Regularity and Lyapunov stabilization of weak entropy solutions to scalar conservation laws

Abstract : We consider the problem of Lyapunov boundary stabilization of the weak entropy solution to a scalar conservation law with strictly convex flux in one dimension of space, around a uniform equilibrium. We show that for a specific class of boundary conditions, the solution to the initial-boundary value problem for an initial condition with bounded variations can be approximated arbitrarily closely in the L1 norm by a piecewise smooth solution with finitely many discontinuities. The constructive method we present designs explicit boundary conditions in this class, which guarantee Lyapunov stability of the weak entropy solution to the initial-boundary value problem. We show how the greedy control, obtained by maximizing the decrease of the natural Lyapunov function, may fail to asymptotically stabilize and a brute force control generates unbounded variation of traces. We then design a stabilizing control, which avoid oscillations, and propose a nonlocal technique (depending on time and the whole initial datum) which optimizes the convergence time. Controllers performance is illustrated on numerical benchmarks using the Godunov scheme.
Type de document :
Article dans une revue
IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 62 (4), pp.1620-1635
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01267722
Contributeur : Maria Laura Delle Monache <>
Soumis le : jeudi 4 février 2016 - 18:06:05
Dernière modification le : jeudi 18 janvier 2018 - 15:26:01
Document(s) archivé(s) le : samedi 12 novembre 2016 - 10:00:10

Fichier

Blandin_Litrico_DelleMonache_P...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01267722, version 1

Collections

Citation

Sébastien Blandin, Xavier Litrico, Maria Laura Delle Monache, Benedetto Piccoli, Alexandre Bayen. Regularity and Lyapunov stabilization of weak entropy solutions to scalar conservation laws. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 62 (4), pp.1620-1635. 〈hal-01267722〉

Partager

Métriques

Consultations de la notice

38

Téléchargements de fichiers

62