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F-91191 Gif-sur-Yvette, France

cCEA, DEN, DANS, DM2S, SEMT, Laboratoire de Mé Systèmes et Structures
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Abstract

A continuum model for quasi-brittle materials able to reproduce mechanical
phenomena related to cyclic loading is proposed. Specific care is taken to re-
produce progressive stiffness recovery and hysteresis effects caused respectively
by crack closure and friction. A virtual testing approach is set up to anal-
yse the evolution of microscopic quantities during uni-axial cyclic tests and to
justify an original and efficient modelling of these phenomena. Thus, a reg-
ularised formulation of the homogenised multiple contact problem induced by
the non-simultaneous closure of microscopic cracks is presented. The proposed
continuum model is validated by means of member-scale simulations of reversely
loaded reinforced concrete shear walls.

Keywords: damage; virtual testing; hysteresis effects; regularised stiffness
recovery; concrete; cyclic loading;

1. Introduction

The design of robust and accurate constitutive models for quasi-brittle ma-
terials accounting for cyclic loading effects is an essential step in the process of
predicting the response of civil engineering structures under complex loading,
and more specifically earthquakes.

Several modelling techniques have been developed at the macroscopic scale
to depict quasi-brittle materials behaviour.

i) Empirical models [1, 2, 3, 4] have been established following the publica-
tion of first uni-axial experimental results provided by [5]. Empirical mod-
els have therefore been developed mostly within a uni-axial framework.
The empirical description of uni-axial cyclic behaviour of quasi-brittle

∗Corresponding author
Email address: benjamin.richard@cea.fr (B. Richard)
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materials is highly representative of experimental behaviour, however the
lack of derivability of the constitutive equations and their uni-axial for-
mulation prevent them from being used to simulate full three-dimensional
structures.

ii) Micro-mechanical models [6, 7], on the contrary, provide a sound physical
framework. Constitutive equations obtained from homogenisation repro-
duce accurately experimentally observed phenomena. Despite such fea-
tures, micro-mechanical models have hardly ever been employed for large
scale structural simulations because they are highly computationally de-
manding implementation, in particular when homogenisation is realised
numerically. Furthermore, micro-mechanical models including cyclic ef-
fects are still unavailable for three-dimensional simulations [8, 9].

iii) Phenomenological models [10, 11, 12, 13, 14, 15], at last, thanks to well
developed theories such as continuum damage and plasticity, offer not only
a sound physical framework which is consistent with thermodynamic prin-
ciples, but also reasonable computational costs within a three-dimensional
framework. However they still suffer from a lack of numerical robustness
and of an accurate description of cyclic loading effects.

Toward the completion of three-dimensional concrete structures subjected to
cylic loading simulations, phenomenological models have inherent advantages.
However, the complexity of constitutive equations increases rapidly when trying
to reproduce phenomena observed under uni-axial cyclic loading. Indeed even
recently developed models are either not robust enough to simulate the complete
response of structures subjected to cyclic loading, or do not reproduce accurately
phenomena related to crack closure and friction (see fig. 1), as outlined by results
of the ConCrack international benchmark [16].
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Figure 1: Experimental material’s response under cyclic uni-axial loading [17].

Based on the uni-axial response of the phenomenological model proposed
in [18] (see fig. 2), a number of issues of phenomenological models impairing
structural computations related to cyclic loading can be highlighted:

• low regularity of the constitutive laws (discontinuous stiffness variations

2

https://www.researchgate.net/publication/256699329_Continuum_damage_mechanics_based_model_for_quasi_brittle_materials_subjected_to_cyclic_loadings_Formulation_numerical_implementation_and_applications?el=1_x_8&enrichId=rgreq-7ebd08dc-27bd-478c-a0aa-265c3741e847&enrichSource=Y292ZXJQYWdlOzI4MjU5NDE4NztBUzoyODIyNzI5OTAyODU4MzJAMTQ0NDMxMDUzNDQ4MQ==
https://www.researchgate.net/publication/245286171_Micromechanical_Analysis_of_Anisotropic_Damage_in_Brittle_Materials?el=1_x_8&enrichId=rgreq-7ebd08dc-27bd-478c-a0aa-265c3741e847&enrichSource=Y292ZXJQYWdlOzI4MjU5NDE4NztBUzoyODIyNzI5OTAyODU4MzJAMTQ0NDMxMDUzNDQ4MQ==
https://www.researchgate.net/publication/222362589_Inelasticity-damage-based_model_for_numerical_modeling_of_concrete_cracking?el=1_x_8&enrichId=rgreq-7ebd08dc-27bd-478c-a0aa-265c3741e847&enrichSource=Y292ZXJQYWdlOzI4MjU5NDE4NztBUzoyODIyNzI5OTAyODU4MzJAMTQ0NDMxMDUzNDQ4MQ==
https://www.researchgate.net/publication/229898016_Damage_model_for_concrete_-_like_coupling_cracking_and_friction_contribution_towards_structural_damping_first_uniaxial_applications?el=1_x_8&enrichId=rgreq-7ebd08dc-27bd-478c-a0aa-265c3741e847&enrichSource=Y292ZXJQYWdlOzI4MjU5NDE4NztBUzoyODIyNzI5OTAyODU4MzJAMTQ0NDMxMDUzNDQ4MQ==
https://www.researchgate.net/publication/276458395_Experimental_Study_of_Crack_Closure_on_Heterogeneous_Quasi-Brittle_Material?el=1_x_8&enrichId=rgreq-7ebd08dc-27bd-478c-a0aa-265c3741e847&enrichSource=Y292ZXJQYWdlOzI4MjU5NDE4NztBUzoyODIyNzI5OTAyODU4MzJAMTQ0NDMxMDUzNDQ4MQ==
https://www.researchgate.net/publication/240490049_An_anisotropic_elastoplastic-damage_model_for_plain_concrete?el=1_x_8&enrichId=rgreq-7ebd08dc-27bd-478c-a0aa-265c3741e847&enrichSource=Y292ZXJQYWdlOzI4MjU5NDE4NztBUzoyODIyNzI5OTAyODU4MzJAMTQ0NDMxMDUzNDQ4MQ==
https://www.researchgate.net/publication/256699646_Orthotropic_damage_coupled_with_localized_crack_reclosure_processing_Part_I_Constitutive_laws?el=1_x_8&enrichId=rgreq-7ebd08dc-27bd-478c-a0aa-265c3741e847&enrichSource=Y292ZXJQYWdlOzI4MjU5NDE4NztBUzoyODIyNzI5OTAyODU4MzJAMTQ0NDMxMDUzNDQ4MQ==


at stress sign changes) due to the consideration of stiffness recovery under
cyclic loading, later leading to numerical robustness issues [19, 20];

• inaccurately reproduced hysteresis loops (associated stress-strain state,
shape) when compared with experiments (see fig. 1), then implying poorly
estimated hysteretic dissipation.
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Figure 2: Simulated material response under cyclic uni-axial loading [18].

The first objective of this study is to enhance the efficiency of the model
proposed in [18] to achieve structural simulations. Specific attention is paid
to phenomena observed under cyclic loading. Issues encountered with the cur-
rent model are partly induced by a lack of experimental data, preventing a
finer mechanical description of the material behaviour from being established.
Experimental data on quasi-brittle materials Representative Volume Element
(RVE) subjected to cyclic loading are sparse due to control and repeatability
issues. Therefore the replacement of some laboratory experimentation by vir-
tual testing is investigated. A RVE is considered here to be approximately of
a 0.1 m characteristic length, such as the material can be considered homoge-
neous with respect to its different phases (i.e five times the size of the biggest
aggregate). The second objective of this paper is to illustrate the use of virtual
testing to complement laboratory experimentation to develop regularised and
accurate macroscopic constitutive models for quasi-brittle materials suited for
cyclic loading. A microscopic model based on the Discrete Element Method
(DEM) is utilised as a virtual testing machine [21]. Mesh dependencies of the
computed results, using the macroscopic model and the Finite Element Method
(FEM), will not be addressed in this paper. Techniques to circumvent such
dependencies being already numerous in the literature [22, 23, 24, 25].

The paper is outlined as follows. First, the microscopic model is briefly
introduced and a cyclic uni-axial test is performed. Second, the formulation
of the macroscopic model is established. Third, the cyclic features, as well as
mutli-axial fracture, of the macroscopic continuum model are characterised or
calibrated by means of the virtual reference, that is the microscopic model.
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Fourth, local integration algorithm and local validation of the proposed contin-
uum model are shown. Finally, the macroscopic continuum model is utilised in
member-scale simulations of the reinforced concrete shear wall of the ConCrack
international benchmark [26], which serve as validation.

2. Virtual testing machine

2.1. Microscopic modelling of quasi-brittle materials

For the virtual testing of samples at the material scale, a microscopic model
has been used. The model is a 2D particle-based model made of a combina-
tion of a network of Euler-Bernoulli beams [27, 28, 29, 30, 31], which is used
to reproduce cohesion and the fracture mechanisms between particles, and of
the DEM [32, 33], which allows realistic description of crack interactions thanks
to the integration of contact and friction mechanisms. Lattice and particles
are generated respectively thanks to Delauney triangulation and Voronoi tes-
sellation of the numerical sample (see fig. 3). Nodes generation being random,
implying irregular lattice and particles shape, further simulations results are al-
ways obtained from averaging multiple mesh draws of the same test results (e.g
50). The microscopic model is developed within a quasi-static framework to en-
able reasonable computational costs and to avoid the introduction of arbitrary
dynamic effects. The integration algorithm is an incremental version of classic
event driven integration schemes, to allow the computation of the solution as a
succession of stable equilibrium states, while accounting for other non-linearities
than fracture, namely contact and friction, which cannot be solved in a event
driven fashion.

(a) random disposition of centroid
nodes

(b) bi-dimensional polygonal mesh gen-
erated by Voronoi tessellation from the
left centroids distribution

Figure 3: Particles and lattice generation

This microscopic model as well as its integration algorithm are described in
detail in [21]. The validation of the model under multi-axial and cyclic loading,
and therefore with respect to mixed-mode fracture and contact mechanisms, has
been presented in [34]. The calibration procedure, also presented in [35], has
intentionally been kept simple so as to ease the use of the microscopic model
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as a virtual testing machine. The procedure can be achieved solely relying on
an elastic compression test to calibrate the two elastic parameters (α, Ē) of the
Euler-Bernoulli beams of the lattice (see eq. 1), a three-point bending test and
a splitting test to calibrate the two scale factors (λǫcr , λθcr ) and the common
shape factor (k) of the statistical distributions of the two thresholds (ǫcr, θcr)
utilised in beams failure criterion (see eq. 2), and a confined compression test to
calibrate the friction coefficient (µ) of the Coulomb frictional sliding threshold
(see eq. 3). Alternative calibration procedure for lattice model can be found in
[36].
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

















































FN,ij =
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(1)

where FN,ij , FT,ij and MZ,ij stand for, respectively, the normal force, the tan-
gent force and the bending moment in the beam linking particles i and j; ui

and θi, respectively, the displacements and the rotation of the particle i; nb,ij

and tb,ij , respectively, for the normal and tangent vectors to the cross-section
of the beam linking particles i and j; and Ab,ij , Ib,ij and lb,ij , respectively, the
cross-section, the moment of inertia, and the length.

i

j

+

+

θi

θj

E, α, Ab

lbui

uj

Figure 4: Two cohesively linked particles

ǫij

ǫcrij
+

|θi − θj |

θcrij
> 1 (2)

where ǫij stands for the strain in the beam linking particles i and j.

||F fric,ij || = min
(

||F el
fric,ij ||, µ||F cont,ij ||

)

(3)

where F cont,ij and F fric,ij stand respectively for the normal and the tangent
frictional forces between two contacting particles i and j.
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The entirety of the following simulations computed with the microscopic
model calibrated solely using experimental results provided in [37], parameters
value is recapped in the table 1.

lp (m) α Ē (GPa) λǫcr λθcr k µ

0.002 0.83 46 4.34 10−4 1.85 10−3 1.8 0.7

Table 1: Calibrated value of the microscopic model’s parameters for concrete based on stan-
dard tests from [37].

2.2. Simulation of a uni-axial cyclic test

The microscopic model is used to simulate a uni-axial cyclic test on con-
crete, from which the results will later serve as a reference and be exploited to
characterise observed phenomena such as progressive stiffness recovery while un-
loading the specimen. Once again, it is important to note that results from such
tests are sparse and only quantitative in the literature. Induced cyclic effects
are strongly dependent on the test setup as well as on the concrete microscopic
structure, and only few experimental results are available [5, 17], therefore there
does not exist such thing as a reference experimental result for uni-axial cyclic
tests.

The simulated setup is taken from the experiments reported in [17] (see
fig. 5). Only the concrete specimen is modelled using the microscopic model,
loading supports are not included in the simulation since their mechanical and
geometrical characteristics are not known. The concrete specimen is a rect-
angular prism of 0.3 m height, and 0.15x0.15 m2 cross-section. The specimen
presents two notches at mid-height along the depth.

6



Figure 5: Uni-axial cyclic test experimental and numerical setups [17].

Boundary conditions are prescribed directly at the specimen’s top and bot-
tom ends following prescribed and measured motions during experimental test-
ing in [17]. Prescribed displacement consists in successive cycles of damaging
tension and elastic compression (see fig. 6). Prescribed rotation is extrapolated
from experimental measurements of the rotation at each cycle’s tensile peak
load (see fig. 7) and is applied as linear gradient of displacement on the top of
the sample (see fig. 5).

In between measured values, the rotation is considered to evolve linearly
with respect to pseudo-time.
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Figure 6: Applied axial strain during the uni-axial cyclic test [17].
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Figure 7: Measured rotation of the top surface of the sample after each loading cycle during
the uni-axial cyclic test [17].

The macroscopic stress-strain response obtained through this simulation is
presented in figure 8. The response features qualitatively all the phenomena
usually observed during a uni-axial cyclic test : progressive stiffness recovery
at the tension to compression transition; crescent-shaped hysteresis loops; and
residual strains alleviated in compression. The microscopic model result can be
compared qualitatively to experimental results (see fig. 1), although only crack
mouth opening displacement (sample notches average spacing) is provided. The
crack pattern obtained at the end of this simulation is also provided (see fig. 9).
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Figure 8: Simulated material’s response under cyclic uni-axial loading with the microscopic
model.

Figure 9: Uni-axial cyclic test crack pattern at the end of the simulation.

Boundary conditions have an important influence on tension test response
[31]. It should be noted that if the rotation of the specimen’s ends had been
unrestrained, observed phenomena would have not been so intense. Rotation of
the specimen’s ends is necessarily associated to these phenomena, however it can
either be a cause (misalignment of the actuators), or a consequence (asymmetric
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crack closure along the specimen section due to, for example, early age effects
[38]). Nevertheless, such microscopic mechanisms are not clearly understood,
which justifies the choice to directly impose rotations at specimen’s ends.

The reference simulation setup is now established. The general formulation
of the macroscopic model is now proposed. Results obtained from the reference
simulations will later be used to characterise the progressive stiffness recovery
phenomena.

3. Formulation of the continuum constitutive model

The phenomenological macroscopic model is formulated using a rather classic
decomposition of the total stress in the RVE, as in [15]. It is considered that
the total stress σ can be split in two independent parts:

σ = σm + σf (4)

with the stress in the cracked continuum medium σm, neglecting any interaction
between cracks, classically modelled with a damage model; and the stress in
cracks when closed σf .

Helmholtz’s free energies Ψm and Ψf respectively associated with the two
stress tensors are defined, and compose the total free energy of the specimen:

Ψ = Ψm +Ψf (5)

At this point, both thermodynamic potentials remain completely unspeci-
fied. The free energy Ψm is completely detailed in the next paragraph based
on existing models. In contrast, the free energy Ψf is partially specified, the
virtual testing method described in the next section is required to establish its
formulation entirely.

3.1. Modelling of fracture processes

Fracture processes are modelled by means of the continuum damage theory.
In general, the simpler the damage variable is kept, the more robust the proposed
macroscopic model is. Therefore, in view of the structural applications of the
proposed model, an isotropic damage model is formulated, implying a unique
scalar damage variable. The free energy associated to the cracked continuum
medium simply writes:

Ψm =
1

2
(1−D) ǫ : C : ǫ+Ψm,D(z) (6)

with D the isotropic damage variable, ǫ the second-order total strain tensor, C

the fourth-order Hooke’s tensor, z the isotropic hardening variable, and Ψm,D

the energy locked through the damage process, also called consolidation func-
tion.
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The formulation of the non-associated pseudo-potential of dissipation ϕm is
based a Mazars-like failure criterion [39] expressed in terms of energy variables.

ϕm = Ȳ − (Y0 + Z) (7)

where Z stands for the thermodynamic force associated to z, Ȳ the energy
rate Ȳ = 1

2
Eǫ0ǫ

eq which is written as a function of Mazars equivalent strain

ǫeq =
√

〈ǫ〉+ : 〈ǫ〉+, ǫ0 the elastic limit strain, and Y0 the elastic limit energy

rate written in a similar fashion Y0 = 1
2
Eǫ20.

The asymmetry between traction and compression loading is only considered
through its consequence on the peak load and the softening behaviour of the
material, and is introduced in the damage variable evolution law derived from
Ψm,D. The formulation of Ψm,D is adapted from the formulation proposed in
[40]. An additional variable κ is introduced to consider the effect of a confining
pressure on crack propagation, namely a higher peak load value and a more
ductile behaviour:

dΨm,D

dz
(z) = −

κ

B0

ln

[

Y0

Ȳ
(1 + z)

]

(8)

where B0 stands for a parameter controlling the softening behaviour and κ

computed as follows:

κ = 1 + k0

(〈

σm
〉

−
:
〈

σm
〉

−
(

σm
)

:
(

σm
)

)1/2

= 1 + k0

(〈

C : ǫ
〉

−
:
〈

C : ǫ
〉

−
(

C : ǫ
)

:
(

C : ǫ
)

)1/2

(9)

where k0 stands for a parameter measuring the influence of the confining pres-
sure, and therefore only influences the failure behaviour when cracks are induced
indirectly (e.g. in compression). The direct tension behaviour remains uninflu-
enced, indeed κ is then equals to 1.

Based on consistency conditions (ϕm, ϕ̇m) the damage variable evolution
law may finally be written:

D = 1−
Y0

Ȳ
exp

[

−
B0

κ

(

Ȳ − Y0

)

]

(10)

3.2. Modelling of crack closure phenomena

Constitutive laws related to cyclic effects are formulated in two distinct steps.
First, a non-linear elastic modelling is utilised to reproduce the progressive crack
closure and the regain of stiffness induced by initiated contacts in cracks when
unloading a damaged sample in tension. Second, a dissipative mechanism is
introduced by means of plastic model utilised to reproduce friction initiated at
the surface of closing cracks and associated hysteresis effects.

3.2.1. Stiffness recovery

The mechanical behaviour of cracks described by the stress tensor σf is first

considered elastic. σf is defined as a non-linear function of the strain tensor
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ǫf = D×ǫ, which could be called the homogenised contribution of crack openings
to the total strain of the RVE. Such strain tensor definition may also be found
in [41].

The following assumption is made on the evolution of σf with respect to ǫf :

σ̇f = ϑ
(

ǫf
)

C : ǫ̇f (11)

The function ϑ is chosen to be a scalar, in other words, the tangent modulus
of the cracks stress-strain relationship is proportional to the undamaged Hooke’s
elastic tensor. Therefore ϑ represents the part of the lost stiffness due to cracking
which is recovered thanks to crack closure, and can only take values ranging from
0 (when cracks are completely opened) to 1 (when cracks are completely closed).
Since ϑ evolves according to the materials loading state, it is considered to be
dependent on ǫf .

Set aside its physical meaning, ϑ can be considered as a numerical regulari-
sation of the multiple Signorini’s contact problem [42] induced by crack closure.
ϑ should then be formulated to evolve from 0 to 1 in sufficiently regular man-
ner to avoid discontinuities of the constitutive laws or of their derivatives. The
final formulation of ϑ is proposed and physically justified in the next section by
means of a virtual analysis of the evolution of the proportion of closed cracks
during a uni-axial cyclic test.

As a function of ǫf , the scalar aspect of ϑ is obtained by means of a scalar
indicator of this strain tensor. A simple indicator dependent on the sign of the
loading is required, so as to observe stiffness recovery passing from tension to
compression. Therefore, the first invariant is used. The elastic part of the free
energy associated to crack behaviour is then written as:

Ψf,e =

∫ t=T

t=0

(

∫ t=T

t=0

ϑ
(

I1
(

ǫf
))

C :
dǫf

dt
dt

)

dǫf

dt
dt (12)

An initial condition can be set for ϑ, in order to ensure that the free energy
Ψf,e is C2, such condition would be that ϑ remains integrable (C0).

3.2.2. Hysteresis effects

The explanation of hysteresis effects relying on frictional sliding occurring
at the cracks surfaces justifies a modelling method based on plasticity theory
[15]. In consequence, a perfect plasticity model along with a Drucker-Prager
criterion is utilised (see eq. 13).

ϕf =
√

J2
(

σf
)

+ µ0I1
(

σf
)

(13)

where µ0 stands for a parameter which could be assimilated to a ”friction coef-
ficient”.

Because of perfect plasticity, the free energy Ψf is reduced to an elastic part
Ψf,e and introduces a single internal variable, the plastic strain accumulated
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through sliding between cracks ǫf,p, defined as ǫf = ǫf,e + ǫf,p:

Ψf = Ψf,e
(

ǫf − ǫf,p
)

=

∫ t=T

t=0

(

∫ t=T

t=0

ϑ
(

I1
(

ǫf − ǫf,p
))

C :
d
(

ǫf − ǫf,p
)

dt
dt

)

d
(

ǫf − ǫf,p
)

dt
dt

(14)

A non-associated dissipation potential is utilised to compute flow directions:

ϕ̄f =
√

J2
(

σf
)

(15)

Thus, the plastic strain ǫf,p refers to an isochoric transformation and its first

invariant is null. In addition, ǫf,p is independent on ǫf . Then, ϑ
(

I1
(

ǫf − ǫf,p
))

=

ϑ
(

I1
(

ǫf
))

, hence:

Ψf =

∫ t=T

t=0

(

∫ t=T

t=0

ϑ
(

I1
(

ǫf
))

C :
dǫf

dt
dt

)

dǫf

dt
dt−

1

2
ϑ
(

I1
(

ǫf
))

ǫf,p : C : ǫf,p

(16)

Finally:

Ψf = Ψf,e
(

ǫf
)

−
1

2
ϑ
(

I1
(

ǫf
))

ǫf,p : C : ǫf,p (17)

Conditions to ensure that the free energy Ψf is C2 are not changed by the
introduction of frictional sliding, it is still required that ϑ be C0.

Regarding the physical significance of the chosen criterion, the J2 part refers
directly to shear occurring in cracks, while I1 rather refers to cracks surface
normal pressure. In consequence, when J2 exceeds µ0I1, frictional sliding is
observed. Furthermore, the J2 part depends on ϑ through σf , and therefore
depends on the proportion of closed cracks. Thus when all the cracks are opened
the J2 is negligible and as expected no friction force is observed.

4. Virtual testing applications

4.1. Characterisation of crack closure

The formulation of the function ϑ will now be defined. This process is
undertaken using the virtual testing machine aforementioned and the discrete
simulations of the uni-axial cyclic test.

The function ϑ, as the proportion of closed cracks, represents the proportion
of cracks in which forces are transmitted across the crack faces and contribute
to the stiffness recovery of the specimen. The evolution of ϑ is characterised
by analysing the evolution of the ratio of number of contacts detected and the
number of cracks initiated in the virtual material sample during the simulation
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of the uni-axial cyclic test. The analysis is carried out for different damage
levels, that is different maximum crack strains ǫfmax. The maximum crack strain
tensor is defined as ǫf

max
= ǫf,tm , where tm stands for the pseudo-time such as

I1
(

ǫf,tm
)

= max
t0≤t̄≤t

[

I1
(

ǫf,t̄
)]

, where t stands for the current pseudo-time. The

figure 10 shows the evolution of the proportion of closed cracks during unloading
phases.
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Figure 10: Dependency of the proportion of closed cracks to ǫ
f
max evaluated with the micro-

scopic model during unloading.

Independently of ǫfmax, the proportion of closed cracks follows a sigmoidal
evolution with respect to ǫf . To determine an analytical expression for ϑ let us
consider the probabilistic event ”a crack closes”, ϑ is the distribution function
of this event. From the results obtained with the microscopic model, it appears
that this event follows a symmetrical distribution centred on ǫf = 0, therefore it
could be assumed that the event ”a crack closes” follows a Gaussian distribution
of zero mean. ϑ is then expressed as a Gaussian distribution function:

ϑ = 1−
1

1 + exp
[

−f × I1
(

ǫf
)] (18)

where the function f is associated with the variance of the Gaussian distribution.
The maximum crack strain ǫfmax affects the evolution of the proportion of

closed cracks (see fig. 10). The more damaged the specimen, the bigger the
variance of the event ”a crack closes”. The function f is finally chosen to
account for this dependency:

ϑ = 1−
1

1 + exp

[

− α0

I1

(

ǫf
max

) I1
(

ǫf
)

] (19)

where α0 stands for a parameter controlling a reference variance of the event ”a
cracks closes”.
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Figure 11: Dependency of the proportion of closed cracks to ǫ
f
max evaluated with the function

ϑ for α0 = 6.5 during unloading.

The formulated expression of ϑ is a sigmoidal function, therefore is contin-
uously integrable. Continuity of the total free energy is therefore ensured.

Now that the expression of ϑ is defined, the expression of the cracks stress
rate tensor (11) can be integrated, leading to the following expression of the
cracks stress tensor:

σf = C :



ǫf −
ǫf
max

α0

× log



1 + exp



−
α0

I1

(

ǫf
max

) I1
(

ǫf
)











 (20)

4.2. Calibration of the frictional sliding

Unlike crack closure, efficient and robust modelling techniques already ex-
ist to reproduce frictional sliding at the macroscopic scale based on plasticity
theory. Although, the introduced parameters remain to be calibrated. As the
Drucker-Prager criterion for the initiation of sliding between cracks has already
been presented (see eq. 13), the parameter µ0 has to be evaluated. Instead
of calibrating the value of µ0 arbitrarily, a methodology based on the virtual
testing machine is once again proposed.

By means of the microscopic model it is possible to estimate the dissipated
energy specific to frictional sliding, among other dissipation mechanisms. There-
fore, the parameter µ0 is calibrated in order to make the friction specific dissi-
pation in concrete RVEs modelled using the microscopic model and the macro-
scopic continuum model (i.e a Gauss point) identical.

The comparison of both models is realised during the simulation of a com-
plete cycle of uni-axial cyclic test, namely loading, unloading, reloading. The
amplitude of the cycle is arbitrarily chosen to vary from ǫfmax = 2.0 × 10−4 to
ǫfmax = −1.0 × 10−4 back to ǫfmax = 2.0 × 10−4. Such amplitudes correspond
to strains where the most dissipation through friction, and therefore hysteresis
effects, is expected due to cracks opening and closure.
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Friction related dissipated energies are respectively computed from the fol-
lowing formulations:

• for the microscopic discrete model, the dissipated energy is incrementally
computed as the sum of the variations of dissipated energies for every
contact between particles i and j detected, thus:

Ed,t+1
µ = Ed,t

µ +
∑

i=1,...,nparticules





∑

j=1,...,ni
contact

1

2

(

T
(

F t+1
fric,ij + F t

fric,ij

)

.
(

∆δus,ijtc,ij
)t+1

)



 (21)

where F fric,ij and ∆δus,ij respectively stand for the friction force and the
increment of relative sliding displacement between particles i and j, t the
current time-step, and ni

contact the amount of contacts detected on the
particle i;

• for the macroscopic continuum model, the dissipated energy is incremen-
tally computed as the integral over the representative volume Ω of the
tensor product of the cracks stress σf and the increment of plastic cracks

strain ∆ǫf , thus:

Ec,t+1
µ = Ec,t

µ +
1

2

∫

Ω

[(

σf,t+1 + σf,t
)

: ∆ǫf,p,t+1
]

dV (22)

Evolutions of the computed energies during the aforementioned loading cy-
cle are presented in figure 12. Both dissipated energies remain null during the
loading step, cracks are completely opened. Then, a significant increase is ob-
served during unloading, while cracks progressively close. During reloading,
both energies evolutions stagnate first since cracks are completely closed, be-
fore opening progressively leading to another increase of the dissipated energy
related to friction.
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Figure 12: Sensitivity of the friction related dissipated energy of the continuum model to the
parameter µ0.

The parameter µ0 is then evaluated at µ0 = 2.82. It is added that the
friction related dissipated energies computed with both models present similar
trends, which provides confidence in the choice of the perfect plastic modelling,
along with a Drucker-Prager criterion, of crack frictional sliding mechanism.

4.3. Calibration of multi-axial failure

The parameter k0 presented in the formulation of the continuum medium
behaviour affects directly multi-axial failure behaviour as explained above. How-
ever, the parameter k0 is intricate to calibrate since it is used to adjust energy
dissipation depending on the loading case, unlike Y0 or B0, respectively analyt-
ically linked to the limit elastic limit strain and the fracture energy. Therefore,
k0 is calibrated so as to fit the complete response (peak-load and softening
behaviour) of loading path involving several fracture modes (see fig. 14).

Member-scale simulations described below involve the simulation of a shear
wall. Therefore, to ensure a quantitative shear response of the macroscopic
model, the calibration of k0 is carried out on material-scale shear test. The
virtual testing machine is then taken advantage of to produce a reference result
(see fig. 13 and 14), which similarly to uni-axial cyclic tests remain rare in the
literature.
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Figure 13: Simple shear test simulation with the virtual testing machine.

The parameter k0 is then evaluated at k0 = 4.5. It has to be noted that
when k0 equals unity the damage model used to describe the continuum medium
is exactly equivalent to Mazars model [39]. The introduction of the function κ

and therefore of the parameter k0, are thus justified by allowing the multi-axial
failure behaviour to be controlled, and specifically shear failure behaviour. This
behaviour is rarely accurately reproduced with a unique scalar damage variable.
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Figure 14: Sensitivity of the simple shear response of the continuum model to the parameter
k0.

5. Local integration algorithm

The integration algorithm of the complete model, including damage, non-
linear elasticity and plasticity is presented in figure 15. The algorithm is explicit
with respect to damage and non-linear elasticity, and implicit with respect to
plasticity.
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Figure 15: Flowchart of the integration algorithm of the complete continuum model.
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6. Local responses of the continuum model

Parameters of the continuum medium part of the model are calibrated by
equivalence with macroscopic reference results provided by the virtual testing
machine on a square sample of 0.1 m side length. The tension resistance, the
tension fracture energy, and the compression resistance are respectively utilised
to calibrate ǫ0, B0 and k0 (see tab. 2). Throughout this section, results plotted
with dashed lines refer to the results provided by the virtual testing machine,
and plain lines refer to results obtained with the continuum model.

E (GPa) ǫ0 B0 (kJ−1.m3) k0 α0 µ0

37 1.0× 10−4 4 (Gf = 56 J.m−2) 4.5 6.5 2.82

Table 2: Calibrated values of the continuum model’s parameters for the local validation.

6.1. Uni-axial cyclic response

The uni-axial cyclic test response obtained with the macroscopic model is
fairly close to the reference response obtained with the virtual testing machine
(see fig. 8 and 16). First, the addition of the non-linear crack-closure model
allows to reproduce the progressive stiffness recovery as well as residual strains
which disappear in compression (see fig. 16b). Second, the addition of the plas-
tic model of crack behaviour, enables the emergence of the hysteretic behaviour,
crescent-shaped hysteresis loops are observed at accurate stress levels (see fig.
16c). Thus, dissipative mechanisms are activated for appropriate solicitations
amplitudes.
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Figure 16: Uni-axial cyclic response of the continuum model.

6.2. Induced responses

A uni-axial cyclic pure compression test is simulated (see fig. 17). Friction
between loading supports and the sample strongly influences the inelastic com-
pression response. Therefore, so as to ease the comparison, for both models, no
friction in between the sample and the loading supports has been considered.
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Figure 17: Pure compression test simulation with the virtual testing machine.

The overall compression response, peak-value and softening behaviour, ob-
tained with the continuum model is similar to the response obtained with the
virtual testing machine. Such results are interesting, knowing that a single
scalar damage variable is introduced in the continuum model. It is also quite
interesting to note the contribution of the crack behaviour to the compression
response. Important hysteresis loops can be observed as a consequence of crack
frictional sliding. Furthermore, crack behaviour increases the value of the com-
pression resistance, due to the formulation of the function ϑ, which depends on
the first invariant of the cracks strain tensor.
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Figure 18: Uni-axial compression cyclic response of the continuum model.

The failure enveloppe obtained with the continuum model is similar to the
failure envelope of the discrete model (see fig. 19), as long as bi-compression
loading paths are not considered. Once again due to the dependence of ϑ on the
first invariant of the cracks strain tensor, even though damage increases, cracks
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are immediately considered as closed since the first invariant is highly negative.
Thus, with this model, failure can never be reached for bi-compression loading
paths if crack behaviour is accounted for.
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Figure 19: Failure enveloppe of the continuum model.

The simulation of uni-axial and bi-axial compression tests has shown that
under negative hydrostatic pressures (I1

(

ǫf
)

≤ 0), although the damage variable
increases, its effects on stiffness and softening are immediately compensated by
a value of ϑ close to 1. Moreover, stiffness degradation can only be observed
if sliding in cracks is accounted for and occurs, in other words if elasto-plastic
behaviour of crack is considered and if the cracks stress is highly deviatoric.
Indeed, stiffness degradation can be observed under uni-axial compression but
never under bi-axial compression. When crack sliding occurs, since perfect
plasticity is considered here, the shear stiffness associated to crack behaviour is
lost. A consequence of this observation is that the ”friction” coefficient µ0 highly
influences the compression peak-load, independently of the tension behaviour.

7. Structural validation of the continuum model

The model is now validated using data from a reinforced concrete wall sub-
mitted to horizontal shear forces. The continuum model has shown interesting
responses under tension, compression and shear, as well as cyclic loading, which
is why the simulation of such structure is attempted. This structure has been
tested in the ConCrack benchmark as part of the CEOS.fr project [43]. The
simulation of this case study allows the testing of two aspects of the continuum
model:

• its numerical robustness, because the setup implies local shear loading,
multiple cracking locations, and structural size dimensions; in addition few
accurate numerical results are available according to conclusions drawn
from the ConCrack benchmark [16];
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• its representativeness with respect to phenomena observed under cyclic
loading, because cyclic loading is applied.

The proposed continuum model is utilised to describe the inelastic part of
the wall, it is calibrated solely, with the exception of the few parameters given
in the experimental report, using the virtual testing machine. Responses to
standard tests are prescribed with the microscopic model and used as references
for the calibration of the macroscopic continuum model’s parameters.

The continuum model has been implemented within the three-dimensional
finite element software Cast3M [44] developed at the French Sustainable Ener-
gies and Atomic Energy Commission (CEA) to simulate the complete structure’s
response.

7.1. Modelling

Details about the shear wall’s geometry and a few materials properties can
be found in [43, 26]. Two mesh densities have been investigated, with elements
side length hc = 0.1 m or hc = 0.03 m.

The concrete structure is modelled using eight-noded hexahderal finite el-
ements. The upper and lower parts of the wall, with increased thickness, are
considered to remain elastic (in green, see fig. 21). The central thinner part
of the wall is modelled with the proposed model (in gray, see 21). Inelastic
parameters are entirely calibrated from results provided by the virtual testing
machine, with the exception of the elastic strain limit, along with elastic param-
eters, which were given in the benchmark report [43]. Calibrated parameters
value are given in the table 3. Fracture energy regularisation depending on
elements size is implemented [22].

E (GPa) ǫ0 B0 (kJ−1.m3) k0 α0 µ0

22 1.5× 10−4 4 4.5 6.5 2.82

Table 3: Calibrated values of the continuum model’s parameters for the member-scale simu-
lations.

The rebars are modelled using uni-axial Timoshenko beam elements in order
to reproduce accurately the shear stiffness of the structure (in orange, red and
purple, see fig. 21). Steel rebars are modelled using an isotropic plastic model,
which parameters are directly taken from [43], that is, a 180 GPa Young’s
modulus, a 550 MPa elastic stess limit and a 10% failure strain. Steel-concrete
interface is assumed to be perfect.
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Figure 20: Prescribed load during the alternative cyclic test.

Horizontal forces are alternatively applied (see fig. 20) on the loading sur-
faces (in deep blue, see fig. 21) so as to only generate compression at the
neighbourhood of the loading surfaces in the concrete.

Figure 21: Mesh of the shear wall (with hc = 0.1 m).

7.2. Simulation

The global response obtained with the proposed model is satisfactory with
respect to the two following aspects. The complete response to the prescribed
load has been successfully simulated (see fig. 22b), while few complete three-
dimensional results have previously been obtained during the ConCrack bench-
mark [16]. This confirms the inherent numerical robustness of the continuum
model. The achieved robustness is mostly explained by the continuity of the
established constitutive laws, to which can be added to a fully explicitly local
integrated continuum model with the exception of plasticity (see fig. 15).

Good representativeness is also noticed. Regarding the fracture mechanisms,
simulated results show that the global response is well estimated, both the elas-
tic limit or the stiffness of the cracked structure, are accurately evaluated. Re-
garding the cyclic effects, the global response is symmetrical, indeed stiffness
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recovery is accurately observed when the horizontal loading direction is inverted
and peak loads are identical on both loading directions. This observation implies
that the crack closure mechanism is accurately accounted for and reproduced
even for member-scale simulations. Because of the isotropic damage description,
if stiffness recovery had not been accurately reproduced, a symmetrical global
response could not have been obtained. This consists in a first validation of
the chosen ϑ formulation. The global response presents hysteresis loops, yet
the steel-concrete interface is non-degradable and steel rebars remained elastic
during the whole simulation. Consequently, the observed hysteresis loops are in-
duced by the continuum model and confirms that frictional sliding is reproduced
in member-scale simulations.

However some comments can be added regarding the representation of fric-
tional sliding, which differs from experimented one (see fig. 22a). Therefore,
this simulation is only a partial validation of the modelling of hysteresis effects.
Nevertheless, such shape of hysteresis loops might be explained by mechanisms
unrelated to concrete’s behaviour, namely steel-concrete interface degradation
and friction [45, 46, 47].
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Figure 22: Global response of the shear wall to reverse loading.

Regarding fracture mechanisms, cracking patterns, although presenting ac-
curate orientation of cracks, underestimate cracks density. Regarding cyclic
effects, cracking patterns bring further validation of the mechanical description
proposed in the continuum model. In addition to the symmetrical global re-
sponse, symmetrical cracking patterns have been obtained even for high-loading
cycles (see fig. 23). Furthermore, it can be noticed that when loading is inverted
that longitudinal strain localisation associated to crack opening homogenises
anew. In other words, cracked compressed zones of the wall behave as contin-
uum due to crack closure and induced contact. These observations made on the
cracking patterns are further validations of the accurate reproduction of crack
closure mechanism.
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(a) experiment (4.2 MN, ǫxx × 5.10−2)
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Figure 23: Longitudinal strain field ǫxx in the shear wall under reverse loading.

8. Conclusion

The objective of the present paper was to propose a continuum model for
quasi-brittle materials able to reproduce phenomena observed under cyclic load-
ing, while remaining sufficiently robust to simulate the behaviour of real struc-
tures. The formulation of macroscopic constitutive laws has been established
using a virtual testing approach. The virtual testing approach, based on a par-
ticular model, has been illustrated and proved to be efficient to characterise and
calibrate quantities, which could not have been reached using laboratory exper-
imentation: the proportion of closed cracks and the specific dissipated energy
related to friction and even the response to a simple shear test.

A model framework for simulating quasi-brittle materials submitted to cyclic
loading has been developed on the basis of the model proposed in [18]. The
continuity of the original model has been improved introducing the distribution
function of a statistical Gaussian process to regularise the homogenised contact
problem induced by crack closure. However thermodynamical consistency of
the model has not been proved. An homogenised cracks stress tensor, on which
a perfect plastic model has been applied, to reproduce phenomena related to
frictional sliding of cracks surfaces. Such modelling choices led to satisfactory
results, namely crescent-shaped and accurately positioned hysteresis loops. The
quality of the formulated and calibrated model has been validated at the member
scale by the simulation shear wall under reverse loading. The simulation of the
complete loading path has been achieved proving the numerical robustness of
the proposed continuum model. The accurate consideration of crack closure and
friction has also been observed at the member scale which served as a validation
of the cyclic effects modelling.

A last comment should be added on the dissipative behaviour of the simu-
lated structure. It has been explained that the continuum concrete model, is
the main, if not the only, dissipation source in the structure model, since re-
bars have remained elastic during the whole simulation. Therefore, concrete’s
crack sliding is the only active dissipative mechanism during the simulation
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under quasi-static reverse cyclic loading. Such mechanical behaviour is typi-
cal of highly reinforced structures found in nuclear power plants. Even though
hysteresis loops area is well underestimated when compared with experimental
results, this area is clearly non-negligible. Efforts made towards the accurate
reproduction of the dissipative mechanisms observed uni-axial cyclic loading are
thus justified, even when member-scale simulations are considered.
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[10] P. Ladevèze, On an anisotropic damage theory, in: Proc. CNRS Int. Coll.
351 Villars-de-Lans, Failure criteria of structured media, J. P. Boehler ed.
1993, 1983, pp. 355–363.

[11] J. C. Simo, J. Ju, Strain and stress based continuum damage models for-
mulation, International Journal of Solids and Structures 23 (1987) 821–840.

[12] G. Meschke, R. Lackner, H. A. Mang, An anisotropic elastoplastic-damage
model for plain concrete, International Journal for Numerical Methods in
Engineering 42 (4) (1998) 703–727.

[13] F. Ragueneau, C. La Borderie, J. Mazars, Damage model for concrete like
materials coupling cracking and friction, contribution towards structural
damping: first uniaxial application, Mechanics Cohesive Frictional Materi-
als 5 (2000) 607–625.

[14] M. Matallah, C. La Borderie, Inelasticity-damage-based model for numer-
ical modeling of concrete cracking, Engineering Fracture Mechanics 76 (8)
(2009) 1087–1108.

[15] A. Sellier, G. Casaux-Ginestet, L. Buffo-Lacarrière, X. Bourbon, Or-
thotropic damage coupled with localized crack reclosure processing. part
i: Constitutive laws, Engineering Fracture Mechanics 97 (2013) 148–167.

[16] L. Buffo-Lacarriere, C. Rospars, A. Delaplace, A. Duong, L. Jason, Inter-
national benchmark concrack: Synthesis of the results, in: Proceeding of
ConCrack 2 Workshop, ACI, 2011.

[17] O. Nouailletas, C. L. Borderie, C. Perlot, P. Rivard, G. Ballivy, Experimen-
tal study of crack closure on heterogeneous quasi-brittle materials, Journal
of Engineering Mechanics (2015) 04015041.

[18] B. Richard, F. Ragueneau, Continuum damage mechanics based model for
quasi brittle materials subjected to cyclic loadings: Formulation, numer-
ical implementation and applications, Engineering Fracture Mechanics 98
(2013) 383–406.

[19] I. Mihai, A. Jefferson, Smoothed contact in a micromechanical model for
cement bound materials, Computers & Structures 118 (2013) 115–125.

[20] A. Jefferson, I. Mihai, The simulation of crack opening–closing and aggre-
gate interlock behaviour in finite element concrete models, International
Journal for Numerical Methods in Engineering.

[21] M. Vassaux, B. Richard, F. Ragueneau, A. Millard, A. Delaplace, Lattice
models applied to cyclic behavior description of quasi-brittle materials:
advantages of implicit integration, International Journal for Numerical and
Analytical Methods in Geomechanics 39 (7) (2015) 775–798.

28



[22] A. Hillerborg, M. Modeer, P. E. Petersson, Analysis of crack formation
and crack growth in concrete by means of fracture mechanics and finite
elements, Cement and Concrete Research 6 (1976) 773–782.
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ment non linéaire et à la rupture du béton de structure, Ph.D. thesis, Uni-
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