A. R. Amaral, On the exact solution of a facility layout problem, European Journal of Operational Research, vol.173, issue.2, pp.508-518, 2006.
DOI : 10.1016/j.ejor.2004.12.021

A. R. Amaral, A mixed 0-1 linear programming formulation for the exact solution of the minimum linear arrangement problem, Optimization Letters, vol.8, issue.1, pp.513-520, 2009.
DOI : 10.1007/s11590-009-0130-0

G. Appa, D. Magos, and I. Mourtos, LP Relaxations of Multiple all_different Predicates, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp.364-369, 2004.
DOI : 10.1007/978-3-540-24664-0_25

T. C. Biedl, T. Bläsius, B. Niedermann, M. Nöllenburg, R. Prutkin et al., Using ILP/SAT to determine pathwidth, visibility representations, and other grid-based graph 455 drawings, Graph Drawing, pp.460-471, 2013.

H. L. Bodlaender, F. V. Fomin, A. M. Koster, D. Kratsch, and D. M. Thilikos, A Note on Exact Algorithms for Vertex Ordering Problems on Graphs, Theory of Computing Systems, vol.42, issue.3, pp.420-432, 2012.
DOI : 10.1007/s00224-011-9312-0

A. Caprara, A. N. Letchford, and J. Salazar-gonzález, Decorous Lower Bounds for Minimum Linear Arrangement, INFORMS Journal on Computing, vol.23, issue.1, pp.26-40, 2011.
DOI : 10.1287/ijoc.1100.0390

N. Cohen, D. Coudert, D. Mazauric, N. Nepomuceno, and N. Nisse, Tradeoffs in process strategy games with application in the WDM reconfiguration problem, Theoretical Computer Science, issue.35, pp.4124675-4687, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00495443

D. Coudert, F. Huc, D. Mazauric, N. Nisse, and J. Sereni, Reconfiguration of the routing in WDM networks with two classes of services, Optical Network Design and Modeling (ONDM), pp.1-6, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00423453

D. Coudert, S. Perennes, Q. Pham, and J. Sereni, Rerouting requests in WDM networks Characterization of graphs and digraphs with small process number, Proc. AlgoTel, pp.17-20, 2005.

J. Díaz, J. Petit, and M. Serna, A survey of graph layout problems, ACM Computing Surveys, vol.34, issue.3, pp.313-356, 2002.
DOI : 10.1145/568522.568523

M. Ganardi, Matching-based algorithms for computing treewidth

M. Garey, D. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science, vol.1, issue.3, pp.237-267, 1976.
DOI : 10.1016/0304-3975(76)90059-1

M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth, Complexity Results for Bandwidth Minimization, SIAM Journal on Applied Mathematics, vol.34, issue.3, pp.477-495, 1978.
DOI : 10.1137/0134037

M. R. Garey, D. S. Johnson, I. W. Computers, and C. Freeman, A guide to the theory of NP-completeness, Series of Books 485 in the Mathematical Sciences, 1979.

M. Grötschel, M. Jünger, and G. Reinelt, A Cutting Plane Algorithm for the Linear Ordering Problem, Operations Research, vol.32, issue.6, pp.1195-1220, 1984.
DOI : 10.1287/opre.32.6.1195

M. Grötschel, M. Jünger, G. Reinelt, and F. Gurski, Facets of the linear ordering polytope Linear programming formulations for computing graph layout parameters, Mathematical Programming, pp.43-60, 1985.

I. Ilog, CPLEX Optimization Studio 12.6.2

N. G. Kinnersley, The vertex separation number of a graph equals its pathwidth. Infor- 495 mation Processing Letters, pp.345-350, 1992.

A. M. Koster, ILP formulation for treewidth

J. Lee, All-different polytopes, Journal of Combinatorial Optimization, vol.6, issue.3, pp.335-352, 2002.
DOI : 10.1023/A:1014804110661

M. C. López-locés, N. Castillo-garcía, H. J. Fraire, H. , P. Bouvry et al., A new integer linear programming model 500 for the cutwidth minimization problem of a connected undirected graph, Recent Advances on Hybrid Approaches for Designing Intelligent Systems of Studies in Computational Intelligence, pp.509-517, 2014.

J. Luttamaguzi, M. J. Pelsmajer, Z. Shen, and B. Yang, Integer programming methods 505 for several optimization problems in graph theory, 20th International Conference on Computers and Their Applications (CATA), pp.50-55, 2005.

R. Martí, V. Campos, E. Piñana, R. Martí, J. J. Pantrigo et al., A branch and bound algorithm for the matrix bandwidth minimization Branch and bound for the cutwidth minimization problem, European Journal of Operational Research Computers & Operations Research, vol.18628, issue.401, pp.513-528, 2008.

M. Moeini, S. Gueye, and S. Michel, A new mathematical model for the minimum linear arrangement problem, 3rd International Conference on Operations Research and Enterprise Systems (ICORES), pp.57-62

J. Petit, Addenda to the survey of layout problems, Bulletin of the European Association for Theoretical Computer Science, issue.105, pp.177-201, 2011.

E. Piñana, I. Plana, V. Campos, and R. Martí, GRASP and path relinking for the matrix bandwidth minimization, European Journal of Operational Research, vol.153, issue.1, pp.200-210, 2004.
DOI : 10.1016/S0377-2217(02)00715-4

J. Régin, A filtering algorithm for constraints of difference in CSPs, 12th National Conference on Artificial Intelligence (AAAI), pp.362-367, 1994.

F. Solano and M. Pióro, Lightpath Reconfiguration in WDM Networks, Journal of Optical Communications and Networking, vol.2, issue.12, pp.1010-1021, 2010.
DOI : 10.1364/JOCN.2.001010

W. Stein, Version 6.8) The Sage Development Team, Sage Mathematics Software, vol.530, p.2015

P. Surynek, Linear ordering in the SAT encoding of the all-different constraint over bitvectors, ALP Newsletter, 2014.

W. J. Van-hoeve, The alldifferent constraint: A survey. CoRR, cs, 2001.

H. P. Williams and H. Yan, Representations of the all_different Predicate of Constraint Satisfaction in Integer Programming, INFORMS Journal on Computing, vol.13, issue.2, pp.96-103, 2001.
DOI : 10.1287/ijoc.