutation is simple to implement with 8-bit
rotations. Owing to Golding, we name our block cipher FLY.

Excluding on-the-fly key expansion, the round function of FLY costs 4 instructions less to
implement than PRIDE’s on AVR. Using the good branch number of LITTLUN-1, we can show
that with a similar number of rounds, FLY is more resistant than PRIDE to statistical (differential
and linear) attacks. This is all the more relevant as the security margin of PRIDE seems to be
quite thin [ZWWD14]. Taking the key-schedule into account, one round of FLY costs one more
instruction than one round of PRIDE. However, unlike PRIDE, we do not use an FX construction
for the key-schedule and thus the generic security of FLy does not decrease with the amount of
data available to the adversary (Dinur also showed how the FX construction can lead to more
efficient time-memory-data trade-offs [Din15]).

Related work. The block cipher literature is so numerous that most new proposal will bear
some similarity with past designs. In that respect, apart from PRESENT, FLY is also quite similar
to RECTANGLE [ZBL™"14], which also combines a SERPENT-like bitsliced application of an S-box
with a rotation-implemented bit permutation. However, the S-box in RECTANGLE is on 4 bits, it
does not have a branch number of 3 and the rotations are on 16-bit words. The construction of the
LITTLUN S-box uses the Lai-Massey structure from the IDEA block cipher [LM91]; this structure
was already used to build the second S-box of the WHIRLPOOL hash function [BR03] and the S-box
of the block cipher Fox [JV04].

Structure of this paper. We present our construction of the LITTLUN S-box family in Sec. 3
and the implementation of LITTLUN-1 in Sec. 4. Sec. 5 is devoted to the design and analysis of
the block cipher Fry.

2 Preliminaries

We start by defining the main notions that will be used in evaluating the cryptographic properties
of our construction. Although we will mostly consider S-boxes as defined over binary strings, we
may see an n-bit S-box as a mapping F5 — F3 whenever convenient.

Definition 1 (Differential uniformity of an S-box) Let S be an n-bit S-box. We define its
difference distribution table (or DDT) as the function ds defined extensively by:

ds(a,b) := #{z €e F3|S(x) + S(z + a) = b}.
The differential uniformity A of S is defined as:

max ds(a,b).
(255 gy O (D)
Put another way, an n-bit S-box with differential uniformity A has a maximal differential proba-
bility of A /2™ over its inputs.

Definition 2 (Linearity of an S-box) Let S be an n-bit S-box. We define its linear approxi-
mation table (or LAT) as the function Ls defined extensively by:

Ls(a,b) = Y (~1)®SE)Ha),
zeFy

The linearity ¢ of S is defined as:

max Lg(a,b).
(@ 512 oy £s(@ D)



Roughly speaking, the linearity measures the maximum (absolute) difference between how many
times a (non-trivial) linear approximation takes the value 1 and how many times it takes the value
0. It is therefore twice the difference between 2"~! (for an n-bit S-box) and how many times either
value is taken. In particular, if we define the bias b of a probability p as [p — 1/2], it means that
the bias of any linear approximation of an n-bit S-box of linearity ¢ is upper-bounded by (¢ /2)/2".

Definition 3 (Differential branch number of an S-box) The differential branch number of
an S-box S is:

min wt(a) + wt(b),

{(avb)i(ovo)lés(avb)io}

where wt(z) is the Hamming weight of x.

Definition 4 (Linear branch number of an S-box) The linear branch number of an S-box S

min wt(a) + wt(b).
{(a,0)#(0,0)| L (a,b)70}

Definition 5 (Algebraic normal form) Let f € F} be an n-bit Boolean function, its algebraic
normal form (or ANF) is defined as the polynomial g € Falxg,21,...2n_1]/ < 22 — 2 >;<pn such
that for all x € FY, f(x) = g(x[0],...,z[n — 1]). Similarly, the ANF of an n-bit S-box S is the
sequence of the ANFs of its n constituent Boolean functions (S(-),e;) (with (e;) the canonical basis

of Fy).

3 The LITTLUN S-box construction

We present the design rationale for our S-box and an instantiation as the “LITTLUN-1"” S-box.

3.1 The Lai-Massey structure

Our S-box uses the Lai-Massey structure, which was proposed in 1991 for the design of the block
cipher IDEA [LMO91]. The structure is similar in its objective to a Feistel or Misty ladder as it
allows to construct n-bit functions out of smaller components. It is in particular well-suited to
build efficient 8-bit S-boxes from 4-bit S-boxes all the while amplifying the good cryptographic
properties of the 4-bit S-boxes. It was already used as such for the design of the second S-box of
the WHIRLPOOL hash function [BR03] (an early version of WHIRLPOOL used a randomly-generated
S-box), using five 4-bit S-boxes (see Fig. 3.1a) and for the design of the S-box of the Fox block
cipher [JV04] which uses a three-round iterated structure. In our construction, we use the more
classical variant of the structure with only three S-boxes (see Fig. 3.1b), which allows nonetheless
to square the differential probability and the linearity of the underlying 4-bit S-box?.

The choice of the Lai-Massey structure was mainly motivated by our objective of building an
S-box with a branch number of three®. Indeed, it is easy to see that the S-box will have this
property for the differential branch number by construction as soon as the 4-bit S-boxes have
branch number three, and such S-boxes are well-known (see e.g. SERPENT [BAK9S8|). So much
cannot be said however for the linear branch number, as no (differential and linear optimal) 4-bit
S-box exists with this property*. In fact, we are not aware of previous examples of 8-bit S-boxes
with this feature either.

2We do not require the 4-bit S-boxes to be orthomorphisms of any group; hence we in fact only partially adhere
to the Lai-Massey structure as defined by Vaudenay [Vau99].

3This will in turn be useful to design a good lightweight round function.

4As demonstrated by an exhaustive search we performed on the optimal classes [LPOT7].



Other good properties of the structure are that it yields S-boxes with a circuit depth of two
S-boxes and it allows for efficient vector implementations using SIMD instructions (see Sec. 4.3).
On the downside, it requires the 4-bit S-boxes to be permutations if we want the 8-bit S-box to
be one. Canteaut, Duval and Leurent recently showed how the absence of such a restriction for
Feistel ladders could be used to build compact S-boxes with particularly low differential probability
[CDL15]. We should note however that for the applications we have in mind (see Sec. 5), the
linearity of the S-box is as important as the differential probability, and the S-box of Canteaut
et al. is average in that respect (and in particular not better than ours). Finally, we should
mention that the good and bad points of the Lai-Massey structure cited so far are shared with the
Misty ladder. Choosing Lai-Massey in our case was mainly due to a matter of taste, though it is
noteworthy that Misty yields S-boxes with a rather sparse algebraic expression (meaning that the
polynomials in the ANF of such S-boxes tend to have many zero coefficients).

3.2 An instantiation: LITTLUN-1

We now define LITTLUN-1, a concrete instantiation of the Lai-Massey structure which achieves a
differential and linear branch number of three. Although we have seen that we could guarantee
this in the differential case by using a 4-bit S-box of branch number three, this is actually not
necessary and we use instead a very compact member of the class 13 of Ullrich et al. [UDIT11].
This S-box uses only 4 non-linear and 4 XOR gates, which is minimal for an optimal S-box of this
size. This leads to an 8-bit S-box using 12 non-linear and 24 XOR gates. We give the table of the
4-bit S-box in Fig. 3.2 and of the complete 8-bit S-box in Fig. 3.3, and conclude this section by a
summary of the cryptographic properties of LITTLUN-1.
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(a) Lai-Massey as in the WHIRLPOOL sec- (b) Lai-Massey as in the LITTLUN con-
ond S-box struction

Figure 3.1: The Lai-Massey structure

littluni_s4[16] =
{0x0, Oxa, 0x4, Oxf, Oxc, 0x7, 0x2, 0x8,
Oxd, Oxe, 0x9, Oxb, 0x5, 0x6, 0x3, Ox1};

Figure 3.2: The 4-bit S-box used in LITTLUN-1 as a C array



littlunl [256] =

{0x00, 0x9b, Oxc2, 0x15, Ox5d, 0x84, Ox4c, Oxdi,
0x67, 0x38, Oxef, 0xb0O, Ox7e, 0x2b, Oxf6, Oxa3,
0xb9, Oxaa, 0x36, 0x78, 0x2f, Ox6e, 0xe3, O0xf7,
0x12, Oxbc, 0x9a, Oxd4, 0x89, Oxcd, 0x01, 0x45,
0x2c, 0x63, 0x44, Oxde, 0x02, 0x96, 0x39, 0x70,
Oxba, Oxe4, 0x18, 0x57, Oxal, Oxf5, 0x8b, Oxce,
0x51, 0x87, Oxed, Oxff, Oxb5, 0xa8, Oxca, Oxlb,
Oxdf, 0x90, Ox6c, 0x32, 0x46, 0x03, 0x7d, 0x29,
0xd5, Oxf2, 0x20, Ox5b, Oxcc, 0x31, 0x04, Oxbd,
Oxa6, Ox41, Ox8e, 0x79, Oxea, 0x9f, 0x68, Oxlc,
0x48, Oxe6, 0x69, 0x8a, 0x13, 0x77, 0x9e, Oxaf,
0xf3, 0x05, Oxcb, Ox2d, Oxb4, 0xd0, 0x37, 0x52,
Oxc4, 0Ox3e, 0x93, Oxac, 0x40, Oxe9, 0x22, 0x56,
0x7b, 0x8d, Oxfl, 0x06, 0x17, 0x62, Oxbf, Oxda,
Ox1id, 0x7f, 0x07, Oxbl, Oxdb, Oxfa, 0x65, 0x88,
O0x2e, Oxc9, Oxab, 0x43, 0x58, O0x3c, Oxe0, 0x94,
0x76, 0x21, Oxab, Oxfd, Ox6a, 0x3f, 0xb7, Oxe2,
Oxdd, Ox4f, 0xb3, 0x8c, 0xcO, 0x19, 0x95, 0x08,
0x83, Oxcb, Oxd4e, 0x09, O0x14, 0x50, 0xd8, 0x9c,
Oxf4, Oxee, 0x27, Ox61, 0x3b, Ox7a, Oxa2, Oxb6,
Oxfe, Oxa9, 0x81, Oxc6, O0xe8, Oxbc, Ox1f, Oxba,
0x35, 0x72, 0x99, OxOa, Oxd3, 0x47, 0x24, 0x6d,
0x0b, Ox4d, 0x75, 0x23, 0x97, 0xd2, 0x60, 0x34,
0xc8, 0x16, 0Oxa0, Oxbb, Oxfc, Oxel, Oxbe, 0x8f,
Oxe7, 0x98, Oxla, Ox64, Oxae, Ox4b, O0x71, 0x85,
0x0c, Oxb3, 0x3d, Oxcf, 0x55, 0x28, 0xd9, O0xf0,
0xb2, Oxdc, Oxbf, 0x30, 0xf9, 0x0d, 0x26, O0xc3,
0x91, Oxa7, 0x74, Oxle, 0x82, 0x66, 0Ox4a, Oxeb,
ox6f, 0x10, Oxb8, 0xd7, 0x86, 0x73, Oxfb, 0xOe,
0x59, Ox2a, Ox42, Oxe5, 0x9d, Oxa4, 0x33, Oxc7,
Ox3a, 0Ox54, Oxec, 0x92, Oxcl, 0x25, Oxad, 0x49,
0x80, Ox6b, 0xd6, 0xf8, 0x0f, Oxbe, O0x7c, Ox11};

Figure 3.3: The LITTLUN-1 S-box as a C array

Proposition 1 (Statistical properties) The differential uniformity of LITTLUN-1 and of its
inverse is 16 and its linearity is 64. Its DDT and LAT are shown in Fig. A.1 and Fig. A.2
respectively.

In essence, Prop. 1 means that the probability (taken over all the inputs) of any non-trivial
differential relation going through the S-box is upper-bounded by 2% and the bias of any non-
trivial linear approximation is upper-bounded by 273.

Proposition 2 (Diffusion properties) The differential and linear branch number of LITTLUN-
1 and of its inverse is 3.

Proposition 3 (Algebraic properties) The mazimal degree of (the ANF of) LITTLUN-1 is &
in four of the eight output bits, 4 in two other and 8 in the remaining two. The maximal degree of
its inverse is 5 in six of the eight output bits and 4 in the other two.

Proposition 4 (Fixed points) LITTLUN-1 has two fized points: 0 and 187.

It can be seen from the DDT and LAT of LITTLUN-1 that it is quite structured in a way; it would
be very unlikely to obtain an S-box with such tables if it were drawn at random uniformly among
permutations of {0,...,255}. This is actually to be expected as it would be quite improbable that
a random S-box would exhibit so strong a distinguishing property as having a branch number of
three. However, we do not believe that it is possible to exploit this structure in an attack.



4 Implementation of LITTLUN-1

4.1 Hardware implementation

We give a circuit (using OR, AND and XOR gates) implementing the 4-bit S-box underlying
LITTLUN-1 in Fig. 4.1. A hardware implementation of the entire S-box can easily be deduced
by plugging this circuit into the one of Fig 3.1b. As previously mentioned, LITTLUN-1 can be
implemented with 12 non-linear (OR and AND) gates and 24 XOR gates. With a typical cell library
such as the Virtual Silicon standard cell library, OR and AND gates cost 1.33 gate equivalent (GE),
and XOR gates 2.67 GE. Thus synthesising the S-box with this library would cost 80 GE.

- - o
s — > X

Figure 4.1: A circuit implementing the 4-bit S-box underlying LITTLUN-1 The sym-
bols [, 1> and ] represent the AND, OR and XOR gates respectively.

4.2 Bitsliced software implementation

One of our main objective w.r.t. implementation was to obtain an S-box with an efficient bit-
sliced implementation in software. This is closely related to the simplicity of the circuit of the
S-box, though not exactly equivalent. We purposefully chose a 4-bit S-box from the class 13 of
Ullrich et al. [UDIT11] because of its very efficient bitsliced implementation that requires only 9
instructions on a wide variety of platforms (and offers good instruction-level parallelism). Such
an implementation is given in Fig. 4.2. From this, it is easy to obtain an efficient bitsliced imple-
mentation for the whole S-box, as shown in Fig. 4.3. This implementation typically requires 43
instructions and 13 registers.

t = b; b |= a; b ~= c;
c &= t; c ~= d;
d &= b; d ~= a;
a |= c; a "= t;

Figure 4.2: Snippet for a bitsliced C implementation of the 4-bit S-box with input and output
in registers a, b, ¢, d (the word holding the most significant bit is taken to be a), using one extra
register .



t = a ~ e;

u=>b "~ f;
v=oc"g;

w =d - h;
S4(t,u,v,w);

a "= t; e "= t;
b = u; f ~= u;
c "= v; g "= v;
d == w; h == w;
S4(a,b,c,d);

S4(e,f,g,h);

Figure 4.3: Snippet for a bitsliced C implementation of LITTLUN-1, using the 4-bit S-box of Fig. 4.2
as subroutine. The input and output registers are a,b, ¢, d, e, f, g, h (with the most significant bit
in word a), the four extra registers are ¢, u, v, w.

4.3 SIMD software implementation

In the context of 4 to 8-bit S-boxes, the Lai-Massey structure of the LITTLUN construction also
allows to conveniently use “vector” Single Instruction Multiple Data (or SIMD) instructions for
efficient implementations. We discuss here an implementation of LITTLUN-1 based mostly on
the pshufb instruction from Intel’s SSSE3 instruction set. This instruction allows to perform 16
parallel lookups of a 4-bit S-box on a 128-bit register, which is particularly convenient to implement
a similarly parallel application of a LITTLUN S-box on 128 bits. More precisely, the semantics of
2’ := pshufb z y can be defined as:

I x[|y[i]]a] if the most significant bit of y[i] is not set
x'[i] == .
0 otherwise

where z and y are vectors of 16 bytes. The pshufb instruction can easily be used in an imple-
mentation either by directly writing the relevant part of the program in assembler or by using
compiler intrinsics for a language such as C. In the latter case, the intrinsic corresponding to the
use of pshufb is usually named _mm_shuffle_epi8. We give a small function implementing the
LITTLUN-1 S-box using C intrinsics in Fig. 4.4. Even without further tuning of the code, this
function compares favourably with vector implementations of other S-boxes in terms of efficiency.
For instance, it needs about half the number of instructions of Hamburg’s hand-written vector
implementation of the AES S-box [Ham09], although this must be moderated by the fact that the
AES S-box is cryptographically stronger.

4.4 Masking

The low number of non-linear gates needed to implement LITTLUN-1 makes it a suitable choice for
applications where counter-measures against side-channel attacks are required. Indeed, it directly
implies a lower cost when using Boolean masking schemes (both hardware and software), which
represent the primitive to be masked as a circuit [ISW03, RP10]. In particular, LITTLUN-1 is
competitive with the S-boxes proposed by Grosso et al. [GLSV14]: it has the same gate count as
the S-box used for ROBIN and only one more non-linear (and one less XOR) gate than the one
used for FANTOMAS. All three S-boxes are comparable in terms of cryptographic properties.

4.5 Inverse S-box

The inverse LITTLUN-1"" of LITTLUN-1 is slightly costlier to implement, because of a more ex-
pensive inverse for the underlying 4-bit S-box. As a circuit, the latter requires 5 XOR gates, 4



littlun_ps( x)

{
xlo, xhi, xmid;
LO_MASK = _mm_setl_epi8(0x0f);
LO_SBOX = _mm_set_epi32(0x01030605, 0x0b090e0d, 0x0802070c, 0x0f040a00);
HI_SBOX = _mm_set_ep132(0x10306050, 0xb090e0d0, 0x802070c0, 0xf040a000);
xhi = _mm_srli_epil6(x, 4);
xhi = _mm_and_sil128(xhi, LO_MASK);
xlo = _mm_and_si128(x, LO_MASK);
xmid = _mm_xor_sil128(xlo, xhi);
xmid = _mm_shuffle_epi8(LO_SBOX, xmid);
xlo = _mm_xor_sil28(xlo, xmid);
xhi = _mm_xor_si128(xhi, xmid);
xlo = _mm_shuffle_epi8(LO_SBOX, xlo);
xhi = _mm_shuffle_epi8 (HI_SBOX, xhi);
X = _mm_xor_sil28(xlo, xhi);
X5
}

Figure 4.4: Snippet for an SSE C implementation of LITTLUN-1 using compiler intrinsics.

non-linear (OR and AND) gates and one NOT gate (costing 0.67 GE). The total hardware cost of
LITTLUN-1"" is thus 90 GE.

Software bitsliced implementations are also more expensive. We give a snippet for the inverse
of the 4-bit S-box in Fig. 4.5 that requires 11 instructions and 5 registers. The complete inverse can
be implemented with 49 instructions and 13 registers in a straightforward adaptation of Fig. 4.3°.

t = c; c &= b; c ~= d;
d |I= t; d ~= a;

a &= c; a "= b; a ~= d;
b = "b; b &= d; b == t;

Figure 4.5: Snippet for a bitsliced C implementation of the inverse of the 4-bit S-box with inputs
in registers a, b, ¢,d (the word holding the most significant bit is taken to be a), using one extra
register t. The output is in ¢, d, a, b.

5 An application: the FLY block cipher

In this section, we present the FLY block cipher as an application of the LITTLUN-1 S-box. It is a
64-bit block cipher with 128-bit keys. Thanks to the branch number of the S-box, it is easy to design
a round function with good resistance to statistical attacks by combining its bitsliced application
with a simple bit permutation. This results in a cipher with a structure similar to PRESENT
[BKL*07] with a tradeoff: the S-box is bigger (and thus more expensive to implement, in particular
in hardware) but the permutation is simpler (and thus cheaper to implement in software). This
cipher was designed to be used in the same cases as PRIDE, and its chief implementation target is
8-bit microcontrollers.

5Because the output registers form a non-trivial permutation of the input ones, additional instructions may also
be needed in the cases where this cannot be dealt with implicitly.



5.1 Specifications

We first give the specification of the round function Rgy of FLY. It takes a 64-bit block and 64-bit
round key as input. Let  := (xo||x1||x2||xs||xal|xs]|xs]|x7), Tk = (rko||rk1||rke||rks||rka]|rks||rks||rke)
be such an input, with z;, rk; 8-bit words®. Let us define f;(t) := ¢(to)||t1]|t2||ts][ta]|t5]|ts]|t7, With
((z) := o + i mod 256. We write ARK; the addition of the i*® round key: ARK;(rk;,z) :=
fi(z @ rk;), BLs(x) a bitsliced application of LITTLUN-1 (such as e.g. the one shown in Fig 4.3)
and ROT the “SHIFTROW” word-wise rotation (with ¢ denoting bitwise rotation to the left)

RoT(z) := (x0||z1 O 1|22 O 2||23 O 3|24 O 4|25 O5||T6 O 6]|27 OT)

which can alternatively be defined at the bit level as the permutation 7 (i) := (i + 8(¢ mod 8))
mod 64 applied to a suitable binary representation of © = by ...bg3. Then we simply have (omit-
ting the addition of the round constant) Rpiy(+,-) := ROToBLSo ARK. We give a graphical
representation of the SPN structure of this (slightly simplified) round function at the bit level in
Fig. 5.1.

rk; SDDDDDODDDDODDDDDDDDODDDODDDDDDDDDDDDDDDDDDDODDDDDDDDDDDDDDDDDDD

\=
& .

Figure 5.1: The round function of FLy. Bits are numbered left to right from 0 to 63 (w.r.t. the
bit permutation). The addition of the round constant is omitted.

We propose two key-schedules, KS1 and KS2, depending on whether resistance to related-key
attacks is required (in the case of KS2) or not. In order to distinguish between the two block
ciphers, we write FLy for the (default) case where KS1 is used and FLY g when KS2 is used.
We describe KS1 first, which is somewhat similar to the key-schedule of PRIDE by its simplicity.
The main difference is that we use both halves ko and k; of the key k := ko||k1 to generate all the
round keys, whereas PRIDE uses an FX construction where one half of the key is only used for pre-
and post-whitening. The latter construction leads to a simpler way to merge on-the-fly round-key
generation with the round function, but significantly degrades the security of the cipher to generic
attacks from 128 bits to 128 —log(D), with D the amount of data available to an attacker [KRO01],
while also leading to more efficient time-memory-data trade-offs [Din15].

The sequence (rk) of round keys of KS1 is the simple alternation of kg and k; defined as
rk; := ko @i x k17. Note however that a round constant is added in ARK through the function f;.

For FLY to be resistant to related-key attacks, we use the same approach as NOEKEON [DPARO00]
to define KS2 as follows. Let us denote by FLY(0,-)/12 twelve applications of the round function
of FLy with the all-zero 128-bit key and define k' := k{||k] = FLY(0, ko)/12||FLY(0, k1)/12. Then
KS2 is defined through FLYygi as FLYyrk(k,-) := FLy(F/, ).

SThe big endian convention is used to convert from z and rk to the x;s and rk;s.
"By writing i X ki, we mean the all-zero key for even values of i and k; otherwise.



The round function of FLY is applied 20 times, the same as PRIDE. The entire cipher can thus
finally be defined as Fry(k, ) := ARK(rkag, ') © Rrw (Tk1g, ) 0 ... 0 Rpw(rk1, ) 0 Rew (rko, -)-

Design rationale

The core of FLY is the LITTLUN-1 S-box, which was designed to have a branch number of three.
This allows to achieve a good diffusion when combining the S-box application with a simple bit
permutation. The latter was chosen so that all eight bits at the output of an S-box go to one
different S-box each (similarly, all input bits come from a different S-box). Unlike in PRESENT,
this permutation also has cycles of different lengths (discounting fixed points), namely 2 (on 8
values), 4 (on 16) and 8 (on 32). This might reduce the impact of (linear and differential) trail
clustering.

The two components of the round function can also be efficiently implemented on an 8-bit ar-
chitecture through a bitsliced application of the S-box and word rotations respectively (cf. Sec 5.3).

The two key-schedules were designed according to different possible scenarios. Most applications
do not require resistance to related-key attacks and a simple alternating key-schedule is enough
in that case. We chose not to use an FX construction as in PRIDE as we did not consider the
slight gain in efficiency it offers to be worth the generic security loss it implies. In the spirit of
NOEKEON, we propose a second key-schedule to offer resistance to related-key attacks that consists
in “scrambling” the master key with a permutation of good differential uniformity before it is used
as in the first key-schedule.

5.2 Preliminary cryptanalysis

We now analyse the security of FLY against various types of attacks. Considering the similarity
of the design with PRESENT and the published analysis on this cipher, the most efficient attacks
on FrLy are likely to be (variants of) classical statistical (differential and linear) attacks, which we
analyse first (in the single-key setting). We then give an overview of the resistance against other
attack techniques.

5.2.1 Statistical attacks

We can use the branch number of LITTLUN-1 together with the properties of the bit permutation
ROT to easily derive a lower bound on the number of (differentially and linearly) active S-boxes.
Indeed, as the branch number is 3, we are guaranteed to have at least 3 active S-boxes every two
rounds of any non-trivial differential or linear characteristic.

The block size of FLY being 64 bits, we want any differential characteristic to have a prob-
ability p ~ 2754 when averaged over the key and message space. Similarly, we want any linear
characteristic to have an average bias b ~ 2732. From the Prop. 1 of LITTLUN-1, by multiply-
ing the differential probabilities and applying the piling-up lemma respectively, this means that
we want a differential (respectively linear) characteristic to have at least 16 active S-boxes. This
happens at the latest after 12 rounds, for which at least 18 S-boxes are guaranteed to be active.
Even by discounting the additional 2 S-boxes and assuming that a distinguisher can be found for
this amount of rounds, this gives a very comfortable margin of 8 rounds, which we estimate to
be much beyond the ability of an attacker to convert the distinguisher into, say, key-recovery (in
particular, this is twice the number of rounds needed for full diffusion). This also leaves some
margin to ensure that even in the case where FLY would exhibit a strong differential or linear hull
it would be unlikely for an attacker to be able to mount a meaningful attack. For instance, after
14 rounds, an attacker would need about 22° contributing characteristics to obtain a distinguisher
with non-trivial probability, and would still be facing 6 rounds to mount an attack.
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Thus, we conjecture that FLy with 20 rounds offers good resistance to statistical attacks.

5.2.2 Other attacks

Algebraic attacks. We would like to estimate how many rounds of FLY are necessary for the
degree of the cipher to reach the maximum of 63, as a lower degree could be exploited in “algebraic”
attacks. Computing the exact degree of an iterated function is a difficult problem in general, but we
can use the upper bound of Boura, Canteaut and De Canniére to estimate how quickly the degree
increases [BCD11]. In our case, this bound states that deg(G o F) < n — (n — deg(G))/(no — 2),
where n is the block size and ng the size of the S-box. Combining this bound with the fact
that the degree of the S-box is 5 (and thus that deg(BLSoF) < 5 - deg(F')), we can see that 5
rounds of FLY are necessary to reach a full degree. If we assume this bound to be an equality, any
(algebraic) distinguisher on more than about twice this number of rounds is unlikely to exist. Even
when relaxing this latter assumption, 20 rounds seem to be well enough to make FLY resistant to
algebraic attacks.

Meet-in-the-middle attacks. We analysed how many rounds are necessary to ensure that every
bit of the (intermediate) ciphertext depends on every bit of the key, as a basic way to estimate the
resistance of FLY to meet-in-the-middle (MitM) attacks, which typically exploit the opposite effect.
We did this by performing random trials with 229 pairs of random keys and random plaintexts and
found that this happens after at most 5 rounds. Any MitM attack on more than about twice this
number of rounds is unlikely to exist, and we therefore conjecture that FLY is resistant to such
attacks®.

Integral attacks, impossible differentials, zero correlation. We did not analyse in detail
the security of FLY against integral attacks, nor against impossible differentials and zero correlation
attacks. Indeed, none of these techniques seem to be able to attack a significant number of rounds
of bit-oriented ciphers such as PRESENT or FLY and we do not consider them to be a threat for
our cipher.

Related-key attacks. We now study the resistance of FLy against (XOR-induced, differential)
related-key attacks. FLY equipped with the simple key-alternating key-schedule KS1 offers (nearly)
no resistance to related-key attacks. With KS2, however, an attﬂz\ke_/r is unable to control the
differences between two different effective master keys k{ ||k} and kj||k} with a probability much
better than 27264 as each difference pair (ko, lgo) and (kq, 151) goes through a permutation with
maximum expected differential probability not significantly above 27%4. Furthermore, unlike single-
key differential attacks, which introduce differences on the plaintext, we do not expect an attacker
to easily be able to force a change of (related) keys if their effective master keys fail to verify a
difference relation. Thus, even if a differential on KS2 with probability p higher than 2712® were
found, it would only lead to a related-key attack on a weak-key class (of size ~ p/271%8) or to
an attack requiring a huge amount of keys. Putting everything together, we believe FLY gk to be
resistant to XOR-induced related-key attacks.

Known- and chosen-key distinguishers, compression function mode. We do not claim
any resistance of FLy against known-key and chosen-key distinguishers. We do not make any claim
about its suitability to build a cryptographically strong compression function.

8Which key-schedule (KS1 or KS2) is used is irrelevant, as KS2 is equivalent to using KS1 with a different
“effective” master key, which a MitM attacker can recover in the exact same way as the “true” master key produced
by KS1.
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5.3 Implementation

We conclude this discussion on FLy by showing how it can be implemented efficiently on 8-bit AVR
microcontrollers. We also argue that the overhead in hardware implementations when compared
to a hardware-oriented cipher such as PRESENT is limited.

5.3.1 Microcontrollers implementations

The S-box application can take advantage of the bitsliced expression of LITTLUN-1 from Sec. 4,
which can easily be implemented with instructions available on the cheapest ATtiny chips [Atm07].
It is even possible to save 2 instructions from the 43 quoted in Sec. 4 on higher-end architectures
such as the ATmega family [Atm13] by using word-wise 16-bit movw instructions, resulting in the
implementation given in Fig. B.1 of App. B. A straightforward implementation of the inverse S-box
application requires 59 instructions —a significant overhead of 44 %. However, any proper scenario
using a lightweight cipher should not need to implement its inverse altogether.

Even though the AVR instruction set does not include rotations by an arbitrary constant,
the permutation ROT can still be compactly implemented with only 11 instructions, as shown in
Fig. B.2 of App. B.

The entire substitution and permutation layers of FLY can therefore be implemented with only
52 instructions on ATmega (54 on ATtiny), which is 4 less than the 56 of PRIDE [ADK™ 14|, while
at the same time having at least 1.5 times more equivalent active S-boxes every two rounds®.

On-the-fly computation of one round-key of the key-schedule KS1 can be done in 8 instructions.
The complete key expansion and addition can be done in 17 instructions as shown in Fig. B.3.

The total round function of FLY including the key-schedule can thus be implemented in 69
instructions. This is one more instruction than PRIDE, but the conjectured security margin of FLY
is much bigger and its resistance to generic attacks does not decrease with the amount of data
available to the adversary.

5.3.2 Hardware implementations

We did not implement FLy in hardware, but we can try to estimate the cost (in GE) of such
an implementation by looking at the cost of PRESENT. A round-based ASIC implementation of
PRESENT-128 can be done for 1884 GE [Pos09], of which 27 x 16 are dedicated to implementing
the 16 S-boxes. If we make the (reasonable) assumption that the key-schedule of FLy does not use
significantly more area than the one of PRESENT-128, we can estimate that a similar round-based
implementation of FLY would cost in the area of 1884 — 27 x 16 4+ 80 x 8 = 2076 GE, meaning that
the overhead is about 10 %.
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A Complement on the properties of LITTLUN-1
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B AVR implementation of the FLY round function

We give pseudo AVR assembly code for the S-box layer, the permutation and on-the-fly computa-
tion of the key-schedule of FLy.

t0, sO
t2, s2
t0, s4
tl, sb
t2, s6
t3, s7
t4, ti
t1, tO
t1, t2
t2, t4
t2, t3
t3, ti1
t3, tO
t0, t2
t0, t4
s0O, tO
s1, ti1
s2, t2
s3, t3
s4, tO0
sb, t1
s6, t2
s7, t3
t0, si
s1l, sO
sl, s2
s2, to0
s2, s3
s3, si
s3, sO
s0, s2
s0, tO0
t0, sb
sb, s4
sb, s6
s6, tO
s6, s7
s7, sb
s7, s4
s4, s6
s4, tO

Figure B.1: The LITTLUN-1 S-box on ATmega, using 41 instructions.
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sl
s2
s2
s3
s3
s4
s5
sb
s6
s6
s7

Figure B.2: The ROT permutation on ATmega/ATtiny, using 11 instructions.

k8, kO

k9, ki

k10, k2
k11, k3
k12, k4
k13, k5
k14, k6
k15, k7

s0, k8
sl, k9
s2, k10
s3, ki1
s4, k12
sb, k13
s6, k14
s7, k15

s0, cO

Figure B.3: The KS1 key-schedule on ATmega/ATtiny, using 17 instructions.

C Test vectors for FLy

All numbers are given in big endian.

k0: 0x0000000000000000 k1: 0x0000000000000000
p : 0x0000000000000000
FLY(kO| |k1,p) : O0xBC73EF592E56FECC

k0: 0x0001020304050607 k1: 0x08090A0BOCODOEOF
p : OxF7TE6D5C4B3A29180
FLY(kO| |k1,p) : 0x8AA1CEE6100013D5

kO: 0x0000000000000000 k1: 0x0000000000000000
p : 0x0000000000000000
FLY_RK(kO| |k1,p) : 0x148DCOF9CC65DB64

k0: 0x0001020304050607 k1: 0x08090A0BOCODOEOF
p : OxF7TE6D5C4B3A29180
FLY_RK(kO| |k1,p) : 0xC73FE2DED9CF5D3C
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