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HYDROMORPHO: A COUPLED MODEL FOR UNSTEADY STOKES/EXNER

EQUATIONS AND NUMERICAL RESULTS WITH FEEL++ LIBRARY ∗

Nora Äıssiouene1, Tarik Amtout2, Matthieu Brachet3, Emmanuel Frenod4,
Romain Hild5, Christophe Prud’homme6, Antoine Rousseau7 and Stephanie

Salmon8

Abstract. We propose to couple the Exner equation with the Stokes equations to model the bedload
sediment in geophysical flows . This work is a preliminary study to directly model the hydrodynamic
flow by the unsteady Stokes equation instead of the classical shallow water equation. We focus in
this proceeding on the coupling applying fluid structure interaction approach to morphodynamical
behavior. In other words, we follow the approach of fluid interaction models replacing the structure
equation by the Exner equation. The aim of this work is to validate the proposed procedure. These
equations are solved by finite element method using the library FEEL++.

Résumé. Nous proposons de coupler l’équation d’Exner avec les équations de Stokes afin de modéliser
le transport des sédiments par charriage. Ce travail est une étude préliminaire pour modéliser le flux
hydrodynamique par les équations instationnaires de Stokes à la place du choix classique des équations
de Saint-Venant. Ici, nous nous concentrons sur l’utilisation d’une approche interaction fluide structure
pour le couplage, c’est-à-dire remplacer l’équation de structure par l’équation d’Exner. Le but de ce
travail est de valider la procédure proposée. Ces équations sont résolues par la méthode des élements
finis en utilisant la bibliothèque FEEL++.

Introduction

Many hydrodynamic studies have been done to understand and predict the dynamics of sediments at the
bottom of flows which is a significant and complex process for many geophysical situations. Morphodynamics
modelling is a broad subject whose principles can be found in several references [34], [35]. We can distinguish
two types of sediment transport, the suspended load and the bedload. In this proceeding, we focus on the
bedload transport and its impact on the hydrodynamics. The difficulty remains in the necessity to couple the
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3 Institut Elie Cartan de Lorraine, Université de Lorraine, Site de Metz, Bât. A Ile du Saulcy, F-57045 Metz Cedex 1
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sediment transport models with the hydrodynamic models, and then to develop a robust and stable numerical
method.

On the one hand, the sediment transport is usually modeled by the classical Exner equation [37] and several
laws of transport have been proposed (see [21] to have details on some classical laws) by physical arguments or
closure relations. On the other hand, models as shallow water equations are used to model the hydrodynamics,
and recently in [12,21] a model derived from the Navier-Stokes equations that has an energy balance.

Concerning the numerical methods that have been established for these models, the main numerical schemes
are developed for the hyperbolic systems with source terms for the hydrodynamic flow (see [9], [25]). Therefore,
finite volume schemes are applied for the shallow water system [1, 2, 23, 38]. The problem lies in the coupling
of the numerical schemes. Indeed, in the shallow water models, the topography is a source term and the Exner
equation gives the evolution of the bottom in terms of the fluid velocity. Then, two strategies are distinguished,
the splitting one and the non-splitting one (see [4]). The splitting methods are easier to implement but generate
instabilities in specific situations (see [14]). On the contrary, more complicated models, for instance involving
relaxation, have to be used to take into consideration the fully coupled model [3, 29].

Notice that the shallow water model is based on a hydrostatic assumption. It is deduced from the Navier
Stokes equations, neglecting the vertical acceleration (see [23]). Many other free surface models have been
developed to take into account non-hydrostatic effects with vertically averaged models: see [8, 10, 11, 18, 32].
Contrariwise, for this study we choose to conserve the z coordinate in our model, which raises the question of
time-depending domain when the bathymetry changes with time: this coupling between fluid motion (including
vertical effects) and domain evolution is at the core of this paper.

This objective being stated, we start with the simplest possible model, a 2D (x − z) Stokes equation. We
couple this equation for the fluid with the Exner model since our computational domain moves as times goes
by. We choose to use the Grass law for the bedload formula (see Equation (10)) which is one possible law
among others. As for the time coupling between hydrodynamical and morphological processes, we choose to use
a monolithic scheme rather than a splitting method: such refinements (that can prove to be very important,
see [14]) are beyond the scope of our work.
Let us now focus on the main feature of this work: the use of fluid-structure interaction techniques (see [13,26])
for the coupling between Stokes and Exner equations. From the numerical viewpoint, we decided to use finite
elements and the open software Feel++ [39–41] that are well adapted to fluid-structure interaction (ALE
implementation, see [26]) and parallelization for large 3D computations.

The article is organized as follows, the first part is devoted to the description of the fluid model and the
sediment model at the bottom. In a second part, it is explained why a method like the ALE is necessary to
couple the models. The third part establishes a complete ALE formulation of the Stokes-Exner model. Then, a
variational formulation is given with the different boundary conditions that we explore. Finally, some numerical
results are presented to evaluate the model and the method used to solve the problem.

1. The model

In this part, we introduce various equations for our coupled system. Section 1.1 is devoted to the unsteady
Stokes equations (dimension 2, x − z) that we supplement with appropriate boundary conditions. Section 1.2
is dedicated to the bottom boundary condition, located at the (moving) boundary where the fluid model is
coupled with the Exner equation for bedload. Before recalling the complete coupled system in section 1.4, we
present in Section 1.3 the ALE implementation of our model.

We start with a model domain Ω(t) and a specific boundary to represent the topography. We consider
the domain as a moving domain depending on the bottom. Let us introduce the domain with the following
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definitions:

Ω(t) = {(x, z) ∈ R2 | 0 ≤ x ≤ l, bz(x, t) ≤ z ≤ 1} (1)

where l > 0 is the cavity length and bz(x, t) is the bottom topography in x at time t. We also denote by
Γ(t) = Γin(t) ∪ Γout(t) ∪ Γs ∪ Γb(t) the boundaries (see Figure 1):

• Γin(t) = {0} × [bz(0, t), 1],
• Γout(t) = {l} × [bz(l, t), 1],
• Γs = [0, l]× {1},
• Γb(t) = {(x, z) ∈ R2 s.t. z = bz(x, t), x ∈ [0, l]}.

z

Γin(t) Γout(t)

Γs

nin

Bottom bz(x, t)

Γb(t)

Ω(t)

x

Figure 1. Definition of the domain

The coupled model leads to solving the non-steady Stokes problem in the fluid domain Ω(t) and the Exner
equation to give the boundary Γb(t). The issue is to model the fluid process in interaction with the sediment
transport at the bottom. In the following sections, we describe the equations chosen for the fluid in the domain
Ω(t) with usual boundary conditions for the boundary Γ. Then we propose to use Exner equation to make the
boundary Γb move.

1.1. Hydrodynamical Model

We consider the unsteady Stokes problem on the domain Ω(t)

ρ
∂u

∂t
− µ4u +∇p = 0 on Ω(t), (2)

div (u) = 0 on Ω(t), (3)

where u = (u,w)T is the velocity of the fluid, p is the pressure, µ > 0 is the dynamic viscosity and ρ is the
density. From now on, we will use ρ = 1. This problem is completed by the boundary conditions detailed
hereafter.
A crucial issue is to have judicious boundary conditions at the interface between the fluid and the topography.
The physical behavior of the sediment transport studied here implies an impermeability boundary condition,
then a constraint on the normal component of the velocity has to be done. Concerning the other boundaries, we
will consider a model test case on which we simulate a flow on the pseudo free surface (Γs in our case). Then,
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we impose the velocity on the surface boundary Γs by a Dirichlet condition and free boundary conditions, using
Neumann boundary conditions for the velocity, at the inlet and outlet

u = g1 on Γs, (4)

σn = µ
∂u

∂n
− pn = g2 on Γin(t) ∪ Γout(t), (5)

u · n = 0 on Γb(t), (6)

σn · τ = µ
∂u

∂n
· τ = g3 on Γb(t), (7)

where σ is the stress tensor defined by:

σ = (µ∇u− pId). (8)

The condition (4) imposes the force by using Dirichlet condition.
The condition (5) is a Neumann condition, that lets free the velocity when g2 = 0.
The condition (6) imposes the normal component of the velocity to be null at the bottom. It is the condition
of impermeability of the domain.
The Neumann condition (7) is needed to have a displacement of the bottom.

1.2. Morphodynamics model

The sediment dynamics is based on the formulation of a sediment continuity equation stating that the time
variation of the sediment layer in a certain volume is due to the net variation of the solid transport through
the boundaries of the volume. The mathematical expression of such law is known as the Exner equation [33]
presented in this form:

∂bz
∂t

+ ξ
∂Q

∂x
= 0 ∀x ∈ [0, l],∀t ∈ [0, T ], (9)

where bz(x, t) is the bed elevation, ξ is defined by (1− p)−1 where p is the material porosity and Q denotes the
solid transport discharge along the x coordinate influenced by the velocity u. The formulation of the bedload
discharge Q can be based on deterministic laws ( [5], [19], [42]) or in probabilistic methods ( [20], [30]), often
supported by experimentation. Grass [27] discussed one of the most basic sediment transport laws that can be
written in one dimension as:

Q = a|u|3/2, (10)

where 0 < a < 1 is an empirical parameter depending of the type of the sediments, it takes into account the
effects due to the grain size and the kinematic viscosity . For the problem studied in this work, the velocity taken
into consideration in the Grass formula is reduced to the tangential part uτ since we impose an impermeability
condition on the interface, see the boundary condition (6).

For the sake of clarity, we will consider the Exner equation under the form:

∂bz
∂t

+
∂Q

∂x
= 0 ∀x ∈ [0, l],∀t ∈ [0, T ], (11)

where Q = α|uτ |3/2 and α = ξa.

1.3. Arbitrary Lagrangian Eulerian (ALE) Method

We now want to couple the two models previously described. The issue is to solve the unsteady Stokes
equations with a moving boundary Γb. In fluid mechanics, one can enumerate two ways to represent a problem:
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Lagrangian and Eulerian formulation. On the one hand, Lagrangian formulation is similar to keep track of the
location of each fluid particles. The velocity u and the density ρ depend only on x0 the initial position of the
particles and on t the time. Then, the time derivative of a quantity F is given by the total time derivative :

DF

Dt
.

On the other hand, the main idea of the Eulerian method is to fix a system of coordinates and follow the flux
of particles. In this case, the velocity u and the density ρ depend on x the position in a global system of
coordinates and t the time. Now, for a function F , the time derivative is given by :

∂F

∂t
+ u · ∇F.

The relation between the Eulerian and the Lagrangian time derivatives is:

D

Dt
=

∂

∂t
+ u · ∇. (12)

Then, the idea of the ALE method is to combine the Eulerian and the Lagrangian method in order to take
into consideration the boundary displacement at each iteration, which represents the bottom in our case. The
goal is to avoid remeshing the domain at each time iteration. This method was first developped for finite
difference in [22, 36] and scope to finite element methods in [16, 17] and [6]. In 2004, [13] built a method for
great order elements. This has been widely used in Fluid Structure Interaction (FSI) on which it is usual to
have a fluid equation like unsteady Stokes or Navier Stokes in the fluid domain and an elasticity equation for
the structure. This is used in the simulation of blood flow in arteries for instance (see [13], [26]). In the context
of the sediment transport, the bottom plays the role of the structure in the classical methods. Then the idea is
to use the analogy of these methods for the coupled Stokes Exner model.
As the goal is to avoid remeshing the domain, the clue is to use a Lagrangian description to describe the bottom
displacement and a Eulerian description for the fluid model. First, we define a reference domain on which the
topography is described by a Lagrangian description. Secondly, we consider the physical domain Ω(t) on which
the equations of the fluid evolves. Then, it is necessary to define an application able to make the link between
the two domains. In the following, we write ·̂ all quantities concerning the reference domain. For the sake of

clarity, we choose Ω̂ the rectangular domain [0, l]× [0, 1] and the following boundaries :

• Γ̂in = {0} × [0, 1],

• Γ̂s = [0, l]× {1},
• Γ̂out = {l} × [0, 1],

• Γ̂b = [0, l]× {0} = γ̂b × {0} where γ̂b = [0, l] .

The relation between the reference domain Ω̂ and the physical domain Ω(t), is made by an ALE map (see figure
2 ), defined by :

At :

{
Ω̂ −→ Ω(t)
x̂ 7−→ x(x̂, t)

. (13)

Ω̂ x̂•
Ω(t)

x•
At

Figure 2. The ALE map



6 ESAIM: PROCEEDINGS AND SURVEYS

Therefore the point x(t) ∈ Ω(t) is obtained by:

x(t) = At(x̂) = x̂ + d̂δ(x̂, t), (14)

where d̂δ(x̂, t) is the displacement of x̂ between Ω̂ and Ω(t). Notice that x(t) is time dependent. Then, we can
define the velocity of the mesh:

ŵ(x̂, t) =
∂At

∂t
(x̂) =

∂d̂δ
∂t

(x, t), (15)

where ŵ(x̂, t) ∈ Rd is defined for x̂ ∈ Ω̂×R+. To take into consideration the velocity of the mesh into the fluid
equation, it is necessary to define it in the fluid domain Ω(t), namely:

w : (x, t) ∈ Ω(t)× R+ → Rd, (16)

w = ŵ ◦
(
At
)−1

. (17)

This definition will allow us to rewrite the fluid equation with an Eulerian description, taking into account the

displacement of the mesh. The last step of the method leads to determine the equation of the displacement d̂δ
in Ω̂. In practice, dδ is the solution of a PDE like harmonic or Wislow equation. For the sake of simplicity, we
will work with harmonic extension that allows to have a smooth mesh. We often need to transport an equation

from Ω̂ to Ω(t) and mutually. Let u : Ω(t)× R+ −→ Rd, then the corresponding map in Ω̂ is û = u ◦ At.
If Du/Dt is the time-derivative of u in ALE, we have the following equation:

Du

Dt
=
∂u

∂t

∣∣∣∣
x

+ w · ∇u. (18)

• Notice that if w = u, the mesh is moving with the particles so the description is Lagrangian.
• If w = 0, the mesh does not move and the description is Eulerian.

1.4. Coupled model

In this part, we focus on the coupled model. We denote by x̂ a point in the reference domain Ω̂ and by Ω(t)
the deformed domain after the transformation. The deformation of the mesh leads to consider the derivative

D defined by (18) which is also called the ALE derivative where the velocity w is defined as: ŵ = ∂d̂δ
∂t

∣∣∣
x̂

and

represents the velocity of the displacement of the mesh, that is to say the velocity of the particle in the referential
domain. This allows to write the fluid model with a moving mesh on Ω(t). Concerning the boundary conditions,
we still consider a slip boundary condition at the interface between the topography and the fluid. The complete
model is composed of the equation of the fluid in two dimensional domain, the equation of the topography in
one dimensional domain and the ALE equation in two dimensional domain. According to (18), the coupled
model is written as follows :

1.4.1. Fluid equation

The fluid equation is given by :

Du

Dt
− (w · ∇)u− µ4 u +∇p = F on Ω(t), (19)

div(u) = 0 on Ω(t), (20)

+BC, (21)

where the boundary conditions are those of section 1.1. In particular, condition (7) depends on the bottom
topography.
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1.4.2. Bottom equation

We consider the one dimensional domain γ̂b = [0, l], on which the bottom topography at position x̂ ∈ γ̂b and
time t > 0 is defined by the Exner equation (11):

∂b̂z(x̂, t)

∂t
+
∂Q̂(x̂, t)

∂x̂
= 0 ∀x̂ ∈ γ̂b, t > 0, (22)

b̂z(x̂, 0) = b̂z,0(x̂). (23)

Using (10), the sediment law Q̂ depends on the fluid velocity and can be written in the reference domain by:

Q̂(x̂, t) = Q
(
x̂+ b̂(x̂), t

)
∀x̂ ∈ γ̂b, (24)

= αuτ

(
x̂+ b̂(x̂)

)3/2

. (25)

1.4.3. Displacement equation

This displacement needs to be extended in the fluid domain to associate a new ALE map over the mesh. In
order to do this, we use a classical harmonic extension (see [13] for more details).

−4 d̂δ = 0 on Ω̂, (26)

d̂δ = 0 on Γ̂s, (27)

∂d̂δ
∂n

= 0 on Γ̂in ∪ Γ̂out, (28)

d̂δ = (0, b̂z(x̂, t))
T on Γ̂b. (29)

This allows us to have a given displacement defined on Γ̂b, to let free the boundaries Γ̂in and Γ̂out, and to fix
the boundary Γ̂s. The harmonic problem spreads the displacement d̂δ on all the domain.

1.4.4. Equation for w

We denote by ŵ the velocity of the displacement

ŵ(x̂, t) =
∂d̂(x̂, t)

∂t
. (30)

Then, using the ALE transformation, we can compute the velocity w in the domain Ω(t):

w(x, t) = ŵ
(
(At)−1(x), t

)
. (31)

2. Variational formulation

This part is devoted to the variational formulation of the problem taking the ALE description into account.

2.1. Variational formulation of the Exner equation

By multiplying the Exner equation and integrating over γ̂b, we have the following variational formulation for
equations (22)-(23): Taking a test function φ ∈ H1(γ̂b), we have:

d

dt

∫
γ̂b

b̂z(x̂, t)φ(x̂) dx̂+

∫
γ̂b

∂Q̂(x̂, t)

∂x̂
φ(x̂) dx̂ = 0, (32)
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d

dt

∫
γ̂b

b̂z(x̂, t)φ(x̂) dx̂−
∫
γ̂b

Q̂(x̂, t)φ′(x̂) dx̂+
[
Q̂(x̂, t)φ(x̂)

]
γ̂b

= 0 ∀φ ∈ H1(γb). (33)

The problem becomes: find b̂z such that for all φ ∈ H1(γ̂b)

d

dt

∫
γ̂b

b̂z(x̂, t)φ(x̂) dx̂ =

∫
γ̂b

Q̂(x̂, t)φ′(x̂) dx̂−
[
Q̂(x̂, t)φ(x̂)

]
γ̂b
. (34)

2.2. Variational formulation of unsteady Stokes Equation

The problem leads to find u ∈ V and p ∈ Q such that the fluid equation (19) is satisfied. Let X be the
functional set of test functions. Notice that the sets V, X and W will be defined later. In practice, the sets V
and X can be different, they depend on the boundary conditions. Multiplying (19) with a test function v ∈ X
and (20) with a test function q ∈ Q, and then integrating by part, we get:

∫
Ω

Du

Dt
· v −

∫
Ω

[(w · ∇)u] · v + µ

∫
Ω

∇u : ∇v − µ
∫

Γ

∂u

∂n
· v −

∫
Ω

p div(v) +

∫
Γ

pn · v =

∫
Ω

F · v, (35)∫
Ω

div(u) q = 0. (36)

Then, using the Reynolds transport formula on the first term of (35):

d

dt

∫
Ω

u · v −
∫

Ω

(∇ ·w)u · v −
∫

Ω

[(w · ∇)u] · v

+ µ

∫
Ω

∇u : ∇v − µ
∫

Γ

∂u

∂n
· v

−
∫

Ω

p div(v) +

∫
Γ

pn · v =

∫
Ω

F · v,

(37)

∫
Ω

div(u) q = 0. (38)

We define the following forms:

a1 (u,v) =

∫
Ω(t)

µ∇u : ∇v dx, ∀u ∈ V,v ∈ X, (39)

a2 (u,v) = −
∫

Ω

(∇ ·w)u · v −
∫

Ω

[(w · ∇)u] · v dx, ∀u ∈ V,v ∈ X, (40)

a (u,v) = a1 (u,v) + a2 (u,v) (41)

b (u, q) =

∫
Ω(t)

q div(u) dx, ∀u ∈ V, q ∈ Q, (42)

L(v) =

∫
Ω(t)

F (t) · v dx, ∀v ∈ X. (43)
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We now need to treat the boundary conditions.

u = g1 on Γs, (44)

σn = µ
∂u

∂n
− pn = g2 on Γin(t) ∪ Γout(t), (45)

u · n = 0 on Γb(t), (46)

σn · τ = µ
∂u

∂n
· τ = g3 on Γb(t). (47)

2.2.1. Dirichlet and Neumann boundary conditions

We impose the Dirichlet condition in a strong way, the condition is embedded directly into the space in which
we search the solution. We introduce the spaces:

V = {u ∈ (H1(Ω(t)))2, u = g1 on Γs},
X = {v ∈ (H1(Ω(t)))2, v = 0 on Γs},

Q = L2(Ω(t)) = {q ∈ L2(Ω(t)),

∫
Ω(t)

q dx = 0}.

The Neumann condition on Γin ∪ Γout comes naturally into the formulation. Indeed, the boundary terms can
be written with v ∈X:∫

Γs

(
pn− µ∂u

∂n

)
· v︸︷︷︸

0

+

∫
Γin∪Γout

(
pn− µ∂u

∂n

)
︸ ︷︷ ︸

g2

·v +

∫
Γb

(
pn− µ∂u

∂n

)
︸ ︷︷ ︸

σn

·v. (48)

Then, the problem writes:
Find u ∈ V, p ∈ Q such that

d

dt

∫
Ω

u · v −
∫

Ω

[(w · ∇)u] · v −
∫

Ω

(∇ ·w)u · v + µ

∫
Ω

∇u : ∇v −
∫

Ω

p div(v)

=

∫
Ω

F · v +

∫
Γin∪Γout

g2 · v +

∫
Γb

σn · v ∀v ∈X, (49)∫
Ω

div(u) q = 0 ∀q ∈ Q. (50)

With the notations (39)- (42), the problem writes :
Find u ∈ V, p ∈ Q such that :

d

dt

∫
Ω

u · v + a(u,v) + b (v, q) = L (v) ∀v ∈ X, (51)

b(u, q) = 0 ∀q ∈ Q. (52)

The bilinear forms a and b are defined by (41)-(42), and L is defined by:

L(v) =

∫
Ω(t)

F · v +

∫
Γin∪Γout

g2 · v +

∫
Γb

σn · v. (53)
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2.2.2. Slip boundary conditions

In this section, we are interested in the interface between the fluid and the topography and we preconise to
have a slip boundary condition on Γb, which is physically consistent with the sediment transport model chosen
in this study, namely the bedload transport. Then, we give the variational formulation with slip boundary
condition u ·n = 0 on Γb. It is not natural to impose a slip boundary condition in the Stokes problem, and this
problem has been widely studied:

• First variational strategy
A first strategy, studied in [15], consists in giving a condition on the stress tensor σn · τ = g3. We rewrite
the test function v = (v · n) n + (v · τ ) τ where n is the normal component and τ is the tangential
component on Γb. Taking g3 = 0 and

u ∈W = {v ∈ V, v · n|Γb = 0}, (54)

Y = {v ∈ X, v · n|Γb = 0}, (55)

it is straightforward to verify that the variational formulation writes

d

dt

∫
Ω

u · v −
∫

Ω

(∇ ·w)u · v −
∫

Ω

[(w · ∇)u] · v (56)

+µ

∫
Ω

∇u : ∇v −
∫

Ω

p div(v) =

∫
Ω

F · v +

∫
Γin∪Γout

g2 · v ∀v ∈ Y,∫
Ω

div(u) q = 0 ∀q ∈ Q. (57)

• Second variational strategy
A second strategy consists in giving a condition on the velocity at the boundary, see [28], as follows

µ
∂u

∂n
· τ + α(u · τ ) = g with α > 0. To this aim, we notice that

∫
Γb

σn · v =

∫
Γb

(σn · n)(v · n) + (σn · τ )(v · τ ), (58)

and we rewrite the test function v in terms of the normal component and the tangential component, as
for the previous case. Taking

u ∈W = {v ∈ V, v · n|Γb = 0},

the variational formulation writes:

d

dt

∫
Ω

u · v −
∫

Ω

(∇ ·w)u · v −
∫

Ω

[(w · ∇)u] · v

+µ

∫
Ω

∇u : ∇v −
∫

Ω

p div(v) +

∫
Γb

α(u · τ )(v · τ ) =

∫
Ω

F · v +

∫
Γb

g(v · τ ) (59)

+

∫
Γin∪Γout

g2 · v, ∀v ∈ Y,∫
Ω

div(u) q = 0 ∀q ∈ Q. (60)

• Third variational strategy
An other alternative leads to using a penalty method. As in a previous case, we take X = {v ∈
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(H1(Ω(t)))2, v = 0 on Γs}. In order to impose the condition u · n = 0 for the velocity which is
not natural in the variational formulation, we consider the formulation (51) and penalize the natural
boundary condition:

σn|Γb = −1

ε
(u · n)n,

where ε� 1 . The variational formulation becomes:
Find u ∈ V and p ∈ Q such that:

d

dt

∫
Ω

u · v + ã(u,v) + b(v, p) = L(v), ∀v ∈ X, (61)

b(u, q) = 0 ∀q ∈ Q, (62)

with the bilinear form b defined by (42), L and ã defined by

ã(u,v) = a1(u,v) + a2(u,v) +
1

ε

∫
Γb

(u · n)(v · n) dσ, (63)

L(v) =

∫
Ω

F · v +

∫
Γin∪Γout

g2 · v. (64)

It is proved by Dione in [15] that this problem converges to the problem with slip boundary conditions
when ε tends to zero.

3. Numerical method

3.1. Discretization in time

We will now discretise the time derivative with a Backward Differentiation Formula (BDF) of order 1. It
corresponds to the backward Euler method. Let ∆t be the time step, t0 = 0 the initial time, tn = n∆t and xn

a field at time tn.
We can then rewrite the variational formulation at time tn+1 :∫

Ω

un+1 − un

∆t
·ϕ+ ã(un+1,ϕ) + b

(
ϕ, pn+1

)
= L (ϕ) , ∀ϕ ∈ V, (65)

b(un+1, q) = 0, ∀q ∈W, (66)

since un is known, this leads to :∫
Ω

1

∆t
un+1 ·ϕ+ ã(un+1,ϕ) + b

(
ϕ, pn+1

)
= L (ϕ) +

∫
Ω

1

∆t
un ·ϕ, ∀ϕ ∈ V, (67)

b(un+1, q) = 0, ∀q ∈W. (68)

3.2. Discretization in space

We consider in this section a subdivided domain Th and the finite dimensional spaces Vh and Wh which
are the discrete spaces of V and W . As well, we approximate u and p by uh and ph. We use a Galerkin
approximation taking the fields uh, and ph in Vh and Wh, it reads:

uh =

N∑
i=1

αiϕi, ph =

M∑
i=1

βiψi, (69)
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where we denote N = dim Vh and M = dimWh and ϕ (resp. ψ) is the basis function of Vh (resp. Wh). Then,
the semi discrete problem writes:

∫
Ω

1

∆t
un+1
h ·ϕh + ã(un+1

h ,ϕh) + b
(
ϕh, p

n+1
h

)
= L (ϕh) +

∫
Ω

1

∆t
unh ·ϕh, ∀ϕh ∈ Vh, (70)

b(un+1
h , qh) = 0, ∀qh ∈Wh. (71)

We choose the following compatible spaces (see [24]):

• Vh =
{
v ∈ C0

(
Ω
)

s.t. v|K ∈ P2
2 for all K ∈ Th

}
,

• Wh =
{
q ∈ C0

(
Ω
)

s.t. q|K ∈ P1 for all K ∈ Th
}
∩ L2

0 (Ω),

where Th is the set of mesh elements and Pk is the set of polynomial function of degree k. The space Vh can
be adjusted for specific boundary conditions.
Throughout the rest of the document, we use these functionals sets.
We denote by Un, Pn the vectors

Un =

α
n
1
...
αnN

 , Pn =

βn1
...
βnM

 , (72)

A the matrix Ai,j = ã(ϕi,ϕj) for 1 ≤ i, j ≤ N and B the divergence matrix BTi,j = b(ϕi, ψj) for 1 ≤ i ≤ N, 1 ≤
j ≤M . We also note F = (γi)

T where f =
∑N
i=1 γiϕi and M the mass matrix.

The problem writes:

(
A+M/∆t BT

B 0

)(
Un+1

Pn+1

)
=

(
F
0

)
+

(
M/∆t 0

0 0

)(
Un

0

)
. (73)

3.3. Stokes-Exner coupling

Although the algorithm for the instationary Stokes equations described in the previous section constitutes
the main part of the complete method, we give in this part the complete implemented algorithm. We denote
by NT the final time of the discrete problem and tn = n∆t. Starting from an initial topography, the first step
consists in solving the Stokes equation in the domain Ωn delimited by the initial bottom using the method
presented before. Then, denoting the velocity of the fluid at time tn, by un and the velocity of the displacement
of the mesh by wn, we solve the Stokes equation for this initial state. This resolution gives the numerical
solution un+1 at time tn+1. We denote this solver by StokesSolver(Ωn,un,wn). This allows to compute the
new topography bn+1 using the Exner equation and giving the velocity un+1 and the bottom at time tn. We
note this method by ExnerSolver(bn,un+1) which allows to compute the displacement of the mesh Ωn at the
boundary Γb, that is to say at the interface. Then, it is necessary to extend the deformation in the domain
to compute the new one. To do so, the method ALESolver(Ωn,dn+1

Γb
) solves the harmonic problem from the

domain at time tn and then, gives the deformation dn+1 that needs to be applied. Finally, the velocity wn+1

and the mesh Ωn+1is computed from the displacement. At this step, all the states are obtained for the time
tn+1.
The coupled algorithm can be summarized by the following:
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Algorithm 1 Stokes-Exner coupling

Require: Ω0, b0, w0, u0

for n = 0 to NT − 1 do
un+1 = StokesSolver(Ωn,un,wn)
bn+1 = ExnerSolver(bn,un+1)
dn+1

Γb
= bn+1 − bn

dn+1 = ALESolver(Ωn,dn+1
Γb

)

wn+1 = dn+1−dn
∆t

Ωn+1 = Ωn + dn+1

end for

4. Numerical tests

4.1. Validation with analytical solutions of the Stokes equations

In order to validate the numerical method proposed and implemented with Feel++, we compare the numerical
results with analytical solutions of the Stokes problem.

4.1.1. Solution of Bercovier-Engelman

First of all, in order to validate the implementation of the Stokes problem only, we use the solution of
Bercovier-Engelman [7], which consists in finding a velocity that satisfies the free divergence condition and is
null on the whole boundary. From this velocity and a source term f , we deduce gradient pressure, and then a
pressure.

v =

(
−256z(z − 1)(2z − 1)x2(x− 1)2

256x(x− 1)(2x− 1)z2(z − 1)2

)
,

p = (x− 0.5)(z − 0.5),

f =

(
256(x2(x− 1)2(12z − 6) + z(z − 1)(2z − 1)(12x2 − 12x+ 2)) + (z − 0.5)
−256(z2(z − 1)2(12x− 6) + x(x− 1)(2x− 1)(12z2 − 12z + 2)) + (x− 0.5)

)
.

We can compare the exact solution and the approximation in Fig 3.

(a) Exact solution (b) Error

Figure 3. Velocity field of the exact solution and error with the numerical solution.
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Figure 4. Convergence rates for the Bercovier-Engelman solution.

In Figure 4, we compute the errors between the exact and the computed solution and plot these errors versus
the mesh size (in log-log scale). We can then verify that the method converges and that the convergence orders
are 3 for the L2-norm of the velocity and 2 for the pressure, which are those expected by the theory with the
finite elements chosen here.

4.1.2. Driven cavity

The second test case, the driven cavity, is a very classical test case in fluid dynamics. We verify again that
the Stokes problem is well solved but with more physical boundary conditions that will be useful in the sequel.
Indeed, to obtain this solution, we impose v|Γin∪Γout∪Γb = 0 and v|Γs = (1, 0)T . The numerical results are
shown in Figure 5.

(a) Magnitude field (b) Velocity field

Figure 5. Driven cavity.

Notice that the discontinuity of the velocity of the corners of the cavity is due to the discontinuity of the
velocity imposed by the Dirichlet condition. It does not infer on the training, but to avoid this result, a
polynomial function can be set instead of the constant.

4.2. Fluvial dune test case

To validate our complete coupled model with the Exner equation, we take an initial dune given by the
equation :

bz(x, 0) = 0.2× e
−

(x− 2.5)2

0.2 ,∀x ∈ [0, l], (74)
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with l = 5.
For the unsteady Stokes equation, we use the slip boundary condition (4)-(7) and let free the velocity at the
inlet and outlet with a Neumann boundary condition (5) with g2 = 0. On the top, we impose the same Dirichlet
condition than in the driven cavity u = (1, 0)T , driven the fluid to the right. For the Exner model, we use the
Grass formula (10) and the initial data given by (74). We use the numerical method presented above : finite
element method for spatial discretization and Implicit Euler method for time discretization for all the equations.
As the cavity is driven with a moving bottom, we add the ALE formulation and obtain the results showed in
Figure 6. We use the penalty method for bottom condition. The result is given in figure 6 and is similar to
that of E. J. Kubatko and J. J. Westerink [31] (Fig. 2 of their paper). The same test case has been tested with
multiple dunes and a similar result (distortion to the right) was obtained. This kind of solution can be difficult
to represent with a numerical scheme because the solution becomes discontinuous but the algorithm stays stable
during the simulation. This test case allows us to evaluate the relevance of our method but a comparison with
an analytical solution is necessary to validate the method.

Remark 1. It is not straightforward to validate the method on the complete model with an analytical solution.
In [31], it is explained that the Exner model is an hyperbolic equation. Indeed, we can write Exner equation (11)
(with ξ = 1) as:

∂bz
∂t

+ c(bz)
∂bz
∂t

= 0, (75)

where c(bz) =
∂Q(u)

∂bz
(bz) can be interpreted as a bed velocity (that depends on bz because u in (2)-(3) does).

It is obvious that the conservative law (75) is nonlinear. It is well known that a nonlinear conservative law
is sometimes subject to discontinuities. Even if the initial topography b0 is smooth, if characteristics intersect
at time td > 0, there is no unique solution and a discontinuity can appear. For a time greater than td, the
model no longer holds, there are several unphysical solutions. To solve this problem, it is classic to add an
artificial viscosity or use the integral form of the Exner model (see [31] for details). In order to avoid that kind
of difficulty, we consider small simulation times and let these considerations to further studies.

5. Conclusion

In this note, we consider a coupling between the Exner equation and the Stokes equations to model the
transport sediments in flow phenomena. We focus on a model without free surface and use some numerical
tests to evaluate the relevance of the method. The fluid structure interaction theory and method have been
applied and the objective is to test the proposed method which can be extend to a free surface model. The
library Feel++ and the high computing performance embedded have been used to test the solution method.
Therefore, the final goal of this project is to understand the impact of the sediment transport on the flow using
Navier-Stokes with a free surface system coupled with the standard Exner equation.
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