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Abstract

In the world of message-passing distributed computingalvkd synchronous systems and asyn-
chronous failure-prone systems lie at the two ends of theliéity/asynchrony spectrum. The con-
cept oflocality of a computation is central to the first one, while the conadpwait-freedomis
central to the second one. This paper is an attempt to rdedheise two extreme worlds, and ben-
efit from both of them. To this end, it first proposes a new itisted computing model, where
(differently from the two previous ones) processing and camication are decoupled. The com-
munication component (made up @fodes) is considered as reliable and synchronous, while the
processing component (composecdhgfrocesses, each attached to a communication node) is asyn-
chronous and any number of its processes may suffer crdahefai To illustrate the benefit of this
model, the paper presents an asynchronous algorithm #safiang a ring communication compo-
nent, colors the processes with at most three colors. Froracegs crash failure point of view, this
algorithm is wait-free. From a locality point of view, eactopess needs information only from pro-
cesses at distane®(log” n) from it. This local wait-free algorithm is made up of a comrimation
phase followed by a purely local simulation (by each processin extended version of Cole and
Vishkin’s vertex coloring algorithm (this extension doex require the processes to start simultane-
ously). This new communication/processing decoupled teelems to offer a promising approach
for distributed computing.

Keywords: Asynchronous distributed computing, Cole and Vishkirg$ocing algorithm, Locality
of a computation, Process crash failure, Synchronous conuation, Vertex coloring problem,
Wait-freedom.



1 Introduction

Locality in synchronous distributed computing Considering an undirected connected graph whose
each vertex is a computing entity (process), and each edge is a communitetiorel, a distributeslyn-
chronousalgorithm is an algorithm where the processes collectively execute argsgaesynchronous
rounds. At every round, each process obeys the following pattdirstisends a message to its neighbor
processes, then receives a message from each of them, and finallyesxa local computation. The
fundamental synchrony property lies in the fact that each messagesigsa@dn the very same round
in which it was sent [13, 15, 16]. Let us assume that each proces$s sitlr a local input value. It is
easy to see that, aftérrounds of communication, each process collects all local input values dn its
neighborhood in the graph, and thus after a number of rounds equats déatheter of the graph, each
process can obtain all the local inputs, and consequently compute artipfumvolving all local inputs
and the structure of the communication graph. Hence such synchrolgaughens transform “local
inputs” into “local outputs” which (according to the problem that is solvedy aepend on all the local
inputs.

A distributed synchronous algorithm iscal if its time complexity (measured as the number of
rounds it has to execute in the worst case) is smaller than the graph diadigtéag an example a
number of rounds polylogarithmic in the number or vertices, or even a aahsldus, we can think of
a local synchronous algorithm with time complexityas a function that maps tleneighborhood of a
node to a local output, for each node. Hence, a fundamental issuelifrée distributed synchronous
computing consists in “classifying problems as locally computable [...] or nof! [11

This computation model has been given the nabdC AL [15]. Developments on what can or
cannot be locally computed can be found in many papers (e.g., [1, 10,4110 cite a few; more
references can be found in the survey presented in [18]). Coirgjdgraphs whose maximal degree
is smaller than their diameter, an example of a local distributed algorithm is theescalked in [3],
which colors the vertices in linear time with respectto This part of distributed computing is mainly
complexity-oriented [6, 15].

Fault-tolerance in asynchronous distributed computing Fault-free synchronous distributed com-
puting is only a part of distributed computing. At the other “extreme”, thereasditmain of asyn-
chronous failure-prone distributed systems, where (i) there are bmaither on message transfer de-
lays, nor on process speed, and (ii) process or communication faileemssible [13, 17]. The most
popular of these models is the asynchronous crash-prone distributgaitinog model. This model con-
siders that there is no communication failures, but some processes mhy icgshalt prematurely.
Even if this model allows only process crashes (i.e., “weak” processdailuhen compared to process
Byzantine behaviors), it appears that the net effect of asynchandypossible process crashes makes
fundamental problems impossible to solve. The most famous of these probleomséensus, for which
there is no deterministic distributed asynchronous message-passing afgasigoon as even only one
process may crash [5] (this is true even when the processes communicaightlatomic read/write
registers [9, 12]).

Aim and content of the paper When considering complex applications, failures and asynchrony are
rarely coming from the hardware, but much more often from the softwidesce, the natural idea to
consider a distributed computation model composed of two distinct componentistititt reliability
and synchrony features, namely:

e A message-passing communication component which is synchronouslanet-fieee. and

e A computation component which is asynchronous and failure-prone.

In this new model, that we calPECOUP LED, each node has two components: a failure-free syn-
chronous component that is in charge of communicating with its neighbors coitettion components,



and a failure-prone asynchronous component that is in charge foirpéng the actual computation.
The effect of decoupling computation and communication is that, contrary ©@i4AL model, after
d synchronous rounds of communication, a process collects the local iopatsubgraph of itsl-
neighborhood since processes can start at distinct times. Thus, thi®ta@enent model is in principle
more challenging thadOCAL.

This approach has two main advantages. The first lies in the fact thatpasitlers process failures,
this model allows us to question and envisage the design of wait-free asyocis algorithms on top of
a synchronous communication network. The second advantage lies ircthiedtit can make possible
appropriate adaptations of existing synchronous failure-free algoritbrasynchronous crash-prone
systems, thereby establishing a bridge between reliable synchrondessyand asynchronous crash-
prone systems.

To illustrate this two-component-based approach in the design of faultstblasgnchronous al-
gorithms, the paper considers a classical problem of failure-freensynous distributed computing,
namely, the coloring of the vertices of a ring, while ensuring that any twdbeig have different col-
ors. It presents a wait-free algorithm suited toTh&C OUP LED model, which colors a ring-connected
set of processes with at most three colors. This new algorithm is inspoedtime-optimal Cole and
Vishkin’s vertex coloring algorithm, which is denoted CV86 in the following*[4Both CV86 and
the proposed algorithm, denoted WLC (for Wait-free Local Coloringjuie a process to obtain in-
formation fromO(log* n) of its neighbor$, hence their locality property. Moreover, this amount of
information that WLC requires is optimal due to Linial’s lower bounds in [11d #me fact that in the
absence of failures and asynchrony, MECOUP LED model boils down to theOC AL model. It
follows that this new algorithm extends the scope of CV86 (designed faisgnous failure-free sys-
tems) to the two-component-based model whose computing entities are asynchand crash-prone,
without losing its fundamental locality and optimality properties.

Roadmap The paper is composed of 6 sections. Section 2 presents the first cbatrjmamely
the two-component-based computatb&COUP LED model. The other sections present the second
contribution, the algorithm WLC, a wait-free local algorithm suited to this modekkvproperly colors
the processes of a ring with at most three colors.

The WLC algorithm is built incrementally. Section 3 presents first the distribgtedh coloring
problem and a version of CV86 tailored for a ring, which is the starting pdilVLC. Then, Section 4
presents an extension of CV86 (denoted AST-CV, for Asynchror@iaging Times) suited to syn-
chronous reliable systems, which does not require the processed fmastiaipating in the algorithm at
the very same time. This extension introduces consequently the asynclimugrysion in process start-
ing times. Finally, considering the communication/processing decoupled mod&hrsg shows that
a local wait-free algorithm (WLC) can be obtained in two stages: after itestgasynchronously with
respect to the other processes), a process executes first a conmtronrstage during which it obtains
information on the “current state” of the processes at distance at@sg* n) from it; then, using
the information previously obtained, it executes a second stage, whichuisely focal simulation of
AST-CV, at the end of which it obtains its final color. Finally, Section 6 dodes the paper.

2 The Two-Component-based Model

This section presents the two-component-beBEEG OUP LED model announced in the Introduction,
where communication and processing are decoupled, communication batly@yous and reliable,

1cv86 was designed for the PRAM model, and a tree process structuran be easily adapted to failure-free message-
passing synchronous systems, where the communication system is @rrénghain of processes.

2Assumingn > 2, log*n is the number of times the functionldg,” needs to be applied in the invocation
log, (log,(log, ...(log, n)....)) to obtain valuel. Let us remember thabg™ (approx. number of atoms in the univeyse 5.
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while processing being asynchronous and crash-prone.

Communication component The communication component is made up of a connected grag
nodes:nds, ...,nd,. Each nodewd; is a communication device which can communicate with two types
of entities: a non-empty subset of other nodes (its neighbat§,iand a local computing entity; (that
we traditionally call process). A node is connected to each of these entigaghbor communication
nodes and associated computing process) through an input port andpan port. Moreover, a node
has no computing power in the sense that it is not a Turing machine which lsed&t! with code and
input data, do computation, and output results.

Each node and each channel of the communication component is reliabdgrasidonous. “Reli-
able” means that no node commits failures, and no communication channeldg@ycorrupts, loses,
creates, or duplicates messages. The meaning of “synchronous” &.glbis the same as the one of
a synchronous distributed system (in which both computing entities and neesseitanges proceed in
a lock-step manner). More precisely, there is a global clock which gewge progress of the commu-
nication component: at every clock tick, each node reads its input poots (fs neighbor nodes, and
its associated computing process), composes a message from whateatiaarrd sends this message
through all its output ports (i.e., to its neighbor nodes and its associateess)ocThe important syn-
chrony property is that every message is received in the very sametidkels the one in which it was
sent.

It is important to remember that the communication component is always adteeerg clock tick,
each node sends and receives messages. This is independentdifact that the computing processes
associated with its nodes are active or not.

Computing component A computing component, callgafocessis a Turing maching; which can
communicate (only) with its associated communication nadie Each process is asynchronous, which
means that it proceeds at its own speed, which can be arbitrary, gawiaitime, and remains always
unknown to the other processes. Moreover, a process may crashafore halt). After it crashed (if
ever it does), a process never recovers (its speed remains theerfeqaial to zero).

A process can read the current value of the global clock, as definduelbclock ticks governing
the progress of the underlying communication component. As processasyrchronous, they can
wake up at arbitrary times to participate in an algorithm. It is important to noticetteahput port of
a process can then contain messages, transmitted via its associated communazi®s which were
sent by its neighbors that started the algorithm before it (see below).

Interaction between the communication component and the pro@ses The input and output ports
connecting a procegs with its nodend; are made up of two unbounded buffers. The one denaied

is from p; to nd;, while the one denoteth; is from nd; to p;; in; is initially empty, whileout; can

be initialized to some default value according to the problem that is solvednWipeocess starts its
participation in the algorithm, it writes inut; its starting time (as defined by the current tick of the clock
governing the progress of the underlying communication component) asibposome input values,
which depend on problem that is solved.

At every communication stemd; first receives a message from each of its neighbors, and reads the
local bufferout;. Then, it packs the content of these messages and the current vatug ioto a single
message, sends it to its neighbors, and writesitjn

Given a procesg;, a key element is the global time (defined by the communication component
global clock) at whichp; wakes up and starts executing. Thanks to the underlying messagesgxdha

3We use the time’ and “clock tick terminology for the communication component, to prevent confusion thigiround’
terminology used in the description of the CV86 and AST-CV algorithms.



by the communication nodes at every clock tick (communication step), a gq@oshich started partic-
ipating in the algorithm can know (a) which of its neighbors (until some predéfiistance) started

the algorithm, and (b) at which time they started. More precisely, considanmgces®; that starts at
time st;, it is easy to see that aftér time units,p; can have information from processes in the graph at
distance up td from it.

Initial knowledge Each pair made up of a communication nodé;j and a proces%¥{) has a unique
identity id;. The integeri is called the index op,. Letn be the total number of node/process pairs. It is
assumed that each identity can be encodddgm bits. Initially, a process knows its identity, the value
of n, and possibly the structure of the communication gr&phMoreover, while a process knows that
no two processes have the same identity, it does not know the identities dhérgoocesses.

Power of the decoupled model As announced in the Introduction, this decoupled model allows for the
design of distributed algorithms which are both local and wait-free. As ample of this computability
power, the rest of the paper presents a local algorithm (WLC) suited taoribiel, which colors the
processes of a ring in at most three colors, while tolerating any numbeoodégs crashes.

We observe that in the absence failures and presence of synctire@¢COUP LED model be-
haves exactly like th&€OC.AL model: all process run in lock-step manner until decisions are made.
Thus, LOCAL is as strong aDECOUPLED: if there is an algorithm solving a given problem in
DECOUPLED, then one can easily obtain an algorithm solving the corresponding problé@dm L.

The other direction is not obvious and the WLC algorithm is an example otgarothat is solvable in
both models in a local and time-complexity optimal manner.

3 Distributed Graph Coloring and a Look at Cole-Vishkin’s algorithm

3.1 Distributed graph coloring

Graph Vertex coloring Vertex coloring is a fundamental graph problem. It consists in associating a
color with each vertex in such a way that (i) no two adjacent vertices haveaime color, and (ii) the
number of colors used is minimal. In the context of sequential computing thigisfdhe most famous
NP-complete problem [7].

In the context of failure-free synchronous distributed systems, whgn@cess is associated with
each vertex of the communication graph, it is known fébg* n) is a lower bound on the number of
time units (communication rounds) needed to color the nodes of a ring, with atimnes colors [11].
Several specific distributed coloring algorithms for failure-free symebus distributed systems have
been proposed (e.qg., [1, 3, 4, 8]). The interested reader will find ia flRonograph entirely devoted to
distributed graph coloring.

The structure of Cole and Vishkin's algorithm CV86 is a distributed synchronous vertex coloring
algorithm [4]. A pedagogical presentation can be found in Chapter 193f [This algorithm considers
that the underlying bi-directional communication graph with a logical orientasiach that each process
has at most single predecessor. It assumes that the processeggydréice distinct identities, each
consisting ofO(logn) bits. From a structure point of view, this algorithm can be decomposed in two
phases.

e Phase 1. From colors to six colors. An original and clever bit-level technique is firstduse
(see below), which allows the nodes to be properly colored with six coftesting with colors
encoded withlog n bits (node identities), a sequence of synchronous communication steps is
executed, such that each step allows each node to compute a new lgpenttose size in



bits is exponentially smaller than the previous one, and this proceeds untiiragtainmost six
colors, which requirekbg* n communication rounds.

e Phase 2. From six colors to three colors. The algorithm uses then a sirdptdios technique
to restrict the number of colors from six to three. This requires three additmmmunication
rounds (each one eliminating a color).

The noteworthy features of CV86 are the following: itasal (the number of rounds ieg* n + 3),
time optimal[11], anddeterministiqthe final color obtained by a process depends only on the identities
of the processes belonging to the path of its predecessors up to digighee+ 3). Combining the
locality and determinism properties, it follows that the final color obtainedfrypeess depends only on
thelog® n + 3 identities of the processes on its predecessor path.

3.2 A version of Cole and Vishkin’s algorithm suited to a ring

Preliminary  An instance of CV86 suited to a ring is described in Figure 1. The two neighdfca
process; are denoteghred; andnext;. The local variable:olor; contains initially the identity op;
expressed in binary notation. Let = [logn| — 1. As the identity ofp; is assumed to be coded with
log n bits, the initial value ofcolor; is a sequence dfm + 1) bits b,,, by,—1, -+ , b1, by, and no two
processes have the same initial sequence of bits. When looking at saghense, we say thab,' is
at positiony” (i.e., the position of a bit in a color is defined by starting from positicaind then going
from right to left).

Underlying principle  The aim is, from round to round, to compress as much as possible the size of
the colors of the processes, while keeping invariant the property thatomaeighbors have the same
color. This is attained by using the logical orientation of the ring. Basicallyoagss compares its
current color with the one of its predecessor, and accordingly defsmeew color.

The two issues that have then to solved are (i) the way current colotoamgared and the way a
new shorter color is computed (while maintaining the invariant), and (ii) how ritargtions have to be
executed so that at most three colors are used.

(01) color; «+ bit string representing;’s identity;
(02) whenr =1,2,...,1og" n do % Part 1: reduction from colors to 6 colors %
(03) begin synchronous round

(04) send COLOR(color;) to next;;

(05) receive COLOR(color_p) from pred;;

(06) let = bethe first position (starting d from the right) where:olor; andcolor _p differ;
(07) color; <« bit string encoding the binary value offollowed at its right

by b.. (first bit of color; wherecolor; andcolor _p differ)
(08) end synchronous round
% Herecolor; € {0,1,--- ,5} %
(09) whenr =log™n + 1,log" n + 2,log"* n + 3 do % Part 2: reduction from 6 to 3 colors %
(10) begin synchronous round

(11) send COLOR(color;) to pred; andnext;;

(12) receive COLOR(color_p) from pred; andCOLOR(color_n) from next;;
(13) let k ber —log*n +2; %k € {3,4,5} %

(14) if (color; = k) then color; <— min({0, 1,2} \ {color_p, color_n}) end if

(15) end synchronous round
% Herecolor; € {0,1,2} %
(16) return(color;).

Figure 1: Cole and Vishkin's synchronous algorithm for a ring (codeyfp



Description of the algorithm Letr denote the current round number. Initialized tat takes then the
successive values 2, 3, etc. Itis global variable provided by thehsynous system, which can be read
by all processes.

Each procesg; first defines its current color as the bit string representing its identity (lije O
As already indicated, it is assumed that each identity can be codéazanbits. Thenp; executes
synchronous rounds until it obtains its final color (line 16). The total remobrounds that are executed
islog™ n + 3, which decompose into two parts.

The firstlog™ n rounds (lines 03-08) allow each proces$o compute a color in the sgb, 1,--- ,5}.
Considering a round, let &k be an upper bound on the number of different colors at the beginning of
roundk, andm be the smallest integer such thiat< 2™. Hence, at round, the color of a process is
coded onn bits. After a send/receive communication step (lines 04-05), a prpgessnpares its color
with the one it has received form its predecessoid_p), and computes (starting @tfrom the right),
the bit positionz where they differ (line 06). Assuming for example tiat= 2% (hencem = 8), let
color; = 10011001 andcolor_p = 11011101; we have then: = 2. Then (line 07)p; defines its new
color as the bit sequence whose prefix is the binary encodingooflog m bits (010 in our example)
and suffix is the first bit of its current color where both colors diffemmely b, (b, = by = 0 in the
example). Hence, its new color(30b,. = 0100.

Let consider two neighbor processes during a rounidithey have the same value for due to the
bit suffix they use to obtain their new color, they necessarily obtain differew colors. If they have
different values for, they trivially have different new colors.

It is easy to see (from the computation of the positicAvhich defines the prefix of the new color—,
and the value of the bii, —which defines the suffix of the new color-), that the rourr@duces the
number of colors fronk to at mos2[log k] < 2m. It is shown in [4] that, after at mo$bg™ n rounds,
the binary encoding of a color requires only three bits, where the gufix0 or 1, and the prefix i$)0,

10, or 01. Hence, only six color values are possib#), 100, 010, 001, 101, and011.

The second part of this synchronous algorithm consists of three additmmmds, each round elim-
inating one of the colors ifi3, 4, 5} (lines 10-15). More precisely, each process first exchanges its colo
with its two neighbors. Due to the previolig™® n rounds, these three colors are different. Hence, if its
color is 3, p; selects any color iq0, 1,2} not owned by its neighbors. This is then repeated twice to
eliminate the colord and5.

This algorithm has two main features. The first is the clever and originalanagw color is com-
puted. The second is its asymptotical time-optimalibg{ » + 3 synchronous rounds), which follows
from Linial's result [11]. Proofs of the algorithm correctness and its timeglexity can be found
in [4, 19].

From aringto achain A chain is a sequence where each vertex appears at most once (atihgsh
been cut). Hence, each non-singleton chain has two processesfthatideends.

At line 05, the process that has no predecessor cannot comparer@staglor with another color.
It simply does as if it has a (fictitious) predecessor whose color is diffdrem its initial color, and
executes normally the algorithm. As an exampley;i{fwhose initial color is100101) is the process
without predecessor, it considers a fictitious predecessor whoseisti@ same as its color except for
its first bit (starting from the right), i.e., the col@a®0100). It follows from the algorithm that after the
first round,p; obtains the colof1 (which will never change thereafter).

Finally, at line 12, an end process defines the color of its “missing neiglasds&ing the “no-color”
denoted-1.



4 Extending Cole-Vishkin's Algorithm to Asynchronous Starting Times

This section presents an extension of CV86 for reliable synchronatessyg, which allows processes to
start at different rounds: the round at which a process starts degany on it. (Due to the synchrony
assumption, when a process starts, it does it at the beginning of a snahdyns then synchronously.)

4.1 Asynchronous starting times and unit-segment

Ring structure and starting time of a process Let st; denote the round number at which process
p; wakes up and starts participating in the algorithm. There is no requiremené @authd at which a
process must start the algorithm.

Notion of a unit-segment A unit-segmenis a maximal sequence of consecutive processes (with re-
spect to the ringpa, Presty, - > Ppred,, P-, that started the algorithm at the same round number.

Hence, a unit-segment is identified by a starting time (round number), artsvargpntiguous unit-
segments are necessarily associated with distinct starting times. It followdrtmatan omniscient
observer’s point of view, and at any time, the ring can be decomposediistd of unit-segments,
some of these unit-segments being contiguous, while others are separgiemtesses that have not
yet started (or will never start, due to an initial crash). In the particulse @¢here all processes start
simultaneously, the ring is composed of a single unit-segment.

4.2 A coloring algorithm with asynchronous starting times

This section presents an extension of CV86 (called AST-CV), which allwasesses to start at different
rounds. The algorithm is made up of four parts. It requires a procesetuteA = log™ n + 6 rounds
(hence it keeps the locality property of CV86). The algorithm is deconpioge four parts.

Starting round of the algorithm  The underlying synchronous system defines the first rouré ()
as being the round at which a process starts (or a set of processédisusguusly start) the algorithm,
while no process started the algorithm before. Hence, when this preietsthe algorithm, we have
st; = 1. Then, the progress ofis managed by the system synchrony.

Part 1 and Part 2 These parts are described in Figure 2. Considering a unit-segmertifi@tkby a
starting timest) they are a simple adaptation of CV86, which considers the behavior giracgsw;
belonging to this unit-segment.

A processp; executes firstog* n synchronous rounds. During each round, it sends its current color
to its neighbors, and receives their current colors.rhef_pred = L if there is no message fropred;

(line 04).

At line 05, the valuest; allows p; to know if its predecessor belongs to the same unit-segment
(defined by the valuat;). If it the case,p; executes CV86. If its predecessor belongs to a different
unit-segment or has not yet started the algoritlpnconsiders a fictitious predecessor whose identity
is the same as its own identity, except for the first bit, starting from the riglet tfge last paragraph of
Annex 3.2). Lines 06-10 constitute the core of CV86, which exponentiatiyces the bit size represen-
tation of color; at every round, to end up with a color in the §e11,--- , 5} afterlog® n rounds.

Part 2 of AST-CV (lines 13-21) is the same as in CV86. It reduces thefsmilors in each unit-
segment from at most six to at most three. It then follows from CV86 [4] #tdhe end of this part, the
processes of the unit-segment identifiedsthyyhave obtained a proper color within their unit-segment.
Moreover, aftedlog® n + 3 rounds, the color obtained by a process will be its final color if this psces
is neither the left end, nor the right end, of its unit-segment.



init: color;: bit string initialized top;’s identity;

st;: starting round op;;

whenp; starts, there are three cases for each of its neighbeis andnext;:

(a) it already started the algorithm;

(b) it starts the algorithm at the very same round,;

(c) it will start the algorithm at a later round.

In the first case, the messages sent in previous rounds by thepmrditsg neighbor

are inp;’s input buffer, and can be consequently reagbhyin the last case, to simplify

the presentation, we consider thatreceives a dummy message.

fict_pred;: fictitious process whose identity is the samegs identity except for its first bit

(starting from the right); used as predecessor in gaskscovers it is a left end of a unit-segment.
t Part 1|: reduction fromn colors to 6 colors
(01) whenr = st;, st; + 1,...,(st; — 1) + log™ n do
(02) begin synchronous round

(03) send COLOR(0, st;, color;) to next; andpred;;

(04) receive msg_pred; from pred;;

(05) if (msg-pred; = COLOR(0, st;, col))

(06) then let = be the first position (starting dt from the right) whereolor; andcol differ;
(07) color; < bit string encoding the binary value offollowed at its right

(08) by b, (first bit of color; wherecolor; andcol differ)

(09) else p; has no predecessor (it is an end process of its unit segment) it canside
(10) fict_pred; as its predecessor and executes lines 06-08

(12) end if;

(12) end synchronous round

% Herecolor; € {0,1,---,5}
T Part 2| reduction from 6 to 3 colors
(13) whenr = (st; — 1) +log"n+1,(st; — 1) +log"n+ 2, (st; — 1) + log" n + 3 do
(14) begin synchronous round

(15) send COLOR(0, st;, color;) to pred; andnext;;

(16) color_set <

17) if COLOR(0, st;, color_p) received frompred; then color_set < color_set U color_p end if;
(18) if COLOR(0, st;, color_n) received fromnext; then color_set < color_set U color_n end if;
(19) letk ber — (st; +log™n) +2; %k € {3,4,5} %

(20) if (color; = k) then color; < any color from{0, 1,2} \ color_set end if

(21) end synchronous round

% Herecolor; € {0, 1,2}, and the unit segment including is properly colored but
% two end processes of two consecutive unit segments may have teeshm

Figure 2: Initialization, Part 1, and Part 2, of AST-CV (code jfigr

Message management Let us observe that, as not all processes start at the same roundyssiblp
that, while executing a round of the synchronous algorithm of Figure By@ps; receives a message
COLOR(0, st, —) (with st # st;) from its predecessor, or messagesLOR(j, ) (wherej € {1,2,3},
sent in Parts 3 or 4) from one or both of its neighbors. To simplify and migear the presentation,
the reception of these messages is not indicated in Figure 2. It is implicitly adghatewhen they are
received during a synchronous round, these messages are s#élveddcal memory op; (so that they
can be processed later, if needed, at lines 25-28 and line 39 of Figure 3

Moreover, a process; learns the starting round of-ed; (resp.,next;) when it receives for the first
time a messageoLOR(0, st, —) from pred; (resp.next;). To not overload the presentation, this is left
implicit in the description of the algorithm.

Why Part 3 and Part 4 These parts are described in Figure 3plfs a left end, or a right end, or
both, of a unit-segmettits color at the end of Part 2 is not necessarily its final color. This is dtieeto

4A processp;, which is both a left end and a right end of a unit-segment, is the only gsaxfdts unit-segment.



fact that Part 1 and Part 2 color the processes in each unit-segmepeimtkently from the coloring of
its contiguous unit-segments (if any). Hence, it is possible for two contguaii-segments to be such
that the left end of one (say) and the right end of the other (spy) are such thatolor; = color;.

The aim of Part 3 and Part 4 is to solve these coloring conflicts. To thisat,process; manages
six local variables, denotegblor;[j, nbg|, wherej € {1,2,3} andnbg € {pred;,next;}. They are
initialized to—1 (no color).

In the following parts of the algorithm, each processises local variables denotedlor;[j, nbg],

% wherej € {1,2,3} andnbg € {pred;, next;}. These variables are initialized tol

% (no color) and updated when receives a messag®LOR(j, —) from pred; or next;.

% Due to the fact that the processes do not start the algorithm at the santk procesg; may

% have received messagesLOR(j, —) during previous synchronous rounds.

= Part 3| color; can be changed only jf; is the left end of its unit-segment =====
(22) whenr = (st; — 1) +log* n + 4 do

(23) begin synchronous round

(24) send COLOR(1, color;) to pred; andnext;;

(25) foreachj € {1,2,3} do

(26) if (COLOR(j, color) received fronpred; in a round< r) then color;[j, pred;] + color end if;
27) if (COLOR(j, color) received fromext; in a round< r) then color;[j, next;] < color end if
(28) end for;

(29) if (st; > sti[pred;]) then % p; has not priority

(30) case(st; = st;[next;]) then color; < acolorin{0, 1,2} \ {color;[2, pred;], color;[1, next;]}
(31) (sti > sti[next;]) then color; <— acolor in{0, 1,2} \ {color;[2, pred;], color;[2, next;]}
(32) (sti < sti[next;]) then color; «+— a colorin{0, 1,2} \ {color;[2, pred;]}

(33) end case

(34) end if

(35) end synchronous round

%‘ Part 4[: color; can be changed only jf; is the right end of its unit-segment ====
(36) whenr = (st; — 1) +log* n + 5do

(37) begin synchronous round

(38) send COLOR(2, color;) to pred; andnext;;

(39) same statements as in lines 25-28;

(40) if (st; > sti[next;]) then % p; has not priority

(41) case(st; = st;[pred;]) then color; < a color in{0, 1,2} \ {color;[2, pred;], color;[3, next;]}
(42) (st; > sti[pred;]) then color; + a colorin{0, 1,2} \ {color;[3, pred;], color;[3, next;]}
(43) (st; < sti[pred;]) then color; < acolorin{0, 1,2} \ {color;[3, next;]}

(44) end case

(45) end if

(46) end synchronous round

Additional round to inform the neighborstthall start later ==========
(47) whenr = (st; — 1) +log* n + 6 do

(48) begin synchronous roundsend COLOR(3, color;) to pred; andnext; end synchronous round
(49) return(color;).

Figure 3: Part 3 and Part 4 of AST-CV (code i)

Solving the conflict between neighbors belonging to contiguous ungiegments A natural idea to
solve such a coloring conflict between two neighbor processes betptgyoontiguous unit-segments,
consists in giving “priority” to the unit-segment whose starting time is the first.

Let st;[pred;] (resp.,st;[next;]) be the knowledge gf; on the starting time of its left (resp., right)
neighbor. Ifpred; has not yet started lat;[pred;] = +oo (and similarly fornext;). Thanks to this
information, p; knows if it is at the left (resp., right) end of a unit-segment: this is the casg i
sti[pred;] (resp., ifst; # st;[next;]). Moreover, ifp; is a left (resp., right) end of a unit-segment, it
knows that it has not priority ikt; > st;[pred;] (resp.,st; > st;[next;]). If such casesp; may be



required to change its color to ensure it differs from the color of its n&ighklonging to the priority
contiguous unit-segment.

The tricky cases are the ones of the unit-segments composed of eitheleasingess or two
processep, andp,. This is because, in these cases, it can be required tfpatssibly twice, once as
right end, and once as left end of its unit-segment), or apcand oncep, (in the case of a 2-process
unit-segment), be forced to change the color they obtained at the endtd, Pa obtain a final color
consistent with respect to their neighbors in contiguous unit-segmentseVent inconsistencies from
occurring, it is required that (in addition to the previous priority rule) (estfa left end process of a
unit-segment modifies its color with respect to its predecessor neighbah(Wwblongs to its left unit-
segment), and (b) only then a right end process of a unit-segment matgitiedor if needeel

Summary statement Let us consider a proceps
e If p; isinside a unit-segment (i.est; = st;[pred;] = sti[next;]),
or is the left end of a unit-segment apckd; began after it (i.e.st; < st;[pred;]),
or is the right end of a unit-segment anelzt; began after it (i.e.st; < st;[next;] ),
then the color it obtained at the end of Part 2 is its final color.

e If p; is the left end of a unit-segment apded; began before; (i.e., st; > st;[pred;]), thenp;
may be forced to change its color. This is done in Part 3. The gglobtains at the end of Part
3 will be its final color, if it is not also the right end of its unit-segment amrdt; began before it
(i.e.,st; > sti[next;)).

e This case is similar to the previous one pifis the right end of a unit-segment andzxt; began
before it (i.e.,st; > st;[next;]), p; may be forced to change its color to have a final color different
from the one ofwext;. This is done in Part 4.

As a process, that is neither the left end, nor the right end of a unit-sggoi#ains its final color
at the end of Part 2, it follows that, during Part 3 and Part 4, such @psoonly needs to execute the
sending of messageOLOR(j, —), 7 € {1,2,3} at lines 24, 38, and 48 (the other statements cannot
change its color).

Part 3 This part is composed of a single round (lines 22-35). A propgssends first to its neighbors

a messageoLOR(1, ¢) carrying the color it has obtained at the end of Part 2. Then, according to the
messages it received from them up to the current ropndpdates its local variablesior;[j, pred;]
andcolor;[j, next;| (lines 25-28).

Part4 This part, composed of a single round (lines 36-46), is similar to the previoeisDue to the
predicate of line 40, the lines 41-44 are executed onpy i the right end of its unit segment. Their
meaning is similar to the one of lines 30-33.

Finally, p; sends (line 48) to its two neighbors the messageoR(3, color;) to inform them of its
last color, in case it was modified in Part 4.

An example Let us consider thaiy, p,, ps, andp, are four consecutive processes such thattfi)=

10, andp, obtained the final colot, (ii) st, = 12, andp, obtained the final colo2, and (iii) p, andp,
starts the algorithm at tim&5. Hence,p, andp, define a unit-segment, whose starting time is greater
than the one of botl, andp,. Hence, the unit segment composedgfandp, has not priority with
respect to its two contiguous unit-segments.

SThis specific order is only a design choice. The other order (first Bgt process, then left end process) could have
been chosen. What is important is that the processes obey the saenelifttrently, being defined from starting times and
favoring the oldest starting times, the previquirity order is not a design choice in the sense that the other choice would not
work (as not all processes can be participating in the algorithm).
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Let us suppose that after having executed Part 1 and Paytdhtains the colot, while p, obtains
the color2, i.e., each obtains a color different from its neighbor in the same unit-segiugithis color
is the same as the one of its other neighbor (which belongs to a contiguoes’oitt-segment).

As p, is the left end of its unit-segment and started aftetd, (=p,), it received the message
COLOR(2, 1) from p, (line 26), and consequently obtaiagor,[2, pred,] = 1. Moreover, a, is in the
same unit-segment @s, it receives the messag®LOR(1, 2) from p, and obtaingolor,[1, next,] = 2
(line 27). Then procespg, executes lines 29-30, and obtains the cdldthis is becausg0, 1,2} \
{color,[2, pred,], colory[1, next,)} = {0,1,2} \ {1,2} = {0}).

As st, = st,, pp does not execute lines 30-33, but received the messageRr(2,0) from p,
at line 39, and we have consequenttyory[2, pred,] = 0. It also receivedcOLOR(3,2) from p,
(line 39), and we haveolor,[3, nexty] = 2. Procesg, then executes lines 40-41. A9, 1,2} \
{colory[2, predy), colory[3, nexty] } = {0,1,2} \ {0,2} = {1}, it obtains its final colod.

It follows that the final colors of the sequence of the four processges,, py, andp,- is 1, 0, 1, 2.

4.3 Properties of the algorithm
Due to its construction from CV86, AST-CV inherits its two most important prisgge namely locality
and determinism.

e In CV86, the locality property states that a process obtains its final caknleg™ n + 3 rounds.
In AST-CV, it obtains itlog™ n + 6 rounds after it starting round.

e In CV86, the determinism property states that the final color of a procgssnds only of the
identities of the consecutive processes which aresn + 3 predecessors on the ring. In AST-
CV, its final color depends only of the starting times and the identities of theecatige processes
which are itdog* n + 6 predecessors on the ring.

4.4 Proof of the algorithm

Definition 1. Thefinal color of a process is the color it returns at lid.

Lemma 1. Letp; be a process which wakes up at tinte Afterp; has executed the rour(dt; — 1) +
log*n + 3 (Part 1 of Figure 2), no two neighbors of its unit-segment have the same color. Moreover,
their colors are in the sef0, 1, 2}.

Proof The proof follows from the observation that, when considering the ge@seof a unit-segment,
Part 1 and Part 2 of Figure 2 boils down to CV86, from which the lemma follows Oremma 1
Lemma 2. Let p; be a process that wakes up. yf is neither the left end, nor the right end, of its
unit-segment, its final color is the color it obtains at the end of Rart

Proof If p; is neither the left end nor the right end of its unit-segment we Bayve= st;[pred;] =
sti[next;]. The lemma follows then directly from the predicates of lines 29 and 40. OLemma 2
Lemma 3. If p; wakes up, its final color belongs {0, 1, 2}.

Proof The proof follows from Lemma 1 and the fact, whatever the lines 30-32 antB4xecuted by a
proces; (if some are ever executed), any of them restricts the new color to beldhg set{0, 1,2}.

|:]Lemma 3

Lemma 4. Let us assume that bofh) and p; wake up, wherg; is p,c.,. If p; andp; belong to the
same unit-segmeni; = st;) their final colors are different.
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Proof The proofis a case analysis. There are four cases, namely:

Case (a)p; is not the left end ang; is not the right end of their unit-segment,
Case (b)p; is not the left end ang; is the right end of their unit-segment,
Case (C)p; is the left end ang; is not the right end of their unit-segment,
Case (d)p; is the left end ang; is the right end of their unit-segment.

Case (a)p; is not the left end ang; is not the right end of their unit segmenin this case, it follows
from Lemma 1 and Lemma 2 that the final colorgfand the final color op; are different.

Case (b)p; is not the left end angl; is the right end of their unit-segmenfthen, by Lemma 2, the final
color of p; is the value otolor; at the end of Part 2 (roundt; — 1) + log™ n + 3). By the algorithmp;
does not change its color at rouft; — 1) + log* n + 4 (predicate of line 29 wherel; = st;[pred;]),
but may change it during rour(dt; — 1) + log™ n + 5 (Part 5). There are two sub-cases.

e st; < stj[next;]. In this case the predicate of line 40 is false, apndloes not modifyolor;. It
then follows that bottp; andp; keep the color they obtained at the end of Part 2. By Lemma 1,
these colors are different.

e st; > stj[next;]. In this casep; executes the update of line 41, where the color assigned to
color; remains different fronaolor; (which was received during a previous round and saved in its
local variablecolor;[2, pred,]).

Case (c):p; is the left end ang; is not the right end of their unit-segmerBy Lemma 2,p; does not
change its color after Part 2 (rouigk; — 1) + log™ n + 3). There are two cases.

o st; < sti[pred;]. It follows from the predicate of line 29 that does not change its color during
Part 3. Asst; = st;, the predicate of line 40 is false, apgddoes not change its color in Part 4. It
then follow from Lemma 1 that; andp; have different final colors.

e st; > sti[pred;]. Asp; andp; are in the same unit-segment, receivesCOLOR(1, color;) at
line 27 during the roundst; — 1) + log* n + 4 (Part 3), and saves this value in its local variable
colori[1,next;]. Then, due to the predicates of lines 29 and g0changes its color at line 30
during the roundst; — 1) + log* n + 4 (Part 3), and this color is different from the final color of
pj. Finally, asst; = st;, the predicate of line 40 is not satisfied, gnddoes not updateolor;
during the roundst; — 1) 4+ log* n + 5 (Part 4). It then follows from thas; andp; have different
final colors.

Case (d)p; is the left end ang; is the right end of their unit-segmenthere are four cases.

o st; < st;[pred;] andst; < st;j[next;]. In this casep; andp; do not change their color after round
(st; — 1) 4+ log™ n + 3. Hence, by Lemma 1, they will have different final colors.

e st; < stj[pred;] andst; > stj[next;]. In this case, when evaluated by, the predicates of
lines 29 and 40 (we have the; = st;[next;] = st;) are false. Hencey; does not change its
color after roundst; — 1) 4+ log™ n + 3. This case is similar to the second sub-case of Case (b).

o st; > st;[pred;] andst; < stj[next;]. In this case; does not change its color after Part 2 (round
(st; — 1) +log" n + 3). This case is similar to the second sub-case of Case (c).

o st; > st;[pred;] andst; > st;[next;]. Due to the predicates of lines 29 and 3pchanges its
color at line 30 during roundst; — 1) + log* n + 4 (Part 3). Moreover, ast; = st;, it does
not change its color in Part 4. Hence, its final color is the one obtainedes8in Differently, as
st; > stj[next;] andst; = st;, p; updates its color at line 41 during roufet; — 1) +log* n+5
(Part 4), where it obtains a color different fraralor; (final color of p; received at line 38 and
saved inp;’s local variablecolor;[2, pred;]). It follows thatp; andp; have different final colors.
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Uremma 4

Lemma 5. Let us assume that bofh andp; wake up, where; is ppc.¢,. If p; andp; are not in the
same unit-segment and; > st;, their final colors are different.

Proof The processeg; andp; are neighbors but belong to different unit-segments.sths< st; and
all processes gets their final color after the same constant numbernaf afier they wake u; gets
its final color beforep;. The proof considers the following two possible cases: Case{#:not a left
end of its unit segment, and Case {b)s a left end of its unit segment.

Case (a):p; is not a left end of its unit segmernin this case, it follows from the predicate of line 29
thatp; does not change its color during Part 3, and from the predicates of iemnd 41 (Part 4), that
pi updates its color at line 41. As woke up before;, p; received the messag@eLOR(3, col) sent at
line 48 byp; during its roundst; — 1) +1log" n+ 6. This message was receivedyat the latest while

it executes its roundst; — 1)i + log™ n + 5. Moreover,col is then the final color of;. It follows that,
when it executes its roun@t; — 1) + log* n + 5, p; is such thatolor;[3, next;] = col. Consequently,
atline 41,p; adopts a final color different from the final color of.

Case (b)p; is a left end of its unit segmentVe consider two sub-cases.

e st; < st;[pred;]. In this case, it follows from the predicate of line 29 thatdoes not change
its color during Part 3. Differently, due to the predicates of lines 40 andt 4@datescolor; at
line 43. Moreover, ast; > st;, p; received fronp; the messageoLOR(3, col) (wherecol is the
final color ofp;) at a round< (st; — 1) + log™n + 5, and saveaol in color;[3, next;]. It then
follows that, wherp; executes line 43, it assignsdolor; a value different from the final color of
Pj-

e st; > st;[pred;]. In this case, it follows from the predicates of lines 29 and 31 thapdates its
color at line 31 (Part 3), and from the predicates of lines 40 and 4%thgidates again its color
at line 42 (Part 4).

As p; woke up beforep;, p; received the messageLOR(3, col) from p; before (or at) round
(sti — 1) +log* n + 5 (Part 4), and:ol is the final color ofp;. It follows that, wherp; updates
its color at line 42, we haveolor;[3, next;] = col. Consequently, the final color of is different

from the final color of its neighbagy;. -
Lemma 5

Lemma 6. Let us assume that bogh and p; wake up, wherg; is pye.,. If p; andp; are not in the
same unit-segment and; > st;, their final colors are different.

Proof By assumptionp; andp; are neighbors, but belong to different unit-segmentsshs> st; and
all processes execute the same number of rounds after they woketip ¢ 6), p; returns its final color
(line 49) beforep;. As for Lemma 4, the proof of the lemma considers four cases, namely

Case (a)p; is not the left end of its unit-segment apglis not the right end of its unit-segment,
Case (b)p; is not the left end of its unit-segment apglis the right end of its unit-segment,

Case (c)p; is the left end of its unit-segment apglis not the right end of its unit-segment,

Case (d)p; is the left end of its unit-segment apdlis the right end of its unit-segment.

Case (a)p; is not the left end of its unit-segment apgdis not the right end of its unit segmerAs p;
is not the left end of its unit segment, it follows from the predicate of line 28itltbes not update its
colorin Part 3. Asst; < st; = st;[next;], it follows from the predicate of line 40 thaf does not update
its color in Part 4. Hencey; obtained its final color at the end of Part 2.
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As far asp; is concerned, we have the following. As; > st; andp; is not the right end of its
unit-segment, the predicates of lines 29 and 30 djpgtd update its color at line 30 (Part 3). Moreover,
asp; is not the right end of its unit-segment, the predicate of line 40 is not satisfiiegd;adoes not
change its color in Part 4.

As p; woke up before;, p; received the messag®LOR(2, col) from p; at a round< (st; — 1) +
log™ n + 4, andcol is the final color ofp;. It follows that wherp; executes line 30, it assignsdolor; a
color different from the final color gf;.

Case (b):p; is not the left end of its unit-segment apgdis the right end of its unit-segmenés p; is
not the left end of its unit-segment ast} < st;, it follows that the predicate of line 29 is not satisfied
when evaluated by;. Similarly, asst; < st;[next;] = st;, the predicate of line 40 is not satisfied either.
Consequentlyp; does not modify its color in Part 3 or Part 4. Leti be this color.

As p; wakes up before;, p; has received the messageLOR(2, cl_i) sent byp; at the latest dur-
ing its round(st; — 1) + log"n + 4 (Part 3). Hence, at the end of rouiist; — 1) + log"n + 4,
color;[2, pred;] = cl_i. Moreover,p; received the messag®LOR(3, c/_i) at the latest during its round
(stj — 1) +log™ n + 5, and saved it inolor;[3, pred;] = cl_i. It then follows that, whatever the update
of color; done byp; at any line of Part 3 (lines 30-32) or Part 4 (lines 41-43), the finalraoig; will
be different from the final color qof;.

Case (c)p; is the left end of its unit-segment apglis not the right end of its unit-segment

As p; is the left end of its unit-segment, it may be forced to update its color (at lineed2use
st; > st;) if the predicate of line 29 is satisfied (Part 3). Butsas> st;, the predicate of line 40 cannot
be satisfied (Part 4). Hence, both the message®R(2, ¢l_i) andCOLOR(3, cl_i) sent byp; at lines 38
and 48 carry its final color.

As st; > st;, p; receivedCOLOR(2, cl_i) at the latest during its roundt; — 1) + log*n + 4, and
COLOR(3, cl_t) at the latest during its roundt; — 1) + log* n + 5. It follows that, whatever the update
of color; done byp; when it executes Part 3 or Part 4, its final color will be different frdn.

Case (d)p; is the left end of its unit-segment apglis the right end of its unit-segment

As indicated in the previous casg;, (left end of its unit-segment) may change its color due the
predicates of lines 29 and 32 when it executes its rquhd- 1) + log* n+4 (Part 3), but (ast; < st;)
it will not change it in Part 4. We consider two cases. &let be the final color op;.

o st; > stj[next;]. In this case, Ast; > st; the predicate of line 29 is satisfied, apdupdates
its color at line 31 when it executes its roufigt; — 1) + log*n + 4 (Part 3). Similarly, as
st; > stj[next;], p; updates its color at line 42 when it executes its roig — 1) + log* n + 4
(Part 4). Asp; woke up after;, it receivedCOLOR(2, cl_i) from p; at the latest when it executes
its round(st; — 1) +log* n+4 (Part 3), and receivedoLOR(3, cl_i) at the latest when it executes
its round(st; — 1) + log*n + 5 (Part 4). It follows that, whatever (if any) an updatecofor;
done at any of the lines 30-32 and 41-43, the final colgr;ofill be different from the one of;.

e st; < stjlnext;]. In this casep; may update its color at line 32 while executing its round
st; +log*n + 4 (Part 3). Asst; < st;, p; receives the messag®LOR(2, cl_i) from p; at the
latest during its roundst; — 1) + log*n + 4 (cl_i is the final color ofp;), and consequently
color;[2,pred;] = cl_i at round(st; — 1) + log"n + 4. Hence, when it executes line 3@;
updatescolor; to a color different fromel_i. Let us finally observe that, as; < st;[next;],
the predicate of line 40 (Part 4) is not satisfied, and consequgptipes not modifycolor; at

lines 41-43, which completes the proof of the lemma. =) 6
emma

Theorem 1. If p; and p; wake up and are neighbors, their final colors are different and in the se
{0,1,2}.
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Proof The proof follows from the Lemma 3, Lemma 4, Lemma 5, and Lemma 6. OTheorem 1

5 From Asynchronous Starting Times to Wait-freedom

Considering the two-component-based model introduced in Section 2, ttisrspresents the WLC
(Wait-free Local Coloring) algorithm which colors the processes of @inrat most three colors. This
algorithm relies on two consecutive stages executed independentlybbg@aputing process. The first
stage is a communication stage during which, whatever its starting time, eadspaatains enough
information to locally execute its second stage, which is communication-fre@ 8saction 4, aunit-
segments a maximal sequence of consecutive processes that started the algdrtiensame time (i.e.,
as the same clock tick as defined by the underlying synchronous commumicatigponent).

Before presenting the algorithm WLC, we need a solvability notion that imcatps asynchrony
and failures that are presentir€ COUP LED. An algorithmwait-freesolvesm-coloring if for each of
its executions:

e (Validity. The final color of any process is iV, ..., m — 1}.
e Agreement. The final colors (if any) of any two neighbor nodes in thplyeae different.
e Termination. In every infinite extension of the execution, all processedela final color.

5.1 Onthe communication side

A ring structure for the synchronous communication network The neighbors of a noded; (or
proces®; with a slight abuse of language) are denoted as before, namealy andnext;.

On the side of the communication nodes While each input buffein; is initially empty, each output
buffer out; is initialized to(i, 400, L). When a process starts its participation in the algorithm, it writes
the pair (i, st;, id;) in out;, wherest; is its starting time (as defined by the current tick of the clock
governing the progress of the underlying communication component)darglits identity.

As already described, at every clock tick (underlying communication ,step)first receives two
messages (one from each neighbor), and reads the local bufferThen, it packs the content of these
two messages and the contenbat; (which can be(i, +oco, L) if p; has not yet started) into a single
message, sends it to its two neighbors, and writesiitjf

5.2 Wait-free algorithm: first a communication stage

Let p; be a process that starts the algorithm at tistye= ¢. As previously indicated, this means that,
at timet (clock tick defined by the communication componept)writes (i, ¢, id;) in its output buffer
out;. Thenp; waits until timet + A whereA = log* n + 5. (). At the end of this waiting period, and
as farp; is concerned, the “dices are cast”. No more physical communication wilkkbessary. As we
are about to see,; obtained enough information to compute alone its color: the rest of the algorithm
executed by; is purely local (see below). This feature, and the fact that the starting fim@mcess
depends only on it, makes the algorithm wait-free.

It follows from the underlying communication component that, at time A, p; has received an
information (i.e., a tripletj, st,id;)) from all the processes at distance at masof it. If st = t, p;
knows thatp; started the algorithm at the same time as itstlf< ¢ (resp.,st > t), p; knows thatp;

®Full-information behavior of a node.
"Being asynchronous, the waiting pf during an arbitrary long (but finite) period does not modify its allowedavér.
Let us observe that a crash is nothing other than an infinite waiting period.
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started the algorithm before (resp., after) it. {if= +-oo —we have thefid; = 1—andp; is at distance
d from it, p; knows thafp; did not start the algorithm before the clock tick- A — d.)

5.3 Wait-free algorithm: then a local simulation stage of AS-CV

At the end of its waiting periodp; has information (pairs composed of a starting time and a process
identity, possibly equal ta-co and L, respectively) of all the processes at dista\ce- log™ n + 5 from

it (Figure 4.) More precisely, for each procgssat distance at mosh from it, p; knows whethep;
started before it{¢; < st;), at the same as is{; = st;), or after it (st; > st;).

pTEdprcd; nextnca:tf

pred; p; next;

A
\]
A
Y

log"n+5 log"n +5

Figure 4: What is know by, at timest; + A

Simulation of AST-CV It follows from the previous observation that, after its waiting perjgdhas
all the inputs (starting times and process identities) needed to simulate AST«Csbarpute its final
color, be it inside a unit-segment, the left end of a unit-segment, the righdfendnit-segment, or both
ends of a unit-segment. More precisely, this simulation is as follows. Prpgesguentially simulates
the following A rounds of AST-CV:

e Afirst round involving the2A + 1 processes at distange A from itself, followed by

e A second round involving th2A — 1 processes at distange A — 1 from itself, etc., followed by
e A (A — z + 1)th round involving the processes at distarce from itself, etc., followed by

e A Ath round involvingpred;, next; and itself.

It then follows from the determinism and locality properties of AST-CV thagraf has simulated the
previous roundsy; obtained its final color.

Remark Let us observe that the crash of a procgssas no impact on the termination and the cor-
rectness of the coloring of the other processes. This follows from tlaitpproperty of AST-CV. If
the distance betweer andp; is more thanA = log* n + 5, p, cannot impact the color obtained by
p;. If the distance betweep;, andpy is less or equal t&\ = log* n + 5, the input information opy,
(identity and starting time) is needed pyonly if p;, started the algorithm before or at same timeas
But, in this case, due to the waiting periodzgfs communication stage, this information is known by
p;. Proces®; considers thep;, as competing for a color, be it crashed or not.

Optimality of WLC  Each process in WLC performs (asynchronougi)og* n) rounds of commu-
nication. This number of rounds is asymptotically optimal as

1. Q(log* n) is a lower bound on the number of time units (communication rounds) needetbto co
the nodes of a ring, with at most three colors [11[@®CAL.

2. When there is no asynchrony and no failuB8§COUP LED behaves likeCOCAL.
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6 Conclusion

Contributions  This paper has two main contributions. The first is a distributed computing model
where communication and processing are decoupled. More precisghghasnous crash-prone pro-
cesses run on top of a reliable synchronous network. This model isswdean the synchronous model
(on the process side) and stronger than the asynchronous cash+podel (on the communication
side). A main advantage of this model is to provide us with a single framewoekenttoth the words
“locality” [11] and “wait-freedom” [9] have a meaning. As these wordptoae fundamental concepts

of distributed computing, the proposed model establishes a bridge linkicymous reliable systems
(for the communication side) and asynchronous crash-prone systenmbegfcomputing process side),
which reconciles these two worlds.

The second contribution of the paper is an illustration of the benefit of thygoged model, namely,
an optimal ring-coloring wait-free algorithm. This algorithm uses as a stibma generalization of
Cole and Vishkin’s well-known algorithm [4], and benefits from its localitggperty, namely, a process
needs to obtain initial formation from processes at distance at@@sg™ n) of it. As far as we know,
this is the first wait-free coloring algorithm, which colors a process ring withast three colors.

Towards a global view As already explained, a main difference in theeCOUPLED model is
that afterd rounds of communication, a process collects the initial inputs of only a sphgrhits
d-neighborhood. Despite this uncertainty, the paper has presented & waatry locality and wait-
freedom, as far as distributed graph coloring is concerned. The Keygsomarriage were (a) the
decoupling of (reliable synchronous) communication and (asynchsocr@sh-prone) processing, and
(b) the design of an intermediary synchronous coloring algorithm (AS)-@here the processes are
reliable, proceed synchronously, but are not required to start aetiyesame round. This introduces a
first type of asynchrony among the processes. As we have seergadhteohthis algorithm lies in the
consistent coloring of the border vertices of subgraphs which startétlexent times (segment units).

It would be interesting to see if this methodology could apply to other localiogi@gorithms, or
even, more ambitiously, to other distributed graph problems which are loclgtde in theLOCAL
synchronous model.
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