
HAL Id: hal-01265958
https://inria.hal.science/hal-01265958

Preprint submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wait-freedom and Locality are not Incompatible (with
Distributed Ring Coloring as an Example)

Armando Castañeda, Carole Delporte, Hugues Fauconnier, Sergio Rajsbaum,
Michel Raynal

To cite this version:
Armando Castañeda, Carole Delporte, Hugues Fauconnier, Sergio Rajsbaum, Michel Raynal. Wait-
freedom and Locality are not Incompatible (with Distributed Ring Coloring as an Example). 2016.
�hal-01265958�

https://inria.hal.science/hal-01265958
https://hal.archives-ouvertes.fr

Wait-freedom and Locality are not Incompatible
(with Distributed Ring Coloring as an Example)

Armando Castãneda† Carole Delporte‡ Hugues Fauconnier‡

Sergio Rajsbaum† Michel Raynal⋆,◦

† Instituto de Mateḿaticas, UNAM, Ḿexico D.F, 04510, Ḿexico
‡ LIAFA, Université Paris 7 Diderot, 75205 Paris, France

⋆ Institut Universitaire de France
◦ IRISA, Universit́e de Rennes, 35042 Rennes Cedex, France

{cd,hf}@liafa.univ-paris-diderot.fr armando.castaneda@im.unam.mx

rajsbaum@im.unam.mx raynal@irisa.fr

Tech Report #2033, 19 pages, January 2016
IRISA, University of Rennes 1, France

January 26, 2016

Abstract

In the world of message-passing distributed computing, reliable synchronous systems and asyn-
chronous failure-prone systems lie at the two ends of the reliability/asynchrony spectrum. The con-
cept of locality of a computation is central to the first one, while the conceptof wait-freedomis
central to the second one. This paper is an attempt to reconcile these two extreme worlds, and ben-
efit from both of them. To this end, it first proposes a new distributed computing model, where
(differently from the two previous ones) processing and communication are decoupled. The com-
munication component (made up ofn nodes) is considered as reliable and synchronous, while the
processing component (composed ofn processes, each attached to a communication node) is asyn-
chronous and any number of its processes may suffer crash failures. To illustrate the benefit of this
model, the paper presents an asynchronous algorithm that, assuming a ring communication compo-
nent, colors the processes with at most three colors. From a process crash failure point of view, this
algorithm is wait-free. From a locality point of view, each process needs information only from pro-
cesses at distanceO(log∗ n) from it. This local wait-free algorithm is made up of a communication
phase followed by a purely local simulation (by each process) of an extended version of Cole and
Vishkin’s vertex coloring algorithm (this extension does not require the processes to start simultane-
ously). This new communication/processing decoupled model seems to offer a promising approach
for distributed computing.

Keywords: Asynchronous distributed computing, Cole and Vishkin’s coloring algorithm, Locality
of a computation, Process crash failure, Synchronous communication, Vertex coloring problem,
Wait-freedom.

1 Introduction

Locality in synchronous distributed computing Considering an undirected connected graph whose
each vertex is a computing entity (process), and each edge is a communicationchannel, a distributedsyn-
chronousalgorithm is an algorithm where the processes collectively execute a sequence of synchronous
rounds. At every round, each process obeys the following pattern: itfirst sends a message to its neighbor
processes, then receives a message from each of them, and finally executes a local computation. The
fundamental synchrony property lies in the fact that each message is received in the very same round
in which it was sent [13, 15, 16]. Let us assume that each process starts with a local input value. It is
easy to see that, afterd rounds of communication, each process collects all local input values in itsd

neighborhood in the graph, and thus after a number of rounds equals to the diameter of the graph, each
process can obtain all the local inputs, and consequently compute any function involving all local inputs
and the structure of the communication graph. Hence such synchronous algorithms transform “local
inputs” into “local outputs” which (according to the problem that is solved) may depend on all the local
inputs.

A distributed synchronous algorithm islocal if its time complexity (measured as the number of
rounds it has to execute in the worst case) is smaller than the graph diameter [11] (as an example a
number of rounds polylogarithmic in the number or vertices, or even a constant). Thus, we can think of
a local synchronous algorithm with time complexityd, as a function that maps thed-neighborhood of a
node to a local output, for each node. Hence, a fundamental issue of fault-free distributed synchronous
computing consists in “classifying problems as locally computable [...] or not” [11].

This computation model has been given the nameLOCAL [15]. Developments on what can or
cannot be locally computed can be found in many papers (e.g., [1, 10, 11,14] to cite a few; more
references can be found in the survey presented in [18]). Considering graphs whose maximal degree
is smaller than their diameter, an example of a local distributed algorithm is the one described in [3],
which colors the vertices in linear time with respect to∆. This part of distributed computing is mainly
complexity-oriented [6, 15].

Fault-tolerance in asynchronous distributed computing Fault-free synchronous distributed com-
puting is only a part of distributed computing. At the other “extreme”, there is the domain of asyn-
chronous failure-prone distributed systems, where (i) there are bounds neither on message transfer de-
lays, nor on process speed, and (ii) process or communication failures are possible [13, 17]. The most
popular of these models is the asynchronous crash-prone distributed computing model. This model con-
siders that there is no communication failures, but some processes may crash, i.e., halt prematurely.
Even if this model allows only process crashes (i.e., “weak” process failures when compared to process
Byzantine behaviors), it appears that the net effect of asynchronyand possible process crashes makes
fundamental problems impossible to solve. The most famous of these problems isconsensus, for which
there is no deterministic distributed asynchronous message-passing algorithm as soon as even only one
process may crash [5] (this is true even when the processes communicate through atomic read/write
registers [9, 12]).

Aim and content of the paper When considering complex applications, failures and asynchrony are
rarely coming from the hardware, but much more often from the software.Hence, the natural idea to
consider a distributed computation model composed of two distinct components withdistinct reliability
and synchrony features, namely:

• A message-passing communication component which is synchronous and failure-free. and
• A computation component which is asynchronous and failure-prone.

In this new model, that we callDECOUPLED, each node has two components: a failure-free syn-
chronous component that is in charge of communicating with its neighbors communication components,

1

and a failure-prone asynchronous component that is in charge of performing the actual computation.
The effect of decoupling computation and communication is that, contrary to theLOCAL model, after
d synchronous rounds of communication, a process collects the local inputsof a subgraph of itsd-
neighborhood since processes can start at distinct times. Thus, this two-component model is in principle
more challenging thanLOCAL.

This approach has two main advantages. The first lies in the fact that, as it considers process failures,
this model allows us to question and envisage the design of wait-free asynchronous algorithms on top of
a synchronous communication network. The second advantage lies in the fact that it can make possible
appropriate adaptations of existing synchronous failure-free algorithmsto asynchronous crash-prone
systems, thereby establishing a bridge between reliable synchronous systems and asynchronous crash-
prone systems.

To illustrate this two-component-based approach in the design of fault-tolerant asynchronous al-
gorithms, the paper considers a classical problem of failure-free synchronous distributed computing,
namely, the coloring of the vertices of a ring, while ensuring that any two neighbors have different col-
ors. It presents a wait-free algorithm suited to theDECOUPLED model, which colors a ring-connected
set of processes with at most three colors. This new algorithm is inspired from time-optimal Cole and
Vishkin’s vertex coloring algorithm, which is denoted CV86 in the following [4]1. Both CV86 and
the proposed algorithm, denoted WLC (for Wait-free Local Coloring), require a process to obtain in-
formation fromO(log∗ n) of its neighbors2, hence their locality property. Moreover, this amount of
information that WLC requires is optimal due to Linial’s lower bounds in [11] and the fact that in the
absence of failures and asynchrony, theDECOUPLED model boils down to theLOCAL model. It
follows that this new algorithm extends the scope of CV86 (designed for synchronous failure-free sys-
tems) to the two-component-based model whose computing entities are asynchronous and crash-prone,
without losing its fundamental locality and optimality properties.

Roadmap The paper is composed of 6 sections. Section 2 presents the first contribution, namely
the two-component-based computationDECOUPLED model. The other sections present the second
contribution, the algorithm WLC, a wait-free local algorithm suited to this model, which properly colors
the processes of a ring with at most three colors.

The WLC algorithm is built incrementally. Section 3 presents first the distributedgraph coloring
problem and a version of CV86 tailored for a ring, which is the starting pointof WLC. Then, Section 4
presents an extension of CV86 (denoted AST-CV, for AsynchronousStarting Times) suited to syn-
chronous reliable systems, which does not require the processes to start participating in the algorithm at
the very same time. This extension introduces consequently the asynchronydimension in process start-
ing times. Finally, considering the communication/processing decoupled model, Section 5 shows that
a local wait-free algorithm (WLC) can be obtained in two stages: after it started (asynchronously with
respect to the other processes), a process executes first a communication stage during which it obtains
information on the “current state” of the processes at distance at mostO(log∗ n) from it; then, using
the information previously obtained, it executes a second stage, which is a purely local simulation of
AST-CV, at the end of which it obtains its final color. Finally, Section 6 concludes the paper.

2 The Two-Component-based Model

This section presents the two-component-basedDECOUPLED model announced in the Introduction,
where communication and processing are decoupled, communication being synchronous and reliable,

1CV86 was designed for the PRAM model, and a tree process structure. It can be easily adapted to failure-free message-
passing synchronous systems, where the communication system is a ring, or a chain of processes.

2Assuming n ≥ 2, log∗ n is the number of times the function “log
2
” needs to be applied in the invocation

log
2
(log

2
(log

2
...(log

2
n)....)) to obtain value1. Let us remember thatlog∗(approx. number of atoms in the universe) = 5.

2

while processing being asynchronous and crash-prone.

Communication component The communication component is made up of a connected graphG of n
nodes:nd1, ...,ndn. Each nodendi is a communication device which can communicate with two types
of entities: a non-empty subset of other nodes (its neighbors inG), and a local computing entitypi (that
we traditionally call process). A node is connected to each of these entities (neighbor communication
nodes and associated computing process) through an input port and anoutput port. Moreover, a node
has no computing power in the sense that it is not a Turing machine which couldbe fed with code and
input data, do computation, and output results.

Each node and each channel of the communication component is reliable andsynchronous. “Reli-
able” means that no node commits failures, and no communication channel (edge ofG) corrupts, loses,
creates, or duplicates messages. The meaning of “synchronous” is global. It is the same as the one of
a synchronous distributed system (in which both computing entities and message exchanges proceed in
a lock-step manner). More precisely, there is a global clock which governs the progress of the commu-
nication component: at every clock tick, each node reads its input ports (from its neighbor nodes, and
its associated computing process), composes a message from what it has read, and sends this message
through all its output ports (i.e., to its neighbor nodes and its associated process). The important syn-
chrony property is that every message is received in the very same clocktick as the one in which it was
sent3.

It is important to remember that the communication component is always active: at every clock tick,
each node sends and receives messages. This is independent from the fact that the computing processes
associated with its nodes are active or not.

Computing component A computing component, calledprocess, is a Turing machinepi which can
communicate (only) with its associated communication nodendi. Each process is asynchronous, which
means that it proceeds at its own speed, which can be arbitrary, can vary with time, and remains always
unknown to the other processes. Moreover, a process may crash (premature halt). After it crashed (if
ever it does), a process never recovers (its speed remains then forever equal to zero).

A process can read the current value of the global clock, as defined by the clock ticks governing
the progress of the underlying communication component. As processes are asynchronous, they can
wake up at arbitrary times to participate in an algorithm. It is important to notice thatthe input port of
a process can then contain messages, transmitted via its associated communication nodes, which were
sent by its neighbors that started the algorithm before it (see below).

Interaction between the communication component and the processes The input and output ports
connecting a processpi with its nodendi are made up of two unbounded buffers. The one denotedouti
is from pi to ndi, while the one denotedini is from ndi to pi; ini is initially empty, whileouti can
be initialized to some default value according to the problem that is solved. When a process starts its
participation in the algorithm, it writes inouti its starting time (as defined by the current tick of the clock
governing the progress of the underlying communication component) and possibly some input values,
which depend on problem that is solved.

At every communication step,ndi first receives a message from each of its neighbors, and reads the
local bufferouti. Then, it packs the content of these messages and the current value ofouti into a single
message, sends it to its neighbors, and writes it inini.

Given a processpi, a key element is the global time (defined by the communication component
global clock) at whichpi wakes up and starts executing. Thanks to the underlying messages exchanged

3We use the “time” and “clock tick” terminology for the communication component, to prevent confusion withthe “round”
terminology used in the description of the CV86 and AST-CV algorithms.

3

by the communication nodes at every clock tick (communication step), a processpi which started partic-
ipating in the algorithm can know (a) which of its neighbors (until some predefined distanceD) started
the algorithm, and (b) at which time they started. More precisely, consideringa processpi that starts at
time sti, it is easy to see that afterD time units,pi can have information from processes in the graph at
distance up toD from it.

Initial knowledge Each pair made up of a communication node (ndi) and a process (pi) has a unique
identity idi. The integeri is called the index ofpi. Letn be the total number of node/process pairs. It is
assumed that each identity can be encoded inlogn bits. Initially, a process knows its identity, the value
of n, and possibly the structure of the communication graphG. Moreover, while a process knows that
no two processes have the same identity, it does not know the identities of the other processes.

Power of the decoupled model As announced in the Introduction, this decoupled model allows for the
design of distributed algorithms which are both local and wait-free. As an example of this computability
power, the rest of the paper presents a local algorithm (WLC) suited to thismodel, which colors the
processes of a ring in at most three colors, while tolerating any number of process crashes.

We observe that in the absence failures and presence of synchrony,theDECOUPLED model be-
haves exactly like theLOCAL model: all process run in lock-step manner until decisions are made.
Thus,LOCAL is as strong asDECOUPLED: if there is an algorithm solving a given problem in
DECOUPLED, then one can easily obtain an algorithm solving the corresponding problem inLOCAL.
The other direction is not obvious and the WLC algorithm is an example of problem that is solvable in
both models in a local and time-complexity optimal manner.

3 Distributed Graph Coloring and a Look at Cole-Vishkin’s algorithm

3.1 Distributed graph coloring

Graph Vertex coloring Vertex coloring is a fundamental graph problem. It consists in associating a
color with each vertex in such a way that (i) no two adjacent vertices have the same color, and (ii) the
number of colors used is minimal. In the context of sequential computing this is one of the most famous
NP-complete problem [7].

In the context of failure-free synchronous distributed systems, wherea process is associated with
each vertex of the communication graph, it is known thatΩ(log∗ n) is a lower bound on the number of
time units (communication rounds) needed to color the nodes of a ring, with at most three colors [11].
Several specific distributed coloring algorithms for failure-free synchronous distributed systems have
been proposed (e.g., [1, 3, 4, 8]). The interested reader will find in [2] a monograph entirely devoted to
distributed graph coloring.

The structure of Cole and Vishkin’s algorithm CV86 is a distributed synchronous vertex coloring
algorithm [4]. A pedagogical presentation can be found in Chapter 1 of [19]. This algorithm considers
that the underlying bi-directional communication graph with a logical orientation, such that each process
has at most single predecessor. It assumes that the processes (vertices) have distinct identities, each
consisting ofO(logn) bits. From a structure point of view, this algorithm can be decomposed in two
phases.

• Phase 1. Fromn colors to six colors. An original and clever bit-level technique is first used
(see below), which allows the nodes to be properly colored with six colors.Starting with colors
encoded withlogn bits (node identities), a sequence of synchronous communication steps is
executed, such that each step allows each node to compute a new proper color whose size in

4

bits is exponentially smaller than the previous one, and this proceeds until attaining at most six
colors, which requireslog∗ n communication rounds.

• Phase 2. From six colors to three colors. The algorithm uses then a simple reduction technique
to restrict the number of colors from six to three. This requires three additional communication
rounds (each one eliminating a color).

The noteworthy features of CV86 are the following: it islocal (the number of rounds islog∗ n+ 3),
time optimal[11], anddeterministic(the final color obtained by a process depends only on the identities
of the processes belonging to the path of its predecessors up to distancelog∗ n + 3). Combining the
locality and determinism properties, it follows that the final color obtained by aprocess depends only on
thelog∗ n+ 3 identities of the processes on its predecessor path.

3.2 A version of Cole and Vishkin’s algorithm suited to a ring

Preliminary An instance of CV86 suited to a ring is described in Figure 1. The two neighbors of a
processpi are denotedpredi andnexti. The local variablecolori contains initially the identity ofpi
expressed in binary notation. Letm = ⌈log n⌉ − 1. As the identity ofpi is assumed to be coded with
log n bits, the initial value ofcolori is a sequence of(m + 1) bits bm, bm−1, · · · , b1, b0, and no two
processes have the same initial sequence of bits. When looking at such a sequence, we say that “by is
at positiony” (i.e., the position of a bit in a color is defined by starting from position0 and then going
from right to left).

Underlying principle The aim is, from round to round, to compress as much as possible the size of
the colors of the processes, while keeping invariant the property that notwo neighbors have the same
color. This is attained by using the logical orientation of the ring. Basically, a process compares its
current color with the one of its predecessor, and accordingly definesits new color.

The two issues that have then to solved are (i) the way current colors arecompared and the way a
new shorter color is computed (while maintaining the invariant), and (ii) how manyiterations have to be
executed so that at most three colors are used.

(01) colori ← bit string representingpi’s identity;
(02) whenr = 1, 2, ..., log∗ n do % Part 1: reduction fromn colors to 6 colors %
(03) begin synchronous round
(04) send COLOR(colori) to nexti;
(05) receive COLOR(color p) from predi;
(06) let x be the first position (starting at0 from the right) wherecolori andcolor p differ;
(07) colori ← bit string encoding the binary value ofx followed at its right

by bx (first bit of colori wherecolori andcolor p differ)
(08) end synchronous round;

% Herecolori ∈ {0, 1, · · · , 5}%
(09) whenr = log∗ n+ 1, log∗ n+ 2, log∗ n+ 3 do % Part 2: reduction from 6 to 3 colors %
(10) begin synchronous round
(11) send COLOR(colori) to predi andnexti;
(12) receive COLOR(color p) from predi andCOLOR(color n) from nexti;
(13) let k ber − log∗ n+ 2; % k ∈ {3, 4, 5}%
(14) if (colori = k) then colori ← min({0, 1, 2} \ {color p, color n}) end if
(15) end synchronous round;

% Herecolori ∈ {0, 1, 2}%
(16) return(colori).

Figure 1: Cole and Vishkin’s synchronous algorithm for a ring (code for pi)

5

Description of the algorithm Let r denote the current round number. Initialized to1, it takes then the
successive values 2, 3, etc. It is global variable provided by the synchronous system, which can be read
by all processes.

Each processpi first defines its current color as the bit string representing its identity (line 01).
As already indicated, it is assumed that each identity can be coded onlog n bits. Thenpi executes
synchronous rounds until it obtains its final color (line 16). The total number of rounds that are executed
is log∗ n+ 3, which decompose into two parts.

The firstlog∗ n rounds (lines 03-08) allow each processpi to compute a color in the set{0, 1, · · · , 5}.
Considering a roundr, let k be an upper bound on the number of different colors at the beginning of
roundk, andm be the smallest integer such thatk ≤ 2m. Hence, at roundr, the color of a process is
coded onm bits. After a send/receive communication step (lines 04-05), a processpi compares its color
with the one it has received form its predecessor (color p), and computes (starting at0 from the right),
the bit positionx where they differ (line 06). Assuming for example thatk = 28 (hencem = 8), let
colori = 10011001 andcolor p = 11011101; we have thenx = 2. Then (line 07),pi defines its new
color as the bit sequence whose prefix is the binary encoding ofx on logm bits (010 in our example)
and suffix is the first bit of its current color where both colors differ, namelybx (bx = b2 = 0 in the
example). Hence, its new color is010bx = 0100.

Let consider two neighbor processes during a roundr. If they have the same value forx, due to the
bit suffix they use to obtain their new color, they necessarily obtain different new colors. If they have
different values forx, they trivially have different new colors.

It is easy to see (from the computation of the positionx –which defines the prefix of the new color–,
and the value of the bitbx –which defines the suffix of the new color–), that the roundr reduces the
number of colors fromk to at most2⌈log k⌉ ≤ 2m. It is shown in [4] that, after at mostlog∗ n rounds,
the binary encoding of a color requires only three bits, where the suffixbx is 0 or 1, and the prefix is00,
10, or 01. Hence, only six color values are possible000, 100, 010, 001, 101, and011.

The second part of this synchronous algorithm consists of three additional rounds, each round elim-
inating one of the colors in{3, 4, 5} (lines 10-15). More precisely, each process first exchanges its color
with its two neighbors. Due to the previouslog∗ n rounds, these three colors are different. Hence, if its
color is3, pi selects any color in{0, 1, 2} not owned by its neighbors. This is then repeated twice to
eliminate the colors4 and5.

This algorithm has two main features. The first is the clever and original waya new color is com-
puted. The second is its asymptotical time-optimality (log∗ n + 3 synchronous rounds), which follows
from Linial’s result [11]. Proofs of the algorithm correctness and its time complexity can be found
in [4, 19].

From a ring to a chain A chain is a sequence where each vertex appears at most once (a ring that has
been cut). Hence, each non-singleton chain has two processes that define its ends.

At line 05, the process that has no predecessor cannot compare its current color with another color.
It simply does as if it has a (fictitious) predecessor whose color is different from its initial color, and
executes normally the algorithm. As an example, ifpi (whose initial color is100101) is the process
without predecessor, it considers a fictitious predecessor whose color is the same as its color except for
its first bit (starting from the right), i.e., the color100100). It follows from the algorithm that after the
first round,pi obtains the color01 (which will never change thereafter).

Finally, at line 12, an end process defines the color of its “missing neighbor”as being the “no-color”
denoted−1.

6

4 Extending Cole-Vishkin’s Algorithm to Asynchronous Starting Times

This section presents an extension of CV86 for reliable synchronous systems, which allows processes to
start at different rounds: the round at which a process starts depends only on it. (Due to the synchrony
assumption, when a process starts, it does it at the beginning of a round,and runs then synchronously.)

4.1 Asynchronous starting times and unit-segment

Ring structure and starting time of a process Let sti denote the round number at which process
pi wakes up and starts participating in the algorithm. There is no requirement on the round at which a
process must start the algorithm.

Notion of a unit-segment A unit-segmentis a maximal sequence of consecutive processes (with re-
spect to the ring)pa, pnexta , · · · , ppredz , pz, that started the algorithm at the same round number.

Hence, a unit-segment is identified by a starting time (round number), and anytwo contiguous unit-
segments are necessarily associated with distinct starting times. It follows that,from an omniscient
observer’s point of view, and at any time, the ring can be decomposed intoa set of unit-segments,
some of these unit-segments being contiguous, while others are separated by processes that have not
yet started (or will never start, due to an initial crash). In the particular case where all processes start
simultaneously, the ring is composed of a single unit-segment.

4.2 A coloring algorithm with asynchronous starting times

This section presents an extension of CV86 (called AST-CV), which allowsprocesses to start at different
rounds. The algorithm is made up of four parts. It requires a process toexecute∆ = log∗ n+ 6 rounds
(hence it keeps the locality property of CV86). The algorithm is decomposed into four parts.

Starting round of the algorithm The underlying synchronous system defines the first round (r = 1)
as being the round at which a process starts (or a set of processes simultaneously start) the algorithm,
while no process started the algorithm before. Hence, when this processstarts the algorithm, we have
sti = 1. Then, the progress ofr is managed by the system synchrony.

Part 1 and Part 2 These parts are described in Figure 2. Considering a unit-segment (identified by a
starting timest) they are a simple adaptation of CV86, which considers the behavior of anyprocesspi
belonging to this unit-segment.

A processpi executes firstlog∗ n synchronous rounds. During each round, it sends its current color
to its neighbors, and receives their current colors. Letmsg pred = ⊥ if there is no message frompredi
(line 04).

At line 05, the valuesti allows pi to know if its predecessor belongs to the same unit-segment
(defined by the valuesti). If it the case,pi executes CV86. If its predecessor belongs to a different
unit-segment or has not yet started the algorithm,pi considers a fictitious predecessor whose identity
is the same as its own identity, except for the first bit, starting from the right (see the last paragraph of
Annex 3.2). Lines 06-10 constitute the core of CV86, which exponentially reduces the bit size represen-
tation ofcolori at every round, to end up with a color in the set{0, 1, · · · , 5} afterlog∗ n rounds.

Part 2 of AST-CV (lines 13-21) is the same as in CV86. It reduces the setof colors in each unit-
segment from at most six to at most three. It then follows from CV86 [4] that, at the end of this part, the
processes of the unit-segment identified bysti have obtained a proper color within their unit-segment.
Moreover, afterlog∗ n + 3 rounds, the color obtained by a process will be its final color if this process
is neither the left end, nor the right end, of its unit-segment.

7

init : colori: bit string initialized topi’s identity;
sti: starting round ofpi;
whenpi starts, there are three cases for each of its neighborspredi andnexti:
(a) it already started the algorithm;
(b) it starts the algorithm at the very same round;
(c) it will start the algorithm at a later round.
In the first case, the messages sent in previous rounds by the corresponding neighbor
are inpi’s input buffer, and can be consequently read bypi. In the last case, to simplify
the presentation, we consider thatpi receives a dummy message.
fict predi: fictitious process whose identity is the same aspi’s identity except for its first bit
(starting from the right); used as predecessor in casepi discovers it is a left end of a unit-segment.

======================== Part 1: reduction fromn colors to 6 colors =================
(01) whenr = sti, sti + 1, ..., (sti − 1) + log∗ n do
(02) begin synchronous round
(03) send COLOR(0, sti, colori) to nexti andpredi;
(04) receive msg predi from predi;
(05) if (msg predi = COLOR(0, sti, col))
(06) then let x be the first position (starting at0 from the right) wherecolori andcol differ;
(07) colori ← bit string encoding the binary value ofx followed at its right
(08) bybx (first bit of colori wherecolori andcol differ)
(09) else pi has no predecessor (it is an end process of its unit segment) it considers
(10) fict predi as its predecessor and executes lines 06-08
(11) end if;
(12) end synchronous round;

% Herecolori ∈ {0, 1, · · · , 5}

==========================Part 2: reduction from 6 to 3 colors ====================
(13) whenr = (sti − 1) + log∗ n+ 1, (sti − 1) + log∗ n+ 2, (sti − 1) + log∗ n+ 3 do
(14) begin synchronous round
(15) send COLOR(0, sti, colori) to predi andnexti;
(16) color set← ∅;
(17) if COLOR(0, sti, color p) received frompredi then color set← color set ∪ color p end if;
(18) if COLOR(0, sti, color n) received fromnexti then color set← color set ∪ color n end if;
(19) let k ber − (sti + log∗ n) + 2; % k ∈ {3, 4, 5}%
(20) if (colori = k) then colori ← any color from{0, 1, 2} \ color set end if
(21) end synchronous round;
==

% Herecolori ∈ {0, 1, 2}, and the unit segment includingpi is properly colored but
% two end processes of two consecutive unit segments may have the same color

Figure 2: Initialization, Part 1, and Part 2, of AST-CV (code forpi)

Message management Let us observe that, as not all processes start at the same round, it is possible
that, while executing a round of the synchronous algorithm of Figure 2, a processpi receives a message
COLOR(0, st,−) (with st 6= sti) from its predecessor, or messagesCOLOR(j,) (wherej ∈ {1, 2, 3},
sent in Parts 3 or 4) from one or both of its neighbors. To simplify and make clearer the presentation,
the reception of these messages is not indicated in Figure 2. It is implicitly assumed that, when they are
received during a synchronous round, these messages are saved inthe local memory ofpi (so that they
can be processed later, if needed, at lines 25-28 and line 39 of Figure 3).

Moreover, a processpi learns the starting round ofpredi (resp.,nexti) when it receives for the first
time a messageCOLOR(0, st,−) from predi (resp.nexti). To not overload the presentation, this is left
implicit in the description of the algorithm.

Why Part 3 and Part 4 These parts are described in Figure 3. Ifpi is a left end, or a right end, or
both, of a unit-segment4, its color at the end of Part 2 is not necessarily its final color. This is due tothe

4A processpi, which is both a left end and a right end of a unit-segment, is the only process of its unit-segment.

8

fact that Part 1 and Part 2 color the processes in each unit-segment independently from the coloring of
its contiguous unit-segments (if any). Hence, it is possible for two contiguous unit-segments to be such
that the left end of one (saypi) and the right end of the other (saypj) are such thatcolori = colorj .

The aim of Part 3 and Part 4 is to solve these coloring conflicts. To this end,each processpi manages
six local variables, denotedcolori[j, nbg], wherej ∈ {1, 2, 3} andnbg ∈ {predi, nexti}. They are
initialized to−1 (no color).

In the following parts of the algorithm, each processpi uses local variables denotedcolori[j, nbg],
% wherej ∈ {1, 2, 3} andnbg ∈ {predi, nexti}. These variables are initialized to−1
% (no color) and updated whenpi receives a messageCOLOR(j,−) from predi or nexti.
% Due to the fact that the processes do not start the algorithm at the same round, processpi may
% have received messagesCOLOR(j,−) during previous synchronous rounds.

=============== Part 3: colori can be changed only ifpi is the left end of its unit-segment =====
(22) whenr = (sti − 1) + log∗ n+ 4 do
(23) begin synchronous round
(24) send COLOR(1, colori) to predi andnexti;
(25) for each j ∈ {1, 2, 3} do
(26) if (COLOR(j, color) received frompredi in a round≤ r) then colori[j, predi]← color end if;
(27) if (COLOR(j, color) received fromnexti in a round≤ r) then colori[j, nexti]← color end if
(28) end for;
(29) if (sti > sti[predi]) then % pi has not priority
(30) case(sti = sti[nexti]) then colori ← a color in{0, 1, 2} \ {colori[2, predi], colori[1, nexti]}
(31) (sti > sti[nexti]) then colori ← a color in{0, 1, 2} \ {colori[2, predi], colori[2, nexti]}
(32) (sti < sti[nexti]) then colori ← a color in{0, 1, 2} \ {colori[2, predi]}
(33) end case
(34) end if
(35) end synchronous round;
=============== Part 4: colori can be changed only ifpi is the right end of its unit-segment ====
(36) whenr = (sti − 1) + log∗ n+ 5 do
(37) begin synchronous round
(38) send COLOR(2, colori) to predi andnexti;
(39) same statements as in lines 25-28;
(40) if (sti > sti[nexti]) then % pi has not priority
(41) case(sti = sti[predi]) then colori ← a color in{0, 1, 2} \ {colori[2, predi], colori[3, nexti]}
(42) (sti > sti[predi]) then colori ← a color in{0, 1, 2} \ {colori[3, predi], colori[3, nexti]}
(43) (sti < sti[predi]) then colori ← a color in{0, 1, 2} \ {colori[3, nexti]}
(44) end case
(45) end if
(46) end synchronous round;
===================== Additional round to inform the neighbors that will start later ==========
(47) whenr = (sti − 1) + log∗ n+ 6 do
(48) begin synchronous roundsend COLOR(3, colori) to predi andnexti end synchronous round;
(49) return(colori).

Figure 3: Part 3 and Part 4 of AST-CV (code forpi)

Solving the conflict between neighbors belonging to contiguous unit-segments A natural idea to
solve such a coloring conflict between two neighbor processes belonging to contiguous unit-segments,
consists in giving “priority” to the unit-segment whose starting time is the first.

Let sti[predi] (resp.,sti[nexti]) be the knowledge ofpi on the starting time of its left (resp., right)
neighbor. Ifpredi has not yet started letsti[predi] = +∞ (and similarly fornexti). Thanks to this
information,pi knows if it is at the left (resp., right) end of a unit-segment: this is the case ifsti 6=
sti[predi] (resp., ifsti 6= sti[nexti]). Moreover, ifpi is a left (resp., right) end of a unit-segment, it
knows that it has not priority ifsti > sti[predi] (resp.,sti > sti[nexti]). If such cases,pi may be

9

required to change its color to ensure it differs from the color of its neighbor belonging to the priority
contiguous unit-segment.

The tricky cases are the ones of the unit-segments composed of either a single processp or two
processespa andpb. This is because, in these cases, it can be required thatp (possibly twice, once as
right end, and once as left end of its unit-segment), or oncepa and oncepb (in the case of a 2-process
unit-segment), be forced to change the color they obtained at the end of Part 2, to obtain a final color
consistent with respect to their neighbors in contiguous unit-segments. To prevent inconsistencies from
occurring, it is required that (in addition to the previous priority rule) (a) first a left end process of a
unit-segment modifies its color with respect to its predecessor neighbor (which belongs to its left unit-
segment), and (b) only then a right end process of a unit-segment modifiesits color if needed5.

Summary statement Let us consider a processpi.
• If pi is inside a unit-segment (i.e.,sti = sti[predi] = sti[nexti]),

or is the left end of a unit-segment andpredi began after it (i.e.,sti < sti[predi]),
or is the right end of a unit-segment andnexti began after it (i.e.,sti < sti[nexti]),
then the color it obtained at the end of Part 2 is its final color.

• If pi is the left end of a unit-segment andpredi began beforepi (i.e., sti > sti[predi]), thenpi
may be forced to change its color. This is done in Part 3. The colorpi obtains at the end of Part
3 will be its final color, if it is not also the right end of its unit-segment andnexti began before it
(i.e.,sti > sti[nexti]).

• This case is similar to the previous one. Ifpi is the right end of a unit-segment andnexti began
before it (i.e.,sti > sti[nexti]), pi may be forced to change its color to have a final color different
from the one ofnexti. This is done in Part 4.

As a process, that is neither the left end, nor the right end of a unit-segment, obtains its final color
at the end of Part 2, it follows that, during Part 3 and Part 4, such a process only needs to execute the
sending of messagesCOLOR(j,−), j ∈ {1, 2, 3} at lines 24, 38, and 48 (the other statements cannot
change its color).

Part 3 This part is composed of a single round (lines 22-35). A processpi sends first to its neighbors
a messageCOLOR(1, c) carrying the colorc it has obtained at the end of Part 2. Then, according to the
messages it received from them up to the current round,pi updates its local variablescolori[j, predi]
andcolori[j, nexti] (lines 25-28).

Part 4 This part, composed of a single round (lines 36-46), is similar to the previousone. Due to the
predicate of line 40, the lines 41-44 are executed only ifpi is the right end of its unit segment. Their
meaning is similar to the one of lines 30-33.

Finally, pi sends (line 48) to its two neighbors the messageCOLOR(3, colori) to inform them of its
last color, in case it was modified in Part 4.

An example Let us consider thatpℓ, pa, pb, andpr are four consecutive processes such that (i)stℓ =
10, andpℓ obtained the final color1, (ii) str = 12, andpr obtained the final color2, and (iii) pa andpb
starts the algorithm at time15. Hence,pa andpb define a unit-segment, whose starting time is greater
than the one of bothpℓ andpr. Hence, the unit segment composed ofpa andpb has not priority with
respect to its two contiguous unit-segments.

5This specific order is only a design choice. The other order (first rightend process, then left end process) could have
been chosen. What is important is that the processes obey the same order. Differently, being defined from starting times and
favoring the oldest starting times, the previouspriority order is not a design choice in the sense that the other choice would not
work (as not all processes can be participating in the algorithm).

10

Let us suppose that after having executed Part 1 and Part 2,pa obtains the color1, while pb obtains
the color2, i.e., each obtains a color different from its neighbor in the same unit-segment, but this color
is the same as the one of its other neighbor (which belongs to a contiguous “older” unit-segment).

As pa is the left end of its unit-segment and started afterpreda (=pℓ), it received the message
COLOR(2, 1) from pℓ (line 26), and consequently obtainscolora[2, preda] = 1. Moreover, aspa is in the
same unit-segment aspb, it receives the messageCOLOR(1, 2) from pb and obtainscolora[1, nexta] = 2
(line 27). Then processpa executes lines 29-30, and obtains the color0 (this is because{0, 1, 2} \
{colora[2, preda], colora[1, nexta]} = {0, 1, 2} \ {1, 2} = {0}).

As stb = sta, pb does not execute lines 30-33, but received the messageCOLOR(2, 0) from pa
at line 39, and we have consequentlycolorb[2, predb] = 0. It also receivedCOLOR(3, 2) from pr
(line 39), and we havecolorb[3, nextb] = 2. Processpb then executes lines 40-41. As{0, 1, 2} \
{colorb[2, predb], colorb[3, nextb]} = {0, 1, 2} \ {0, 2} = {1}, it obtains its final color1.

It follows that the final colors of the sequence of the four processespℓ, pa, pb, andpr is 1, 0, 1, 2.

4.3 Properties of the algorithm

Due to its construction from CV86, AST-CV inherits its two most important properties, namely locality
and determinism.

• In CV86, the locality property states that a process obtains its final color after log∗ n+ 3 rounds.
In AST-CV, it obtains itlog∗ n+ 6 rounds after it starting round.

• In CV86, the determinism property states that the final color of a process depends only of the
identities of the consecutive processes which are itslog∗ n+ 3 predecessors on the ring. In AST-
CV, its final color depends only of the starting times and the identities of the consecutive processes
which are itslog∗ n+ 6 predecessors on the ring.

4.4 Proof of the algorithm

Definition 1. Thefinal color of a process is the color it returns at line49.

Lemma 1. Letpi be a process which wakes up at timesti. Afterpi has executed the round(sti − 1) +
log∗ n + 3 (Part 1 of Figure 2), no two neighbors of its unit-segment have the same color. Moreover,
their colors are in the set{0, 1, 2}.

Proof The proof follows from the observation that, when considering the processes of a unit-segment,
Part 1 and Part 2 of Figure 2 boils down to CV86, from which the lemma follows. ✷Lemma 1

Lemma 2. Let pi be a process that wakes up. Ifpi is neither the left end, nor the right end, of its
unit-segment, its final color is the color it obtains at the end of Part2.

Proof If pi is neither the left end nor the right end of its unit-segment we havesti = sti[predi] =
sti[nexti]. The lemma follows then directly from the predicates of lines 29 and 40. ✷Lemma 2

Lemma 3. If pi wakes up, its final color belongs to{0, 1, 2}.

Proof The proof follows from Lemma 1 and the fact, whatever the lines 30-32 and 41-43 executed by a
processpi (if some are ever executed), any of them restricts the new color to belong tothe set{0, 1, 2}.

✷Lemma 3

Lemma 4. Let us assume that bothpi andpj wake up, wherepj is pnexti . If pi andpj belong to the
same unit-segment (stj = sti) their final colors are different.

11

Proof The proof is a case analysis. There are four cases, namely:
Case (a):pi is not the left end andpj is not the right end of their unit-segment,
Case (b):pi is not the left end andpj is the right end of their unit-segment,
Case (c):pi is the left end andpj is not the right end of their unit-segment,
Case (d):pi is the left end andpj is the right end of their unit-segment.

Case (a):pi is not the left end andpj is not the right end of their unit segment. In this case, it follows
from Lemma 1 and Lemma 2 that the final color ofpi and the final color ofpj are different.

Case (b):pi is not the left end andpj is the right end of their unit-segment. Then, by Lemma 2, the final
color ofpi is the value ofcolori at the end of Part 2 (round(sti − 1)+ log∗ n+3). By the algorithm,pj
does not change its color at round(sti − 1) + log∗ n+ 4 (predicate of line 29 wheresti = sti[predi]),
but may change it during round(sti − 1) + log∗ n+ 5 (Part 5). There are two sub-cases.

• stj < stj [nextj]. In this case the predicate of line 40 is false, andpj does not modifycolorj . It
then follows that bothpi andpj keep the color they obtained at the end of Part 2. By Lemma 1,
these colors are different.

• stj > stj [nextj]. In this case,pj executes the update of line 41, where the color assigned to
colorj remains different fromcolori (which was received during a previous round and saved in its
local variablecolorj [2, predj]).

Case (c):pi is the left end andpj is not the right end of their unit-segment. By Lemma 2,pj does not
change its color after Part 2 (round(sti − 1) + log∗ n+ 3). There are two cases.

• sti < sti[predi]. It follows from the predicate of line 29 thatpi does not change its color during
Part 3. Assti = stj , the predicate of line 40 is false, andpi does not change its color in Part 4. It
then follow from Lemma 1 thatpi andpj have different final colors.

• sti > sti[predi]. As pi andpj are in the same unit-segment,pi receivesCOLOR(1, colorj) at
line 27 during the round(sti − 1) + log∗ n + 4 (Part 3), and saves this value in its local variable
colori[1, nexti]. Then, due to the predicates of lines 29 and 30,pi changes its color at line 30
during the round(sti − 1) + log∗ n+ 4 (Part 3), and this color is different from the final color of
pj . Finally, assti = stj , the predicate of line 40 is not satisfied, andpi does not updatecolori
during the round(sti − 1) + log∗ n+5 (Part 4). It then follows from thatpi andpj have different
final colors.

Case (d):pi is the left end andpj is the right end of their unit-segment. There are four cases.

• sti < sti[predi] andstj < stj [nextj]. In this case,pi andpj do not change their color after round
(sti − 1) + log∗ n+ 3. Hence, by Lemma 1, they will have different final colors.

• sti < sti[predi] and stj > stj [nextj]. In this case, when evaluated bypi, the predicates of
lines 29 and 40 (we have thensti = sti[nexti] = stj) are false. Hence,pi does not change its
color after round(sti − 1) + log∗ n+ 3. This case is similar to the second sub-case of Case (b).

• sti > sti[predi] andstj < stj [nextj]. In this casepj does not change its color after Part 2 (round
(stj − 1) + log∗ n+ 3). This case is similar to the second sub-case of Case (c).

• sti > sti[predi] andstj > stj [nextj]. Due to the predicates of lines 29 and 30,pi changes its
color at line 30 during round(sti − 1) + log∗ n + 4 (Part 3). Moreover, assti = stj , it does
not change its color in Part 4. Hence, its final color is the one obtained at line 30. Differently, as
stj > stj [nextj] andstj = sti, pj updates its color at line 41 during round(stj − 1)+ log∗ n+5
(Part 4), where it obtains a color different fromcolori (final color of pi received at line 38 and
saved inpj ’s local variablecolorj [2, predj]). It follows thatpi andpj have different final colors.

12

✷Lemma 4

Lemma 5. Let us assume that bothpi andpj wake up, wherepj is pnexti . If pi andpj are not in the
same unit-segment andsti > stj , their final colors are different.

Proof The processespi andpj are neighbors but belong to different unit-segments. Asstj < sti and
all processes gets their final color after the same constant number of round after they wake up,pj gets
its final color beforepi. The proof considers the following two possible cases: Case (a):pi is not a left
end of its unit segment, and Case (b)pi is a left end of its unit segment.

Case (a):pi is not a left end of its unit segment. In this case, it follows from the predicate of line 29
thatpi does not change its color during Part 3, and from the predicates of lines40 and 41 (Part 4), that
pi updates its color at line 41. Aspj woke up beforepi, pi received the messageCOLOR(3, col) sent at
line 48 bypj during its round(stj −1)+ log∗ n+6. This message was received bypi at the latest while
it executes its round(sti − 1)i+ log∗ n+ 5. Moreover,col is then the final color ofpj . It follows that,
when it executes its round(sti − 1) + log∗ n+ 5, pi is such thatcolori[3, nexti] = col. Consequently,
at line 41,pi adopts a final color different from the final color ofpj .

Case (b):pi is a left end of its unit segment. We consider two sub-cases.

• sti < sti[predi]. In this case, it follows from the predicate of line 29 thatpi does not change
its color during Part 3. Differently, due to the predicates of lines 40 and 43, it updatescolori at
line 43. Moreover, assti > stj , pi received frompj the messageCOLOR(3, col) (wherecol is the
final color ofpj) at a round≤ (sti − 1) + log∗ n + 5, and savedcol in colori[3, nexti]. It then
follows that, whenpi executes line 43, it assigns tocolori a value different from the final color of
pj .

• sti > sti[predi]. In this case, it follows from the predicates of lines 29 and 31 thatpi updates its
color at line 31 (Part 3), and from the predicates of lines 40 and 42 thatpi updates again its color
at line 42 (Part 4).

As pj woke up beforepi, pi received the messageCOLOR(3, col) from pj before (or at) round
(sti − 1) + log∗ n + 5 (Part 4), andcol is the final color ofpj . It follows that, whenpi updates
its color at line 42, we havecolori[3, nexti] = col. Consequently, the final color ofpi is different
from the final color of its neighborpj .

✷Lemma 5

Lemma 6. Let us assume that bothpi andpj wake up, wherepj is pnexti . If pi andpj are not in the
same unit-segment andstj > sti, their final colors are different.

Proof By assumption,pi andpj are neighbors, but belong to different unit-segments. Asstj > sti and
all processes execute the same number of rounds after they woke up (log∗ n+6), pi returns its final color
(line 49) beforepj . As for Lemma 4, the proof of the lemma considers four cases, namely
Case (a):pi is not the left end of its unit-segment andpj is not the right end of its unit-segment,
Case (b):pi is not the left end of its unit-segment andpj is the right end of its unit-segment,
Case (c):pi is the left end of its unit-segment andpj is not the right end of its unit-segment,
Case (d):pi is the left end of its unit-segment andpj is the right end of its unit-segment.

Case (a):pi is not the left end of its unit-segment andpj is not the right end of its unit segment. As pi
is not the left end of its unit segment, it follows from the predicate of line 29 that it does not update its
color in Part 3. Assti < stj = sti[nexti], it follows from the predicate of line 40 thatpi does not update
its color in Part 4. Hence,pi obtained its final color at the end of Part 2.

13

As far aspj is concerned, we have the following. Asstj > sti andpj is not the right end of its
unit-segment, the predicates of lines 29 and 30 directpj to update its color at line 30 (Part 3). Moreover,
aspj is not the right end of its unit-segment, the predicate of line 40 is not satisfied and pj does not
change its color in Part 4.

As pi woke up beforepj , pj received the messageCOLOR(2, col) from pi at a round≤ (stj − 1) +
log∗ n+4, andcol is the final color ofpi. It follows that whenpj executes line 30, it assigns tocolorj a
color different from the final color ofpi.

Case (b):pi is not the left end of its unit-segment andpj is the right end of its unit-segment. As pi is
not the left end of its unit-segment andsti < stj , it follows that the predicate of line 29 is not satisfied
when evaluated bypi. Similarly, assti < sti[nexti] = stj , the predicate of line 40 is not satisfied either.
Consequently,pi does not modify its color in Part 3 or Part 4. Letcl i be this color.

As pi wakes up beforepj , pj has received the messageCOLOR(2, cl i) sent bypi at the latest dur-
ing its round(stj − 1) + log∗ n + 4 (Part 3). Hence, at the end of round(stj − 1) + log∗ n + 4,
colorj [2, predj] = cl i. Moreover,pj received the messageCOLOR(3, cl i) at the latest during its round
(stj − 1) + log∗ n+ 5, and saved it incolorj [3, predj] = cl i. It then follows that, whatever the update
of colorj done bypj at any line of Part 3 (lines 30-32) or Part 4 (lines 41-43), the final color of pj will
be different from the final color ofpi.

Case (c):pi is the left end of its unit-segment andpj is not the right end of its unit-segment.
As pi is the left end of its unit-segment, it may be forced to update its color (at line 32 because

stj > sti) if the predicate of line 29 is satisfied (Part 3). But asstj > sti, the predicate of line 40 cannot
be satisfied (Part 4). Hence, both the messagesCOLOR(2, cl i) andCOLOR(3, cl i) sent bypi at lines 38
and 48 carry its final color.

As stj > sti, pj receivedCOLOR(2, cl i) at the latest during its round(stj − 1) + log∗ n + 4, and
COLOR(3, cl i) at the latest during its round(stj − 1) + log∗ n+ 5. It follows that, whatever the update
of colorj done bypj when it executes Part 3 or Part 4, its final color will be different fromcl i.

Case (d):pi is the left end of its unit-segment andpj is the right end of its unit-segment.
As indicated in the previous case,pi (left end of its unit-segment) may change its color due the

predicates of lines 29 and 32 when it executes its round(sti−1)+ log∗ n+4 (Part 3), but (assti < stj)
it will not change it in Part 4. We consider two cases. Letcl i be the final color ofpi.

• stj > stj [nextj]. In this case, Asstj > sti the predicate of line 29 is satisfied, andpj updates
its color at line 31 when it executes its round(stj − 1) + log∗ n + 4 (Part 3). Similarly, as
stj > stj [nextj], pj updates its color at line 42 when it executes its round(stj − 1) + log∗ n+ 4
(Part 4). Aspj woke up afterpi, it receivedCOLOR(2, cl i) from pi at the latest when it executes
its round(stj−1)+log∗ n+4 (Part 3), and receivedCOLOR(3, cl i) at the latest when it executes
its round(stj − 1) + log∗ n + 5 (Part 4). It follows that, whatever (if any) an update ofcolorj
done at any of the lines 30-32 and 41-43, the final color ofpj will be different from the one ofpi.

• stj < stj [nextj]. In this case,pj may update its color at line 32 while executing its round
stj + log∗ n + 4 (Part 3). Assti < stj , pj receives the messageCOLOR(2, cl i) from pi at the
latest during its round(stj − 1) + log∗ n + 4 (cl i is the final color ofpi), and consequently
colorj [2, predj] = cl i at round(stj − 1) + log∗ n + 4. Hence, when it executes line 32,pj
updatescolorj to a color different fromcl i. Let us finally observe that, asstj < stj [nextj],
the predicate of line 40 (Part 4) is not satisfied, and consequentlypj does not modifycolorj at
lines 41-43, which completes the proof of the lemma.

✷Lemma 6

Theorem 1. If pi and pj wake up and are neighbors, their final colors are different and in the set
{0, 1, 2}.

14

Proof The proof follows from the Lemma 3, Lemma 4, Lemma 5, and Lemma 6. ✷Theorem 1

5 From Asynchronous Starting Times to Wait-freedom

Considering the two-component-based model introduced in Section 2, this section presents the WLC
(Wait-free Local Coloring) algorithm which colors the processes of a ring in at most three colors. This
algorithm relies on two consecutive stages executed independently by each computing process. The first
stage is a communication stage during which, whatever its starting time, each process obtains enough
information to locally execute its second stage, which is communication-free. Asin Section 4, aunit-
segmentis a maximal sequence of consecutive processes that started the algorithmat the same time (i.e.,
as the same clock tick as defined by the underlying synchronous communication component).

Before presenting the algorithm WLC, we need a solvability notion that incorporates asynchrony
and failures that are present inDECOUPLED. An algorithmwait-freesolvesm-coloring if for each of
its executions:

• (Validity. The final color of any process is in{0, . . . ,m− 1}.

• Agreement. The final colors (if any) of any two neighbor nodes in the graph are different.

• Termination. In every infinite extension of the execution, all processes decide a final color.

5.1 On the communication side

A ring structure for the synchronous communication network The neighbors of a nodendi (or
processpi with a slight abuse of language) are denoted as before, namelypredi andnexti.

On the side of the communication nodes While each input bufferini is initially empty, each output
bufferouti is initialized to〈i,+∞,⊥〉. When a process starts its participation in the algorithm, it writes
the pair〈i, sti, idi〉 in outi, wheresti is its starting time (as defined by the current tick of the clock
governing the progress of the underlying communication component), andidi is its identity.

As already described, at every clock tick (underlying communication step), ndi first receives two
messages (one from each neighbor), and reads the local bufferouti. Then, it packs the content of these
two messages and the content ofouti (which can be〈i,+∞,⊥〉 if pi has not yet started) into a single
message, sends it to its two neighbors, and writes it inini

6.

5.2 Wait-free algorithm: first a communication stage

Let pi be a process that starts the algorithm at timesti = t. As previously indicated, this means that,
at timet (clock tick defined by the communication component),pi writes 〈i, t, idi〉 in its output buffer
outi. Thenpi waits until timet+∆ where∆ = log∗ n+ 5. (7). At the end of this waiting period, and
as farpi is concerned, the “dices are cast”. No more physical communication will be necessary. As we
are about to see,pi obtained enough information to compute alone its color: the rest of the algorithm
executed bypi is purely local (see below). This feature, and the fact that the starting time of a process
depends only on it, makes the algorithm wait-free.

It follows from the underlying communication component that, at timet + ∆, pi has received an
information (i.e., a triplet〈j, st, idj〉) from all the processes at distance at most∆ of it. If st = t, pi
knows thatpj started the algorithm at the same time as it. Ifst < t (resp.,st > t), pi knows thatpj

6Full-information behavior of a node.
7Being asynchronous, the waiting ofpi during an arbitrary long (but finite) period does not modify its allowed behavior.

Let us observe that a crash is nothing other than an infinite waiting period.

15

started the algorithm before (resp., after) it. (Ifst = +∞ –we have thenidj = ⊥– andpj is at distance
d from it, pi knows thatpj did not start the algorithm before the clock tickt+∆− d.)

5.3 Wait-free algorithm: then a local simulation stage of AST-CV

At the end of its waiting period,pi has information (pairs composed of a starting time and a process
identity, possibly equal to+∞ and⊥, respectively) of all the processes at distance∆ = log∗ n+5 from
it (Figure 4.) More precisely, for each processpj at distance at most∆ from it, pi knows whetherpj
started before it (stj < sti), at the same as it (stj = sti), or after it (stj > sti).

pipredi nexti

nextnextipredpredi

log∗ n + 5 log∗ n + 5

Figure 4: What is know bypi at timesti +∆

Simulation of AST-CV It follows from the previous observation that, after its waiting period,pi has
all the inputs (starting times and process identities) needed to simulate AST-CV and compute its final
color, be it inside a unit-segment, the left end of a unit-segment, the right endof a unit-segment, or both
ends of a unit-segment. More precisely, this simulation is as follows. Processpi sequentially simulates
the following∆ rounds of AST-CV:

• A first round involving the2∆ + 1 processes at distance≤ ∆ from itself, followed by

• A second round involving the2∆−1 processes at distance≤ ∆−1 from itself, etc., followed by

• A (∆− x+ 1)th round involving the processes at distance≤ x from itself, etc., followed by

• A ∆th round involvingpredi, nexti and itself.

It then follows from the determinism and locality properties of AST-CV that, after it has simulated the
previous rounds,pi obtained its final color.

Remark Let us observe that the crash of a processpk has no impact on the termination and the cor-
rectness of the coloring of the other processes. This follows from the locality property of AST-CV. If
the distance betweenpi andpk is more than∆ = log∗ n + 5, pk cannot impact the color obtained by
pi. If the distance betweenpi andpk is less or equal to∆ = log∗ n + 5, the input information ofpk
(identity and starting time) is needed bypi only if pk started the algorithm before or at same time aspi.
But, in this case, due to the waiting period ofpi’s communication stage, this information is known by
pi. Processpi considers thenpk as competing for a color, be it crashed or not.

Optimality of WLC Each process in WLC performs (asynchronously)O(log∗ n) rounds of commu-
nication. This number of rounds is asymptotically optimal as

1. Ω(log∗ n) is a lower bound on the number of time units (communication rounds) needed to color
the nodes of a ring, with at most three colors [11] inLOCAL.

2. When there is no asynchrony and no failures,DECOUPLED behaves likeLOCAL.

16

6 Conclusion

Contributions This paper has two main contributions. The first is a distributed computing model
where communication and processing are decoupled. More precisely, asynchronous crash-prone pro-
cesses run on top of a reliable synchronous network. This model is weaker than the synchronous model
(on the process side) and stronger than the asynchronous crash-prone model (on the communication
side). A main advantage of this model is to provide us with a single framework where both the words
“locality” [11] and “wait-freedom” [9] have a meaning. As these words capture fundamental concepts
of distributed computing, the proposed model establishes a bridge linking synchronous reliable systems
(for the communication side) and asynchronous crash-prone systems (for the computing process side),
which reconciles these two worlds.

The second contribution of the paper is an illustration of the benefit of the proposed model, namely,
an optimal ring-coloring wait-free algorithm. This algorithm uses as a subroutine a generalization of
Cole and Vishkin’s well-known algorithm [4], and benefits from its locality property, namely, a process
needs to obtain initial formation from processes at distance at mostO(log∗ n) of it. As far as we know,
this is the first wait-free coloring algorithm, which colors a process ring with at most three colors.

Towards a global view As already explained, a main difference in theDECOUPLED model is
that afterd rounds of communication, a process collects the initial inputs of only a subgraph of its
d-neighborhood. Despite this uncertainty, the paper has presented a wayto marry locality and wait-
freedom, as far as distributed graph coloring is concerned. The keys of this marriage were (a) the
decoupling of (reliable synchronous) communication and (asynchronous crash-prone) processing, and
(b) the design of an intermediary synchronous coloring algorithm (AST-CV), where the processes are
reliable, proceed synchronously, but are not required to start at thevery same round. This introduces a
first type of asynchrony among the processes. As we have seen, the heart of this algorithm lies in the
consistent coloring of the border vertices of subgraphs which started at different times (segment units).

It would be interesting to see if this methodology could apply to other local coloring algorithms, or
even, more ambitiously, to other distributed graph problems which are locally solvable in theLOCAL
synchronous model.

Acknowledgments

This work has been partially supported by the French ANR project DISPLEXITY, which is devoted to
computability and complexity in distributed computing. The first author was supported in part by UNAM
PAPIIT-DGAPA project IA101015. The fourth author was supportedin part by UNAM PAPIIT-DGAPA
project IN107714.

References

[1] Barenboim L. and Elkin M., Deterministic distributed vertex coloring in polylogarithmic time.Journal of the ACM,
58(5):23, 2011.

[2] Barenboim L. and Elkin M.,Distributed graph coloring, fundamental and recent developments, Morgan & Claypool
Publishers, 155 pages, 2014.

[3] Barenboim L., Elkin M., and Kuhn F., Distributed (Delta+1)-coloringin linear (in Delta) time.SIAM Journal of Com-
puting, 43(1):72-95, 2014.

[4] Cole R. and Vishkin U., Deterministic coin tossing with applications to optimalparallel list ranking.Information and
Control, 70(1):32-53, 1986.

17

[5] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.Journal of
the ACM, 32(2):374-382, 1985.

[6] Fraigniaud P., Korman A., and Peleg D., Towards a complexity theory for local distributed computing.Journal of the
ACM, 60(5), Article 35, 16 pages, 2013.

[7] Garey M.R. and Johnson D.S.,Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman,
New York, 340 pages, 1979.

[8] Goldberg A., Plotkin S, and Shannon G., Parallel symmetry-breaking in sparse graphs.SIAM Journal on Discrete
Mathematics, 1(4):434-446, 1988.

[9] Herlihy M.P., Wait-free synchronization.ACM Transactions on Programming Languages and Systems, 13(1):124-149,
1991.

[10] Kuhn F., Moscibroda T., and Wattenhofer R., What cannot be computed locally! Proc. 23rd ACM Symposium on
Principles of Distributed Computing (PODC’04), ACM Press, pp. 300-309, 2004.

[11] Linial N., Locality in distributed graph algorithms.SIAM Journal on Computing, 21(1):193-201, 1992.

[12] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asynchronous processes.Advances
in Computing Research, 4:163-183, JAI Press, 1987.

[13] Lynch N.A.,Distributed algorithms. Morgan Kaufmann, 872 pages, 1996.

[14] Naor M. and Stockmeyer L., What can be computed locally?SIAM Journal on Computing, 24(6):1259-1277, 1995.

[15] Peleg D.,Distributed computing, a locally sensitive approach. SIAM Monographs on Discrete Mathematics and Appli-
cations, 343 pages, 2000 (ISBN 0-89871-464-8).

[16] Raynal M.,Fault-tolerant agreement in synchronous message-passing systems. Morgan & Claypool Publishers, 165
pages, 2010 (ISBN 978-1-60845-525-6).

[17] Raynal M.,Concurrent programming: algorithms, principles, and foundations.Springer, 530 pages, 2013 (ISBN 978-
3-642-32026-2).

[18] Suomela J., Survey of local algorithms.ACM Computing Surveys, 45(2), Article 24, 40 pages, 2013.

[19] Wattenhofer R.,Principles of distributed computing. ETHZ, 240 pages, 2014.

18

