N
N

N

HAL

open science

Model-based design of correct controllers for
dynamically reconfigurable architectures
Xin An, Eric Rutten, Jean-Philippe Diguet, Abdoulaye Gamatié

» To cite this version:

Xin An, Eric Rutten, Jean-Philippe Diguet, Abdoulaye Gamatié.
controllers for dynamically reconfigurable architectures. ACM Transactions on Embedded Computing

Systems (TECS), 2016, 15 (3), pp.#51. 10.1145/2873056 . hal-01272077

HAL Id: hal-01272077
https://inria.hal.science/hal-01272077
Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Model-based design of correct

https://inria.hal.science/hal-01272077
https://hal.archives-ouvertes.fr

Model-based design of correct controllers for
dynamically reconfigurable architectures

Xin An!, Eric Rutten?, Jean-Philippe Diguet?®, and Abdoulaye
Gamatié?

"Hefei University of Technology, Hefei, China
2INRIA, Grenoble, France
3CNRS/Lab-STICC, Lorient / Brest, France
1CNRS/LIRMM, Montpellier, France

Abstract

Dynamically reconfigurable hardware has been identified as a promis-
ing solution for the design of energy efficient embedded systems. However,
its adoption is limited by the costly design effort including verification
and validation, which is even more complex than for non dynamically re-
configurable systems. In this paper, we propose a tool-supported formal
method to automatically design a correct-by-construction control of the
reconfiguration. By representing system behaviors with automata, we ex-
ploit automated algorithms to synthesize controllers that safely enforce
reconfiguration strategies formulated as properties to be satisfied by con-
trol. We design generic modeling patterns for a class of reconfigurable
architectures, taking into account both hardware architecture and appli-
cations, as well as relevant control objectives. We validate our approach
on two case studies implemented on FPGAs.

1 Introduction

Dynamically reconfigurable hardware has been identified as a promising solution
for the design of energy efficient [I7] embedded systems. A common argument
in favour of this kind of architecture is the specialisation of processing elements,
that can be adapted to application functions in order to minimize the delay, the
control cost and to improve data locality. Another key benefit is the hardware

* This work is supported by the French ANR project Famous.

Authors’ addresses: Xin An, Hefei University of Technology, China; e-mail:
xin.an.fr@gmail.com. Eric Rutten, Ctrl-A team, INRIA Grenoble, France; e-mail:
eric.rutten@inria.fr. Jean-Philippe Diguet, CNRS/Lab-STICC, Lorient, France; e-mail:
jean-philippe.diguet@univ-ubs.fr. Abdoulaye Gamatié, CNRS/LIRMM, Montpellier,
France; e-mail : abdoulaye.gamatie@lirmm.fr.

reuse to minimise the area, and therefore the static power and cost. Further
advantages such as hardware updates in long-life products and self-healing [29]
capabilities are also often mentioned. In presence of context changes (e.g. en-
vironment or application functionality), self-adaptive technique can be applied
as a solution to fully benefit from the runtime reconfigurability of a system.
Dynamic Partial Reconfiguration (DPR) of FPGA is another accessible solu-
tion to implement and experiment reconfigurable hardware. It has been widely
explored and detailed in literature. However, it appears that such solutions are
not extensively exploited in practice for two main reasons: i) the design effort
is extremely high and strongly depends on the available chip and tool versions;
and ii) the simulation process, which is already complex for non-reconfigurable
systems, is prohibitively large for reconfigurable architectures. So, new adequate
methods are required to fully exploit the potential of dynamically reconfigurable
and self-adaptive architectures. Here, we are proposing a design methodology
for self-adaptive embedded systems. On the one hand, our approach consid-
ers reconfigurable architectures as implementation of execution platforms by
exploiting their features. On the other hand, for the design of adaptation deci-
sion, it relies upon a formal method related to automata-based verification, and
more originally by considering discrete controller synthesis. It is important to
note that in this paper, synthesis is not used in the sense of hardware synthesis.
It is rather considered under the meaning of controller synthesis as a formal
operation on automata as explained in the sequel.

1.1 Reconfigurable Architecture Validation Problem

The validation of a reconfigurable architecture includes on the one hand, the
separate validation of each possible configuration of the architecture, and on
the other hand, the validation of each transition between pairs of configura-
tions, since the behaviour of the system can depend on the memory content and
the I/Os status modified from a configuration to another. Current validation
approaches are based on simulation. For reconfigurable systems, the number
of scenarios to deal with rapidly becomes untractable, making simulation less
efficient for addressing the design correctness issue.

Verification is central in electronic system level design in order to ensure that
a system implements its functionality in a correct, efficient and cost-effective
manner [24]. This is particularly true for FPGA-based design [25]. A very
popular verification approach is simulation, which can be either cycle-based or
event-based. Compared to the latter, the former provides an extremely good
visibility into designs for debug. But, it is potentially more compute-intensive
and slower. Another important approach is design testing, which is very useful
for large and complex system verification. Its quality depends quite on the size
and relevance of used test benches. The last relevant approach is formal veri-
fication, either static such as model-checking and theorem proving to formally
verify given design properties, or dynamic by combining simulation and static
formal analysis. Here, dynamic techniques consider assertions and check their
possible violations during simulation.

Dynamical reconfiguration requires to take decisions about the choice of
new configurations, depending on occurring events in a system, on past events
and sequences history, and on predictive knowledge about possible outcomes of
reconfigurations. Such decision components are difficult to design because of
the combinatorics of possible choices, the transversal constraints between them
to be respected, and even more, the history aspects. Formal approaches to the
design of reconfiguration controllers can provide tool-supported assistance to
this difficult design. In embedded system domain, formal techniques have been
designed largely for safe software design. The evolution of DPR systems makes
them amenable to the same kind of techniques and models. Labelled Transition
Systems (LTS) or automata are typical effective specification models that can
be verified by model-checking.

1.2 Objective and Contribution of this Paper

The present work aims to deal with the correct dynamical management of re-
configurations. It advocates the design of control loops addressed by Control
Theory, which covers in general both continuous and discrete systems. Here,
only the latter is considered. The class of Discrete Event Systems is modeled us-
ing Petri nets or automata. Based on notions of supervisory control, automated
techniques have been defined for Discrete Controller Synthesis (DCS).

The contribution of this paper is to exploit these advantages of DCS for
designing controllers to manage reconfigurable architectures with practical im-
plementation on dynamically partially reconfigurable FPGAs. This enables us
to answer the problems mentioned earlier in this paper by:

1) automatically generating the code of controllers to be implemented on
a processor in charge of the reconfiguration management, considering that the
reconfigurable architecture can be generated with recent model-based design
flow [36],

2) adopting our approach where automated generation is guaranteed correct
by the synthesis algorithm, instead of simulation for verification.

This paper relies on previous preliminary results [3] [4] and brings new im-
provements along the following directions: i) it extends the reconfiguration
management methodology by describing the modeling concepts, including their
generation procedure, at all system levels (architecture, application, etc.) for
applying the DCS technique; ii) it draws a global design flow applied to two real
and concretely developed case studies with run-time image processing and re-
configuration to demonstrate clearly how our advocated DCS technique can be
applied; and iii) quantitative evaluations and analysis regarding the scalability
of our advocated approach are reported.

Outline In the remainder of this paper, we first discuss some related work
in Section 2] Then, we define the class of reconfigurable architecture that we
target, as well as their reconfiguration policies in Section [3] We introduce the
modeling and DCS concepts used through this paper in Section [4] These con-
cepts are considered in Section[5]for building the general behavioral model of the

target class of architectures, and for formally specifying their associated control
objectives. The resulting general design flow of our approach is presented in Sec-
tion [6] Its validation is illustrated in Section [7] via some case studies involving
concrete FPGA platform. Some discussion of the proposed solution regarding
the obtained results is addressed in Section [§] Finally, concluding remarks and
perspectives are provided in Section [9]

2 Related Work

In literature, most of the existing approaches dealing with the management of
reconfigurable embedded systems target the run-time scheduling of application
tasks onto a reconfigurable architecture (e.g., [26] and [12]) or an architecture
including a reconfigurable fabric (e.g., [27]). Since these approaches perform
scheduling analysis on-line, they thus usually resort to heuristic algorithms to
generate fast and lightweight solutions and are able to deal with the scheduling
of applications that are unknown a priori. However, such approaches cannot
guarantee optimal solutions and/or strict system constraints due to unknown
situations, and are usually validated by (limited) simulations.

Beyond usual simulation techniques [5] [14], formal methods provide attrac-
tive verification techniques that are applicable to reconfigurable embedded sys-
tem designs. In [32], authors present a typical study addressing the correctness
of reconfigurable cores, such as a 64-bit adder and a 8-bit counter. They con-
sider a formalisation based on propositional logic and integer arithmetic. They
use a theorem-prover at run-time to check whether the dynamically calculated
circuits are correct. Their solution applies mainly to circuits that take sec-
onds to verify. Other approaches [7] [20] suggest model-checking techniques for
the verification of FPGAs and dynamically reconfigurable embedded systems in
general. However, none of these solutions deals with the correct design of the
reconfiguration control.

The reconfiguration management in DPR technologies is usually addressed
by considering manual encoding and analysis, which is tedious and error-prone
[13]. With the foreseeable increase in complexity of such technologies nowa-
days, automatic techniques appear more suitable in order to better solve the
limitations related to the manual approach. Other existing approaches dedi-
cated to self-management of adaptive or reconfigurable systems use for instance
heuristics and machine learning techniques. In [33], a system built on a recon-
figurable architecture exploits self-adaptivity. It adopts application heartbeats
as monitoring framework, and a heuristic mechanism to switch between differ-
ent configurations. Self-management in the form of self-healing that exploits
FPGAs is also proposed in other studies [29] [18].

Regarding design infrastructures, an architectural proposal [22] provides a
slot-based organization of a reconfigurable hardware as well as an elaborate
communication framework with good reconfiguration support. In [37], an adap-
tive system is implemented on FPGA by means of a programming model and
environment for the development of reconfigurable multiprocessor architectures.

Beyond the previous aspects, reconfiguration control is one major issue for
adequate system behaviors. In [2], authors discuss some approaches applying
standard control techniques such as Proportional Integral and Derivative (PID)
controller or Petri nets-based control. The same kind of control has been also
used for processor and bandwidth allocation in servers [19]. A close-loop con-
trol has been applied in [I0] to select hardware/software configurations on an
FPGA with a configuration control based on a data-flow model and diffusion
mechanisms. We note that such a solution relies on heuristics and empirical
laws that prevent instability and select the suitable configurations. In [30], a
design flow is proposed from high level models to automatic code generation,
for the implementation of reconfigurable FPGA based systems-on-chip. The
system control is modeled manually and integrated into the flow.

Compared to the above reconfiguration control techniques, a major advan-
tage of the discrete control approach considered in this paper is the enabled
formal correctness. In addition, the advocated controllers are generated auto-
matically at design time. To the best of our knowledge, there is no existing
work addressing the automatic generation of correct reconfiguration controllers,
starting from design to implementation, for FPGA systems. An earlier work [15]
explored only simple models for tasks, and invariance control objectives which
concern state exclusions. Here, we have a extended model structure with appli-
cation, tasks and architecture, and we use reachability and optimal control be-
yond invariance. Optimal control concerns the optimization of costs or weights
associated with states and/or transitions. By enforcing optimal control, e.g.,
minimizing the system Worst Case Execution Time (WCET), our approach is
thus also able to guarantee performance.

3 DPR Control Problem

We present informally the considered class of systems with an illustrative ex-
ample.

3.1 Hardware Architecture Model

We consider a multiprocessor architecture implemented on a reconfigurable de-
vice which is composed of a general purpose processor A0 (e.g., ARM core),
and a reconfigurable area (e.g. FPGA-like with power management capabilites)
divided into n reconfigurable tiles. Figure [I| a) shows an illustrative example
of four reconfigurable tiles: A1-A4. The communications between architecture
components are achieved by a Network-on-Chip (NoC). Each processor and re-
configurable tile implements a NoC Interface (NI). A fixed dual port memory
buffer is associated with each tile, which means that at most two tasks can
simultaneously access data stored in the shared memory. Reconfigurable tiles
can be combined and configured to implement and execute tasks by loading
predefined bitstreams, such as tiles Al and A2 of Figure|l|a).

The architecture is equipped with a battery supplying the platform with

energy. Regarding power management, an unused reconfigurable tile A7 can
be put into sleep mode with a clock gated mechanism such that it consumes a
minimum static power.

a)

Figure 1: a) architecture structure, b) a DAG application specification.

b)

3.2 Application Software

We consider system functionality described as a directed, acyclic task graph
(DAG). A DAG consists of a set of nodes representing the set of tasks to be
executed, and a set of directed edges representing the precedence constraints
between tasks. Note that the chosen graph-based representation is seen as a
generic representation that enables to describe a large number of applications.
It is also a useful abstraction level for dealing with the safe control of tasks by
using formal techniques. The coarse grain tasks considered at this abstraction
level avoid the burden of associated unnecessary low level details for defining
a suitable solution to the problem. There exist a number of works that show
how such a task graph can be derived from an initial application specification
described in programing languages such as C [35] or some high-level specification
languages such as UML MARTE [16]. Dealing with such transformations is out
of the scope of this paper. Figure [I|b) shows an illustrative example consisting
of four tasks: A, B, C and D.

In our framework, unless otherwise specified, we suppose each task performs
its computation with the following four control points:

e being requested or invoked;

e being delayed: requested but not yet executed;

e being executed: to be executed on the architecture;
e notifying execution finish, once it reaches its end.

Occurrences of control points being requested and notifying finishes depend on
runtime situations, and are thus uncontrollable. The way of delaying and ez-
ecuting tasks is controlled by a runtime manager designed to achieve system
objectives.

3.3 Task Implementations

Given a hardware architecture, a task can be implemented in various ways char-
acterised by various parameters of interest, such as the set of used reconfigurable
tiles (rs), worst case execution time (WCET) (wt), reconfiguration time (rt),
and power peak pp. For instance, task A may have the two following implemen-
tations:

>>Implementation 1: rs; = {Al}, wt; = 190, rt; = 10, pp; = 180;
>Implementation 2: rso = {A3, A4}, wte = 85, rte = 15, pps = 250;

Table[I] gives the implementations and profiled characteristics of tasks A, B, C, D.
Among the possible task implementations, a run-time manager is in charge of
choosing the suitable implementations at run-time according to system objec-
tives.

Table 1: Profiled task implementation characteristics for the working example.

Implementations (tiles set, WCET, reconfig. time, power peak)

Tasks | Implementation 1 Implementation 2 Implementation 3

({A1},190,10,180) | ({A3, A4},85,15,250) -
({A2},430,20,120) | ({A1, A2},275,25,160) | ({Al, A2, A3, A4}, 120, 30,400) -
({A3},225,15,100) | ({A3, A4},80,20,250) -
({A1},238,12,200) | ({A1,A2},85,15,350) | ({Al,A2, A3, A4},50,20,450)

o @Nveig

3.4 System Reconfiguration

j task B E (T task s [

== or i

ERERENIEENEE Tl
1 task A |1 H task C 4 task C

1) T 2) [T 3)

Figure 2: Configurations and reconfigurations.

Figure [2] shows three system configuration examples. In configuration 1,
task A is running on tiles A3 and A4 while tiles Al and A2 are set to the
sleep mode. Configurations 2 and 3 show two scenarios with tasks B and C
running in parallel. Once task A finishes its execution according to the graph
of Figure |1| b), the system can go to either configuration 2 or configuration 3
depending on the system requirements. For example, if the current state of the
battery level is low, the system would choose configuration 2 as configuration 3
requires the complete circuit surface and therefore consumes more power. On
the contrary, when the battery level is high, configuration 3 would be chosen if
the user expects a better performance.

3.5 System Objectives

System objectives define the system functional and non-functional requirements.
This section gives the objectives considered in this work paper for a general dy-
namically reconfigurable architecture with power management capabilities. It
categorises them as logical and optimal control objectives. Generally speak-
ing, logical objectives concern exclusions, whereas optimal objectives concern
weights and costs.

Considered logical control objectives are as follows:

1. resource usage constraint: exclusive uses of reconfigurable tiles A1-A4;

2. dual accesses to the shared memory: by at most two functions running in
parallel;

3. energy reduction constraint: switch tiles to

(a) sleep mode when executing no task;

(b) active mode when needed;
4. reachability: DAG execution can always finish once started;

5. power peak of hardware platform is constrained w.r.t battery levels;
Optimal control objectives of interest are as follows:

6. minimise power peak of hardware platform;
7. minimise WCET of DAG executions;

8. minimise worst case energy consumption of system executions.

These objectives will be formalized further in Section [f] in terms of the for-
malisms recalls next in Section @l Some of them will be used and validated in
Section

4 Modeling Formalism and DCS

We apply the formal technique of DCS to address the control problem of a
dynamically reconfigurable architecture. Before presenting DCS, we firstly in-
troduce the automata based synchronous modeling formalism, which is adopted
in the paper to describe the control problem. We adopt such a modeling for-
malism because 1) automata based modeling formalisms are quite natural to
model system reconfiguration behaviors, 2) the mathematical foundation of the
synchronous model favors system formal analysis, and 3) there exist DCS tools
that can exploit synchronous parallel automata.

4.1 Modeling Formalism

We adopt the formal framework defined in details elsewhere [I] [9] for the au-
tomata definition.

Definition 1 (Automaton) An automaton is a tuple S =< Q,qo,Z,0,T >:
e Q is a finite set of states;
e qo € Q is the initial state of S;

e T is a finite set of input events;

O is a finite set of output events;

e T s the transition relation that is a subset of Q X Bool(Z) x O* x Q, such
that Bool(Z) is the set of Boolean expressions of T and O* is the power
set of O.

Each transition, denoted by ¢ ﬂ ¢, has a label of the form g/a, where guard
g € Bool(Z) must be true for the transition to be taken, and action a € O* is a
conjunction of output events, emitted when the transition is taken. State ¢ is

the source of the transition, and state ¢’ is the destination. A path is a sequence

of transitions denoted by p = ¢; 9:/as Git1 gitr/ait Gith1/Gith1 itk

where Vj,i < j <i+k—1,3(gj,95,a;,qj+1) € T.

The composition of two automata put in parallel is the synchronous com-
position, denoted by ||. Given two automata S; =< Q;,¢;0,Z;, 0;, Ti >,i =
1,2, with Q1 N Qs = (), their composition is defined as follows: Sp[|Sy =<

Q1 X 92,(¢1,0,42,0), 71 UZy, 01 U Oz, T >, where T = {(q1,42) ghgafoinas,

(¢4, d5) @ % q1 € Ti,q2 M g5 € T2,91 A ga Aay Aaz}. Composed state

(q1,q2) is called a macro state, where q; and ¢ are its two component states.
The encapsulation operation, defined in [1], is used to enforce the synchro-
nization between two composed automata by means of a variable which is an
input on one side, and an output on the other side. Let S =< Q,q9,Z,0,T >
be an automaton, and I' C Z U O be a set of inputs and outputs of S. The
encapsulation of S w.r.t. T is the automaton S\I' =< Q, gy, Z\I', O\I', T’ >

where 7 is defined by (¢ 2% ¢ € T)Alg* T S O)Alg~ NTNO = 0) &
(¢,dr.g,O\I',¢') € T'. g™ is the set of variables that appear as positive elements
in the monomial g, i.e., g7 = {z € g|(z A\ g) = g}. g is the set of variables that
appear as negative elements in the monomial g, i.e., g~ = {z € g|-(x A g) = g}.
Figure gives an example of using encapsulation to enforce the synchroniza-
tion of two automata A and B that are composed by a synchronous composition
through variable b.

The automata states can be associated with weights, characterising quanti-
tative features. We define a cost function C : @ — N to map each state of an
LTS to a positive integer value. Costs can also be defined on execution paths
across an LTS. For instance, a cost function of path p can be the sum of all the

not a not b not a

a/b b

b (A[|B)\{b}

Figure 3: An example using encapsulation to enforce the synchronization of two
composed automata.

costs of its traversed states. When composing LTS’s, the cost values w.r.t. the
resulting global states/transitions can be defined on the basis of the local costs
as their sum or the maximal/minimal value.

Based on the above definition of automata, and other automata-based mod-
eling formalisms presented in this section, formal analysis and verification tech-
niques, such as model checking, discrete controller synthesis, can be applied. In
this work, we adopt the discrete controller synthesis technique, which is pre-
sented in the next section.

4.2 Discrete Controller Synthesis

DCS, introduced in 1980s [31], was proposed to deal with the control and co-
ordination problems of discrete event systems. A discrete event system (DES)
[31] is a discrete-state, event-driven dynamic system that evolves in accordance
with the occurrences of discrete events at possibly irregular intervals. An event,
for example, may correspond to the invoke or completion of a task, the failure
or frequency switch of a processor. Such systems arise in various domains of our
daily life, such as manufacturing, transport, automotive, embedded systems,
healthcare. These applications have their own design requirements, and require
control and coordination to ensure their desired behavior.

The main advantage of the theory is that it separates the concept of open
loop dynamics (i.e., the DES) from feedback control, and allows the autonomic
analysis and control of DESs w.r.t. a given specification of control objectives.

DCS is an operation that applies on a DES presented as e.g., an automaton
as defined in Section [I] In order to control a DES, i.e., enable a controller to
influence the evolution of the DES behavior, the occurrences of certain events
are under control. The set of events XY of a DES is thus partitioned into two
subsets: Y,. and Y., representing respectively the uncontrollable and control-
lable event sets. Figure [d] shows the principle of DCS. It is applied with a given
control objective: a property that has to be enforced by control. The objective
is expressed in terms of the system’s outputs X. The controller denoted by C'
is obtained automatically from a system model S and an objective, both speci-
fied by a user, via appropriate synthesis algorithms. The synthesis algorithms,
which are related to model checking techniques, automatically compute, by ex-
ploring the system state space, a constraint on controllable variables Y., i.e., the

10

controller. Its purpose is to constrain the values of controllable variables Y, in
function of outputs X and uncontrollable inputs Y., such that all remaining
behaviors satisfy the given objective.

System Model S

(e.g., Automaton)

Figure 4: Principle of discrete controller synthesis

There can be several controllers that meet the same control objective. In
the extreme case, a controller can forbid any state transition in order to avoid
the invalid states. This is apparently not desirable for target systems. We are
interested in maximally permissive controllers, which ensure the largest possible
set of correct behaviors of the original uncontrolled system.

More generally, advantages of DCS are: high-level specification with declara-
tive control policies; automated synthesis of correct-by-design/construction con-
trollers; and optimality in the sense of maximal permissivity (minimally con-
straining controller).

In this work, we use DCS operations corresponding to different algorithms to
synthesize controllers [23] for: invariance w.r.t. a subset of states, reachability
of a subset of states, one-step optimization of a cost on the next state, and path
optimization of a cost of the bounded path to a target state [9]. Such operations
have been implemented in the Sigali DCS tool [23]. In particular, we use the
user-friendly tool BZR[|[8], whose compilation involves the Sigali tool to perform
DCS. It employs the automata modeling formalism of Section [41] to describe
the target system behavior, and a dedicated construct contract to specify the
control objectives to be enforced in a declarative style. The compilation of BZR
will automatically synthesize a controller enforcing the specified objectives. This
controller is then re-injected automatically into the initial BZR program so that
an executable program can be generated (in C or Java) for execution. This
executable code is used in the experiments described in Section [7}

As for other formal verification techniques such as model-checking, where
complexity is in the worst case polynomial in the size of the state space to
handle, DCS is also concerned by the scalability issue (which will be discussed
in Section . However, compared to them, the main advantage of the DCS is
that it is more constructive and is able to produce a maximally permissive and
correct solution, while other formal techniques such as model-checking require
a possibly error-prone and over-constraining manual encoding phase before a
tedious verification phase [11].

*http://bzr.inria.fr

11

http://bzr.inria.fr

5 Modeling Reconfiguration Management Com-
putation as a DCS Problem

We specify the modelling of the computing system behaviour and control in
terms of labelled automata. System objectives are defined based on the models.
We focus on the management of computations on the reconfigurable tiles and
dedicate the processor area AQ exclusively to the execution of the resulting
controller.

5.1 Architecture Behaviour

The architecture consists of a processor A0, and n reconfigurable tiles {Al,..., An}
and a battery (see Figure[l|a), where n = 4). Each tile has two execution modes,
and the mode switches are controllable. Figure a) gives the model of the be-
haviour of tile Ai. The mode switch action between Sleep (Sle) and Active (Act)
depends on the value of the Boolean controllable variable ¢_a;. The output act;
represents its current mode.

= o
act, = false
ca ca down down down
act; t
E—— up EAN
not c_a, up up
a) act, = true b) st=h st=m st=I

Figure 5: Models RM; for tile Ai, and BM for battery.

The battery behaviour is captured by the automaton in Figure b). It has
three states labelled as follows: H (high), M (medium) and L (low). The model
takes input from the battery sensor, which emits level up and down events, and
keeps track of the current battery level through output st.

It can be observed that the architecture behavior including the behaviors
of reconfigurable tiles and battery can be described systematically, and could
be specified with some high level specification languages given some syntactic
sugar. As an example, a systematic way to generate such automata of Figure
from the UML profile MARTE [28] can be found in [I6].

5.2 Application Behaviour

The software application is described as a DAG, which specifies the tasks to
be executed and their execution sequences and parallelism. We capture its
behaviour by defining a scheduler automaton representing all possible execution
scenarios. It does so by keeping tracking of application execution states and
emitting the start requests of tasks in reaction to the task finish notifications.

12

Application

req
> req/ra eulre.lc

. (n)

eaeseces NG

— >

Tale.lclp
—

Figure 6: Automaton capturing application DAG execution behaviours.

5.2.1 Informal Description

Figure |§| shows the scheduler automaton of the application DAG in Figure[1|b).
It starts the execution of the application by emitting event 74, which requests
the start of task A, upon receipt of application request event req in the idle
state I. Upon receipt of e notifying the finish or end of A’s execution, events
rg and r¢o are emitted together to request the execution of tasks B and C in
parallel. Task D is not requested until the execution of both B and C'is finished,
denoted by events ep and ec. It reaches the final state T', implying the end of
the application DAG execution, upon receipt of ep.

In fact, Figure[6lmodels the execution behavior of an iteration of the example
task graph. Our approach can also deal with pipelined executions of streaming
applications described by data-flow models such as Synchronous Data Flow
Graphs (SDFGs). For SDFGs, we can build execution models similarly by: 1)
identifying events that fire task or actor computations when their input tokens
are ready, and those that notify ends of computations with corresponding output
tokens produced, and 2) representing all the relevant states on which control
should be based.

Such a scheduler automaton can be constructed algorithmically from a DAG
described application. In the following section, we describe systematically how
to obtain such a scheduler automaton from a DAG described application.

5.2.2 Scheduler Automaton Derivation

As shown in the example of Figure [f] the derived scheduler automaton from an
application DAG captures the dynamic execution behavior of the application.
Its states represent the tasks that are being executed. They are denoted and
labeled by the names of these tasks. It has an initial state I, i.e., the idle
state, which means the application has not been invoked, and an end state T,
which means that the application has finished its execution. The automaton
input events are the task end events ey, es, ..., €;, ... and the application request
event req, while its output events are the task request events ri,ro, ..., 7,
Its transitions are of the form g/a, where ¢ is a firing condition, and a is an
action. A firing condition is a boolean expression of input events, and an action
is a conjunction of output events. Note: 1) we suppose the application is only
invoked once. If it is allowed to be repeatedly invoked, the end state would be

13

the same to the initial state. 2) if the graph has a task that has more than one
instance, the instances are then seen as different tasks.

Algorithm [T]illustrates how to construct the scheduler automaton for a DAG.
It derives the automaton from initial state I to end state 1" by exploring the
state space of the application execution w.r.t. the DAG.

e Inputs: a directed, acyclic task graph < T,C >, where T and C represent
respectively the set of tasks and the set of edges.

e Local variables and functions used in the algorithm:

— s or nextState: a state, with element taskSet representing the set of
tasks associated to the state (i.e., the tasks executing in the state);

— drawState(s): a function that draws state s, labeled by s.taskSet;

— drawTrans(source, sink, transition label): a function that draws a
transition from state source to state sink guarded by transition label,;

— drawnStates: the set of states that have been drawn out;

— stateQueue: a FIFO queue, keeping track of the states to be pro-
cessed, with function popup() to return and delete the first state
element, and function add(s) to add state s to the end of the queue;

— t;.prec: the set of tasks that immediately precede task t;;
— readyTaskSet: the set of tasks that are enabled to execute;
— te: a set of tasks, or a task combination;

— powerSet(a set of tasks) returns the power set of the set of tasks
without 0;

— traversed(s) returns the set of states traversed by some path from
state I to state s (states I and s included) w.r.t. the current drawn
automaton, with element taskSet to return the union of the tasks
associated with all the states of the set.

Lines 1 to 8 deal with Phase 1, i.e., the drawing of the initial state I and
the initialization of local variables. At line 1, the initial state, i.e., idle state
I is drawn denoted by drawState(I). The set of drawn states drawnStates
is thus initialized to {I} at line 2. State queue stateQueue stores the states
that have been drawn but not processed. It is initialized to have element I at
line 3. Variable readyTaskSet represents the set of tasks that are enabled to
execute once some event happens. A task is enabled if all its precedent tasks
have finished their executions. Lines 4 to 8 set readyT askSet to the set of tasks
that have no precedent tasks, as such tasks can be executed immediately once
the application is invoked /requested denoted by the receipt of event req.

Lines 9 to 44 deal with Phase 2, i.e., the sequential processing of the states
stored in stateQueue. The processing of a state concerns drawing its immediate
following states and the corresponding transitions, and adding new drawn states
in the queue. The automaton derivation process finishes when the queue be-
comes empty. Three types of states are distinguished and processed accordingly.

14

® N O Ok W N

10

11
12
13
14
15
16
17

18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

ALGORITHM 1: Scheduler Automaton Derivation

// Phase 1: initialization.
drawState(I);

drawnStates = {I};

stateQueue = stateQueue.add(I);
forall the ¢; € T do

end

end

if t;.prec = () then

readyTaskSet = readyTaskSet | t;

end

// Phase 2: processing of the states in stateQueue.
while stateQueue! = () do

s = stateQueue.popup();

// Case 1: s be the initial state.

if s =1 then

nextState.taskSet = readyTaskSet;
drawState(nextState);

drawTrans(I, nextState, req/TreadyTaskSet);
drawnStates = drawnStates | nextState;
stateQueue.add(nextState);

end

// Case 2: s be the end state.
else if s =T then

‘ continue;
end

// Case 3:
else

forall the tc € powerSet(s.taskSet) do
readyTaskSet = ;
forall the t; € T— traversed(s).taskSet do

‘ readyTaskSet = readyTaskSet |J ti;
end
end

if nextState.taskSet = () then
‘ nextState = T
end
if nextState € drawnStates then
‘ drawTrans(s, nextState, e.);
end
else
drawState(nextState);
drawTrans(s, nextState, esc);
drawnStates = drawnStates | nextState;
stateQueue.add(nextState);
end

end

end

15

s be neither the initial state or the end state.

if t;.prec C (traversed(s).taskSet - s.taskSet) | Jtc then

nextState.taskSet = readyTaskSet |J (s.taskSet - tc);

They are initial state I, end state T" and the rest. Due to space limitation, their
detailed explanations are omitted here. We refer the readers to Section 5.3 of
[2] for more details.

5.3 Task Execution Behaviour

Before executing a task on a reconfigurable architecture, the task implemen-
tation (i.e. a bitstream in case of FPGA) should be loaded to reconfigure the
corresponding tiles if required. The reconfiguration operations inevitably in-
volve some overheads regarding e.g., time and energy. The worst case that can
be imagined is that a reconfiguration operation is always required before a task
is executed. In this case, reconfiguration operation and task execution can be
treated as a whole. In general, however, whether a reconfiguration operation is
required or not before a task is executed depends on the run-time situation, i.e.,
whether the corresponding task implementation is already configured.In this
case, the reconfiguration operation and task execution are independent, and
should be distinguished and treated accordingly. In the following, we describe
the modeling in consideration of the first case (i.e., the worst case), and refer
the readers to [4] for the modeling of the second case.

In the worst case, a task implementation is always loaded before being ex-
ecuted. These two consecutive operations are thus combined and treated as
one executing operation. In consideration of the four control points of task ex-
ecutions (see Section , the execution behaviour of task A associated with
two implementations (see Section can be modelled as Figure [7| It features
an initial idle state I4, a wait state Wy, and two executing states X}l, X124
corresponding to two implementations of task A. Controllable variables are in-
tegrated in the model to encode the controllable choice points: being delayed
and executed. From initial state 14, upon the receipt of start request r 4, task
A goes to either:

e czecuting state Xy, i € {1,2} if controllable variable ¢; leading to X7 is
true, or

e wait state Wy if delayed, i.e., Boolean expression ¢ = \/¢;,i € {1,2} is
false.

™,

s €a

—_—
({A1}, ({A3,A4},
.G 200,180) 100,250) es
—_——
rs,wt,pp
es=X,! es=w ({},0,0) es=X? ——>

Figure 7: Execution behavior model T M4 of task A considering the worst case.

16

From wait state W4, upon the receipt of event ¢;, it goes to execution state
X'. When the execution of task A finishes, i.e., the finish or end notification
event ey is received, the automaton goes back to idle state I4. Output es
represents its execution state. Similar to the architecture behavior in Section
b1 the task execution behavior can also be described systematically, and be
specified with some high level specification languages. Therefore, the automaton
model for task execution can also be generated systematically from some high
level specification languages as in [16].

Local execution costs. The reconfiguration and execution costs of different
task implementations are different. As task reconfiguration operation and exe-
cution are combined as a whole, their costs thus need to be combined as well.
Therefore, three cost parameters are considered here (see Section [3.3). We
capture them by associating cost values denoted by a tuple (rs,wt, pp) with
the states of task models, where: rs € 284 (RA is the set of architecture re-
sources), wt € N (the sum of a reconfiguration time value and a WCET value)
and pp € N (a power peak). The costs associated with executing states are the
values associated with their corresponding implementations. For ¢dle and wait
states, rs = (), wt = 0, pp = 0. Figure m gives the complete model of task A.

5.4 Global System Behaviour Model
5.4.1 Global behavior.

The parallel composition of the control models for reconfigurable tiles RMj-
RMy, battery BM and tasks TM4-TMp, plus scheduler Sdl comprises the
system model:

S = RM,||...|| RMy||BM||TMa]|...|T Mp||Sdl

with initial state go = (Sley, ..., Sleq, H,I4,...,Ip,I). It represents all the pos-
sible system execution behaviours in the absence of control (i.e., a run-time
manager is not yet integrated). Each execution behaviour corresponds to a
complete path, which starts from initial state gy and reaches one of the final
states:

Qf = (Q(RMl)z sty q(RM4)a Q(BM)a IAa) ID7 T)a

where ¢(Id) denotes an arbitrary state of automaton Id.

5.4.2 Global costs.

The costs defined locally in each task execution model need to be combined
into global costs. A system state ¢ is a composition of local states (denoted by
q1, -5 qn), and we define its cost from the local ones as follows:

e used resources: union of values for local states: rs(q) = |Jrs(g;),1 <i <
n;

17

e worst case execution time: this indicates how much time the system takes
at most in this current state. It is thus defined as the minimal WCET of
all executing tasks in this state, i.e., wt(q) = min(wt(q;), wt(g;) # 0,1 <
i < n); Otherwise, if no task is executing in the state, ie., V1 < i <
n,wt(q;) = 0, wt(q) = 0;

IN

e power peak: sum of values for local states, i.e., pp(q) = > (pp(¢;), 1 <
n);

e worst case energy consumption: the product of the worst case execution
time and power peak of the system state, i.e., we(q) = pp(q) * wt(q).

Now, we need to define costs associated with paths so as to capture the
characteristics of system execution behaviours. Given path p = ¢; — gi+1 —
... = @i+, and costs associated with system states, we define costs on path p
as follows:

e WCET: sum of WCETs on states on the path, i.e., wt(p) = > wit(g;),? <
j<i+k;

e power peak: maximum on states along the path: pp(p) = max(pp(g;),
1 <j<i+k);

e worst case energy consumption: the sum of the worst case energy con-
sumptions on the states along the path, i.e., we(p) = > we(g;),i < j <
1+ k.

5.5 System Objectives

Based on the formal model above, we formalize the reconfiguration policies
of Section [3:5] The two types of system objectives: logical and optimal, are
described in terms of the states and the costs defined on the states or paths of
the model.

Logical control objectives. For any system state g, we want to enforce the
following:

(1) exclusive uses of reconfigurable tiles by tasks: Vg;,q; € q,1 # j, rs(¢;) (\7rs(q;) =
0;

(2) dual accesses to shared memory, i.e., at most two tasks access at the same

time:
1 q; € X;
;< t. ;= .
v <288 v { 0 otherwise

executing states of corresponding task;

, where X; represents the set of

(3.a) switch tile Ai to sleep when executing no task: iﬂqj € ¢, Ai € rs(q;) =
act; = false;

(3.b) switch tile Ai to active when executing task(s): Jg; € ¢, Ai € rs(¢;) =
act; = true;

18

(4) reachability: @y is always reachable.

(5) battery-level constrained power peak (given threshold values Py, Py, P»):
pp(q) < Py (resp. P; and P,) when battery level is high (resp. medium
and low).

Optimal control objectives. They can be classified into two types: one-step
optimal and optimal control on path objectives. We use pseudo functions max
and min in the following to represent the maximisation and minimisation ob-
jectives, respectively.

One-step optimal objectives. One-step optimal objectives aim to minimise
or maximise costs associated with states and/or transitions in a single step [23].
Objective 6 of Section [3.5] belongs to this type.

(6) minimise power peak pp in the next states of state g: min(pp, q).

Optimal control on path objectives. They aim to drive the system from the
current state to the target states QQy at the best cost [9], as in 7 and 8.

(7) minimise remaining WCET wt from state ¢: min(wt,q, Qy);
(8) minimise remaining energy consumption we from ¢: min(we, g, Q).

These models can be encoded in BZR to generate automatically a controller
satisfying the defined system objectives. Besides, the BZR compiler also allows
the designers to simulate their designed models, which would be shown in Section
Implementing such models in two real cases studies would be presented in
Section

6 Design Flow

Controller Generation and Simulation by BZR

BZR Models

Sequential C Code :
BZR of Controller
(automata :

modeling . + compilation :
System Specification e Final System Implementation

(system behavior controller

+ integration (integrated controller running on
system objectives) a softcore of the hardware platform)
Hardware Implementation
realization

(hardware platform organization and setup)

Figure 8: Our design flow.

In this section, we present our design flow for self-adaptive embedded systems
from their system specifications towards final system implementations on recon-
figurable architectures (see Figure , where the upper branch, i.e., controller
generation and simulation by BZR, deals with the system reconfiguration man-
agement. It models the system reconfiguration control problem by BZR models,
and performs the BZR compilation to derive automatically a controller in C

19

code. Along with the generated C code of controller, BZR also generates some
other executable C codes to allow the users to use an associated simulator to
perform simulations. The other branch deals with the hardware implementa-
tion, which selects and organises the hardware components according to system
specification so as to realize the system functionality. The final system imple-
mentation is derived by integrating the generated controller on the hardware
implementation, i.e., by the controller integration process. To be more specific,
the final implementation implements the generated controller as a software task
running on a soft core (i.e., A0) of the hardware implementation.

In the paper, we have focused on the modeling of the reconfiguration control
problem (as illustrated in Section by BZR-style models (as in Section .
In the rest of this Section, we describe briefly the controller generation and
simulation which includes the description of the generated C code of controller,
controller integration and a typical experimental setup which describes a typical
hardware implementation.

6.1 Controller Generation and Simulation

As shown in Figure[§] by feeding BZR models to the BZR compiler, it produces a
controller (in C code) satisfying the defined system objectives. This code is syn-
thesised in another executable C code, which can be compiled for the embedded
processor on the target hardware architecture. This C code is structured of two
functions: a reset function sys_reset to initialize system state variables, and a
step function sys_step, which performs system state transitions according to
the values of system uncontrollable inputs and states, and the computed val-
ues of controllable variables. Two additional C files named main.c and main.h
are also generated by the compiler for simulation purpose. All these generated
C codes can be fed to the graphical display tool sim2chro (from the Verimag
research centelﬁb associated with BZR to perform simulations of the controlled
system. This enables the designers to validate and adjust their designs at the
early stage before going to final system implementation.

Figure [0] shows a simulation scenario of the models in Section [5] for which
the 5 logical control objectives of Section are illustrated (see Table [1| for
the implementation characteristics of the tasks). At instant 3, as labeled 1
in the figure, variables a_onA3 and a_onA4 become true, which implies that
the second implementation of A which uses tiles A3 and A4 is chosen by the
manager. At the same instant, tiles A3 and A4 are switched to the active mode,
i.e., act3,act4 become true, which corresponds to objective 3.b). At instant
9, as shown by label 2 in the figure, task C finishes its execution by releasing
tiles A3 and A4, i.e., ¢ onA3 and ¢_onA4 become false. At the same instant,
tiles A3 and A4 are switched to the sleep mode, i.e., act3,actd become false.
This corresponds to objective 3.a). As shown in label 3, the system power peak
pp is always less than 300, even though battery level is high. This is because
that, firstly, the tasks cannot change its implementation once executed, and

Thttp://www-verimag.imag.fr/

20

http://www-verimag.imag.fr/

Figure 9: A simulation scenario.

21

secondly, down and up events are uncontrollable. The power peak value is thus
always kept under 300 to avoid the system goes to an invalid state where a
task uses an implementation with a power peak bigger than the value that the
lower level allows, i.e., 300, and the battery level goes low before it finishes.
The exclusive usages of all the tiles (i.e., objective 1)) can also be seen from the
figure, e.g, for tile Al, the variables ¢ onAl,t = {a,b,c,d} do not have value
true at the same time during the simulation. The variable num __active _func
representing the number of active tasks is always 1 during simulation, which
means that objective 2) is met. The objective 4) is also met as variable target,
which represents whether the end state T is reached, becomes true at instant
15.

6.2 Controller Integration

With the C code of controller generated by BZR and described in Section[6.2} we
can integrate it (represented by box Controllerin Fig. 10) with the system hard-
ware implementation by using the glue code (right box of Figure 10) which con-
sists of two parts. The initialization part initializes system state variables by in-
voking reset function sys_reset(), and starts the processing of data (e.g. video
stream processed by FPGA reconfigurable tiles) by processing start(). Then,
an infinite loop, which performs the following steps: (1) processing _control()
monitors the data processing and checks the timing or conditions to be respected
before the reconfiguration controller can be invoked, e.g. wait the arrival of a
new frame of type I or simply wait 10 ms; (2) get _yuc() collects the uncontrol-
lable input values from the running system ; (3) sys_ step takes as input the val-
ues of uncontrollable variables (denoted by Y;.) and the system state variables
(denoted by X) and computes the values of the defined controllable variables
and consequently the new state variables (X) ; (4) configure hw sw(X) per-
forms reconfiguration by interpreting the computed values of output variables
as system (reconfiguration) actions, it loads the right bitreams from a remote
server or from a Flash memory and invokes the ICAP driver to execute the
FPGA reconfiguration.

Finally, the above written code together with the C code of controller gen-
erated by BZR is deployed on the CPU managing the reconfigurable hardware,
e.g., Microblaze.

6.3 A Typical Experimental Setup

We consider an ML605 board from Xilinx as our hardware execution platform. It
includes a Virtex-6 FPGA (XC6VLX240T), several I/0O interfaces like switches,
buttons, Compact Flash reader, and an external 512MB DDR3 memory. An
Avnet extension card (DVI I/O FMC Module) with 2 HDMI connectors (In and
Out) has been plugged onto the platform so that it can receive and send video
streams through the connectors.

Figure illustrates the global structure of our implementation. We have
divided the FPGA surface into two regions: static and reconfigurable regions.

22

Reconfigurable System d sys_reset();
” processing_start();
¢ while(){
L4 processing control();
9 et _yuc();
Reconfigurable cPU &‘ L gys:)s'te;:“c’x) ;
Hardware [AN configure hw sw(X);

— =N

N
Data Data Yy —> Controller i’

in | Peripherals (ICAP, Battery, T°, ..)[oyt (see DCS Fig.5)

Figure 10: Controller integration with system implementation.

Nine independent reconfigurable tiles are specified in the reconfigurable region.
The reconfigurable tiles are in charge of the executions of reconfigurable tasks.
The MB is synthesised on the static region of the FPGA (like A0 in Figure
a)). It executes two main system tasks: the computed controller and the man-
agement of the configuration bitstreams. The latter task involves the control of
related peripherals (i.e., Compact Flash memory, I/O interrupts, DDR3, ICAP)
through corresponding implemented controllers. The external DDR 3 memory
is used to buffer the input data, e.g., frame pixel data of video streams, and
store the software executable, typically the computed controller, to be launched
by the MB. We use a compact Flash card to store the bitstreams of different
reconfigurable task implementations on each reconfigurable tile. The C code of
the computed controller is deployed on the MB as an infinite loop. It is invoked
whenever the MB is interrupted. Two additional interrupt controllers (GPTIO
switches and GPIO buttons) are added for the platform to generate interrupts.
They monitor the states of the buttons and switches, and generate interrupts
when these states change. Once the controller is invoked, it is able to read the
system states and computes out a new configuration for the nine reconfigurable
tiles. The MB then selects the appropriate bitstreams from the Compact Card,
and sends them to the ICAP to reconfigure the associated reconfigurable tiles.

Frame processing

Microblaze

Processor Local Bus

|
CF controller SO GPIO switchs GPIO buttons
controller

Figure 11: Global structure of the implementation

o
o
el
w
<
o
=
o
3

<

23

7 Case Studies

We describe two experimental case studies, to demonstrate the previous control
models on real FPGAs, and focus on the modeling and controller generation
aspect.

7.1 Case Study I: A Video Processing System
7.1.1 Case Study Description

We consider a video processing system to be implemented on a FPGA board,
so that the partial reconfigurations of a FPGA controlled by a synthesized con-
troller can be tested and visualised. The processing system (see Figure
consists of a camera that captures images to be processed on the FPGA, a dis-
patcher that feeds 9 reconfigurable tiles, a compositor aggregating pixels, and
a screen displaying the processed images. Each captured image is divided into
9 areas, which are processed in parallel by 9 processing elements dynamically
configured in the 9 tiles (as we had four in Figure [1| a)). In this way, when a
tile is reconfigured, one can see it on the screen. We consider three filtering
algorithms (namely red, green and blue ones) that can be implemented on each
reconfigurable tile to process images. When configured to process the same im-
age, they have different performance values regarding some characteristics such
as power peak, execution time. In the study, we suppose the power peaks of
each tile for running the red, blue and green filters are 3, 2 and 1.

Tile 1

Tile 2

Dispatcher Tile 3

Tile 9

Compositor

Screen

Figure 12: The video processing system case study. FEach processed image is
divided into 9 areas for processing, with those covered by grids called corner
areas, and the rest ones called cross areas.

We then introduce events that will induce state transitions and so reconfigu-
rations. First the processing system can work at two different modes: high and
low, controlled by the user through a switch on the platform. The user can also
demand the use of the red filters to process the four corner areas of images by
means of another switch. Apart from the user demands, the system also needs
to respect the following three rules. The four corner areas of the images to be
displayed are of the same color, the five cross areas are of the same color, and
the color of the four corner areas is different from the color of the five cross areas
; the global power peaks of the platform are bounded by 30 (respectively 20)
in the high (respectively low) mode ; minimizing the power peaks of the next
states. A run-time manager is thus required to configure each reconfigurable

24

tile of the FPGA by using one of the three algorithms to filter images in the
way satisfying the aforementioned requirements.

7.1.2 System Modeling and Controller Generation

We model the system reconfiguration behavior by using synchronous parallel
automata as in Section [5] and DCS is then performed to generate a controller
by using BZR. Once the system gets started (modeled as the emission of event
s), the controller should decide on the system initial state and configure the
nine reconfigurable tiles of the FPGA accordingly. The behaviors of the two
switches, denoted by ModeSwitch and CornerColorSwitch, are captured by
two boolean variables ms and gr respectively, with value true means switch on.

The reconfiguration behavior of the system is captured by a three-state au-
tomaton (Figure [13| a)), with Boolean input ms capturing ModeSwitch, and
Boolean output h representing whether it is in mode high. Initially in idle state
I, once it is started by s, it goes to either High or Low depending on ms.

CorAreas

ExecMode s gr
—

ms

Figure 13: The model of system execution mode behavior ExecMode, and the
models for choosing algorithms for processing the four corner areas CorAreas
and the four cross areas CrossAreas

As the colors of the four corner areas are required to be the same, they
always need the same filtering algorithm. We thus use one single automaton
(see Figure 13| b)) to model their choices among the three filtering algorithms.
Boolean inputs s and gr represent respectively whether the system gets started
or not, and whether the user has switched on or off the corner color switch,
while outputs fc € {corR,corB,corG,corl} and w € {12,8,4,0} represent
respectively the current state and the weight associated with the state. At the
beginning, it is in state I. Once the system gets started, i.e., event s is received,
it goes to state R, G or B, meaning that the red, green or blue filtering algorithm
is used for processing the four corner areas of images, depending on the values
of controllable variables cl1, ¢2, 3. As running the red filter in a reconfigurable
tile has cost 3, and R represents that all the four corner areas run the red filter,
we associated state R with cost 12. The same to the costs of states G and B.
The automaton goes to state R upon the reception of event gr (i.e., the user

25

switches on CornerColorSwitch), when it is in states G or B. The rest of the
transitions (e.g., between G and B) are managed by the controller by evaluating
the values of controllable variables c1, ¢2, ¢3 according to system requirements.

The modeling for choosing filters for processing the five cross areas is done
similarly. The main difference is that the user now has no control over the usage
of some filter for processing the four cross areas, i.e., the choice among the filters
are made by the controller through controllable variables cl, c2,c3. Figure
¢) shows the model.

At last, all the aforementioned models are composed to derive the global
system behavior. We then encode them and the control rules in BZR and
employ BZR to automatically synthesize a controller satisfying the control rules.
It generated the C code of controller (with overall size 77.8 kB) within 5 sec
(see Table 2).

7.2 Case Study II: ASmart Camera Object Detection Sys-
tem

7.2.1 Case Study Description

We have used an advanced industrial conveyor simulator [6] and a use case
where parcels can be conveyed from one location to another. Compared with
the previous case, the camera is disconnected and the HDMI output of the PC
running the simulator is connected instead to the board video input.

The object detection system detects the moving objects on the conveyor
belts, characterizes the moving objects in terms of speed, size, color and moving
direction, and makes task implementation choice decisions according to the char-
acteristics of the objects. Figure [14] describes how it works. A camera captures
the video frames (Acquisition task) and sends them to the detection algorithm,
which is implemented on a FPGA (represented by the grey rectangle). The de-
tection algorithm is specified as a data-flow application where circles represent
tasks, and arrows represent the communication channels. Numbers are labelled
on channels to represent the corresponding numbers of input and output data
tokens. Typically, a data token is one pixel, or an integer. Rectangles represent
buffers with numbers denoted above to represent buffer sizes. Each video frame
is of N x M = 1280 x 720 pixels, and each pixel is 32 bits. After acquisition the
frame is duplicated and sent to tasks Cleaning and Filtering. Cleaning firstly
applies erosion and dilation filters and then compares pixel-by-pixel the current
frame with the previous one. Then task Labelisation identifies the possible ob-
ject movements according to the comparison results of pixel values and get the
coordinates of the object rectangle: top-left (x,y) position, height (h) and width
(w). Task Filtering filters the frame before task OSD (On Screen Display) can
be applied.

With the results of task Labellisation, the four following tasks denoted by
dotted circles are used to compute area, direction, speed and acceleration of
moving objects:

26

FPGA

Acquisition

2(h,w)

| Size/Area T

NXM m NXM
Filtering

ST 2xy) S K
{ Direction T

coordinate,
size,
direction,

Camera

_/

NI

Screen

Figure 14: The object detection system case study.

e Task Size/Area multiplies the resulting height and width to get the object
area.

e Task Direction computes direction by comparing current and previous
positions.

e Task Speed computes the speed of objects by using the two previous posi-
tions.

e Task Acceleration computes the acceleration by using previous speed and
positions.

The task Classify takes the analysis results of the four precedent tasks, and clas-
sify them accordingly. The analysis results of tasks speed, size and acceleration
are classified into one of the three levels: low, medium and high. The result
of direction is classified into one of the four directions: north, west, east and
south. As a result, task Classify produces three events esz, esp, eac to represent
the categories (i.e., high, medium or low) of the size, speed and acceleration of
the moving object, and event edi to represent its direction: north, west, east
or south. Task OSD (On Screen Display) displays a rectangle surrounding the
moving object, with input data from the two branches.

In this example we consider a reconfigurable architecture composed of 9 tiles
that can execute the four tasks (size, speed, direction, acceleration) with three
configurations w.r.t. different precisions (QoS). The three configuration high
(H), medium (M) and low (L) require 3,2 and 1 tiles respectively. It means that
4 out of 9 tiles are used if all tasks are running with a low resolution but all
the tasks cannot run simultaneously with a high resolution. In particular, we
suppose that, depending on the moving direction of the detected object, the four
reconfigurable tasks are given corresponding preferences (modeled by weights)
to use high QoS implementations. We consider the following reconfiguration
constraints: the number of available tiles is fixed by 9 ; if no object is detected,
low precision implementations will be used for all tasks ; if speed is high, there
is no need to use high precision for size ; Optimizing overall QoS: weighted
function QoS = Y w; * QoS(t;), where weight values w; for tasks ¢; depends on

27

the moving direction detected object ; Configuration bitstream imposes adjacent
tiles (2 or 3) in vertical or horizontal direction for resolution medium and high.

7.2.2 System Modeling and Controller Generation

Each task has three implementations corresponding to three precision levels.
Figure [15/a) models the implementation model. The choices between them are
controllable by variables cl, ¢2, c3. Outputs Ip, hp represent which implementa-
tion is used, and integer outputs qos and t _num represent respectively the QoS
and number of used tiles of the current implementation.

W\ weight_eval

east
E—

cl,c2,c3
E—
Ip, hp

5 south
qos

t_num

a)

Figure 15: The task implementation model task impl, and the weight evalua-
tion model weight eval.

b)

Depending on the moving direction of the detected object, the four recon-
figurable tasks are given corresponding preferences (modeled by weights) to use
high QoS implementations. Figureb) models the weight evaluation model. It
has four states E, W, S and N corresponding to the four directions. The boolean
inputs east, south are used to represent the moving directions. The integer out-
puts w_size, etc represent the correspondingly evaluated weights for the four
tasks. We then encode the models and control objectives in BZR and employ
BZR to automatically synthesize a controller satisfying the control rules. By
feeding the resulting program to the BZR compiler, it generated the C code of
controller (with overall size 298.4 kilobytes) within 25 seconds (see Table[2). In
both case studies, the partial bitstreams are relatively small (about 50KB) and
can be configured in less than 0.5ms with a 100MHz ICAP clock. The maxi-
mum camera resolution is 1080x1920 and the frame rate is 60fps, which means
a period of 16.6ms. The complete bitstream of a project is about 1.6MB.

Table 2: Summary of the two case studies. The experiments are performed on
a computer with Intel(R) Core(TM)2 Duo CPU of 2.33GHz and a 3.8Gb main
memory.

case study | number of states | synthesis time (secs) | C code size (kilobytes)

I 48 4 7.8
II 324 21 298.4

28

8 Discussion on Scalability

The major concern of our approach is the scalability issue, which is common
to other formal techniques like model-checking. We have carried out exten-
sive experiments to evaluate the scalability of our framework. Table [3] shows
our experimental results to compute the controllers. It gives the time costs
for different DCS operations corresponding to different system objectives w.r.t.
different system models and state space sizes. The state space size of each sys-
tem model is computed by simply multiplying state space sizes of its composed
automata. The size of synthesized controllers varies from 50Kb (objective 2 on
model 4:(2,3,2,3)) to 28Mb (objective 7 on model 6:(1%)). We have started our
experiments from the task graph of Figure [1| b). We then refine B to 3 tasks
so as to increase the system model to 6 tasks, and at last, refine C to 3 tasks
as well to address a 8 task model, as shown in Figure We use the notation

Bl
:

Figure 16: The refined task graph for experiments.

n : (mq,...my) to represent the models, where n denotes the number of tasks,
and m; the number of possible implementations of task i. Besides, we use mF*
to represents k consecutive m’s. E.g., 4 : (4*) denotes 4 : (4,4,4,4). All exper-
iments are performed on a computer with a Intel(R) Core(TM)2 Duo CPU of
2.33GHz and a 3.8Gb main memory.

29

paddogs paddoys paddoys paddogs D9SGTUIWTE UIEHIYE 09§ TuTuIg (LADM Sururewal azrwrutua (),
paddogs paddoys paddoys paddogs D9SGRUTWRE UrugTIYg pEISiZniieg soye)s gxou ur ‘d-d ozrwrur (9
U EIYE 29S9T°GT urug, 208¢e LT PRSI e A 0089 T Aiqeyoeas (f 7
09SpgUIGH 09STT'C 00SQT' 1T 008QT ¥ 29589°() 09S€T'T 29868°(0) sead 1omod pouTeIISU0D [9Ad[-A1999R((G
09SEZUIW T 29506°0 O9sTTuIWg 00ST T 298720 29ST(0'C 0989/,°0 opour doas 0y IMS (q°¢
29SQGUIMI, 2980¢°T J9sgTuIm | 2988R°'T 2989%°() 29SQ7°T 298170 9pOUI JATIOR 0} UDYIMS (R'g
29SG()' €T 098671 2980)G'T 29869°() 2980T°0 29860 29SZ1°0 Arowewr 0y ssedoe fenp (g
D9sTUTg | 29S0T T 2980 29S9T'T 2989T°() 295G9°() 298620 77 -Ty Jo 98esn oAlsn[oxo (1
000°000°CE8‘S 0OF0‘IEZ‘99S | 000°00%‘CE 008‘885°9T 072‘868‘S | 9€4'908 026‘1¥2 saA139[qo gosrey
. L e e az1s aoeds aje)s
(¢T'¢€)8 (s1):8 (€'42'¢):9 (ETTTTe)9 (o1):9 (9)v (€€

23 [oPOUI T9)SAS

*(o101] pagyIuIo snTy ST § 9A130[0) uoryRIodo JO PULY OUTeS AT}

oIe § pue), S9ATL[qQ * "1 UOIjoUNJ
jo suonyejuateldur o]qIssod Jo Ioquinu oY} SUJOULD ‘au YIIM ‘SUOTIOUNJ 1 JO [oPOU & sojouap (“we* ‘Twt) : u ‘sozis odeds 9e)s
pUR S[PPOW WIA)SAS JUSISPIP "} I'M SoA1}08[qo 1081e) JusIeyIp 01 Surpuodseriod suoryeiodo GO(] 10 $3S00 8w} 9], € O[qRL

30

In our experiments, the DCS of invariance constraints, i.e., objectives 1-3
and 5 are applied directly to the original system model. On the basis of the
resulting controller, the optimal and reachability ones are then performed. The
objectives about invariance and reachability appear promising, while optimal
ones are explosive. An interesting point observed is that the time cost is not
always increasing as state space size grows. System models consisting of more
tasks but less possible implementations could have less synthesis times, e.g., DCS
operations for 6:(1°) model take less times than these for 4:(4%) model. These
observations can be explained as follows by the nature of the DCS algorithms
corresponding to different control objectives.

The invariance objectives aim to make a subset E of system states invariant.
The synthesis algorithm explores the system states from the initial state(s)
and their transitions to return a controllable system such that the controllable
transitions 1) leading to states that are not in E are inhibited, and 2) leading
to states from where a sequence of uncontrollable transitions that can lead to
states not in E are inhibited. The computational cost of this DCS operation
thus depends not only on the system state space, but also the size of target state
set F, and the number and the guard type of transitions associated with these
states. Since more implementations of tasks mean more choices/transitions to
explore, this explains why the computational cost w.r.t. these objectives for
more tasks with less implementations can be less.

The rechability objective aims to make a subset E of system states always
reachable from current states. Its corresponding algorithm thus explores the
system states from the initial state(s) and their transitions to return a con-
trollable system such that the controllable transitions entering subsets of states
E’ from where E is not reachable are disabled. Compared to the synthesis al-
gorithm for invariance objectives, it generally takes more time as it needs to
firstly explore states and transitions to search for E’ and secondly explore the
rest states and their transitions to compute the values of controllable variables.
This can explain why the time costs w.r.t. the rechability objective are more
than those corresponding to invariance objectives.

The optimal control objectives aim to optimize the costs or weights defined
on the states and/or transitions of system automaton models. Their time costs
get much higher compared the two aforementioned objective types, as their DCS
algorithms perform not only the state and transition exploration, but also cost
computations and comparisons. To improve the scalability of our approach and
address systems of more tasks, especially when optimal control objectives are
enforced, one can on the one hand employ more powerful PCs and spend more
time, and one the other hand, improve the efficiency of employed synthesis tools
and employ modular DCS presented in [§]. The main idea of the modular DCS is
to break the system into subsystems by structuring task graphs into hierarchical
sub-graphs, and perform local DCS for each subsystem before performing the
global DCS for the whole system.

31

9 Conclusion and perspectives

We described the management of dynamically partially reconfigurable FPGAs,
where formal guarantees are given on the behavior of the reconfigurable system
in terms of reachable state space. Our contribution consists of a tool-supported
method to design safe controllers for dynamically reconfigurable architectures,
and its experimental validation on two case studies using a FPGA board. Our
approach is to formalize the behaviors of the DPR FPGAs as automata, fol-
lowing a modeling methodology, distinguishing the different levels of hardware
architecture, task implementation and application software. We formulate the
reconfiguration policy as properties on the state space of the model, and the
reconfiguration control as a Discrete Controller Synthesis problem. The BZR
language and compiler is used to implement the models, solve the control prob-
lems and generate executable C code.

Concerning architecture aspects, this formal approach allows to design com-
plex self-adaptive SoC that are correct-by-construction. This point is crucial
to avoid intractable scenario-based simulations. Our formal approach paves the
way to the safe use of future reconfigurable architectures with efficient power
gating capabilities (ex. MTJ-based FPGA [34]), that reconfiguration can be
exploited to finely adjust power consumption to application requirements. Per-
spectives are in different directions: concerning formal modeling and control,
the exploitation of modular compilation and DCS can improve the scalability of
the approach on large systems, provided they can be structured hierarchically.
The extension of DCS to logico-numeric aspects is being integrated in BZR
and can support some quantitative aspects of systems, and more elaborate con-
trol objectives. Finally, the automatic generation of hardware implementation
corresponding to the controllers built from our approach is an interesting per-
spective. For this purpose, the backend of BZR compiler needs to be extended
for generating VHDL programs and FPGA bitstreams.

References

[1] K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten. Using controller-
synthesis techniques to build property-enforcing layers. In Proc. 12th Eu-
ropean Conference on Programming, ESOP’03, pages 174-188, 2003.

[2] X. An. High Level Design and Control of Adaptive MPSoCs. PhD thesis,
U. Grenoble, 2013.

[3] X. An, E. Rutten, J-P. Diguet, N. le Griguer, and A. Gamatié. Auto-
nomic management of dynamically partially reconfigurable fpga architec-
tures using discrete control. In Proc. 10th Int. Conf. Autonomic Computing
(ICAC’13), pages 59-63, june 2013.

[4] X. An, E. Rutten, J-P. Diguet, N. le Griguer, and A. Gamatié. Discrete
control for reconfigurable fpga-based embedded systems. In Proc. 4th IFAC
Workshop on DCDS, pages 151-156, 2013.

32

[5]

16]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Aylward, C. H. Crawford, K. Inoue, S. Lekuch, K. Miiller, M. Nutter,
H. Penner, K. Schleupen, and J. Xenidis. Reconfigurable systems and flexi-
ble programming for hardware design, verification and software enablement

for system-on-a-chip architectures. In Proc. Conf. on Reconfigurable Com-
puting and FPGAs (ReConFig’11), pages 351-356, 2011.

R. Bévan, J-L. Lallican, W. Allégre, and P. Berruet. The simsed framework
for modelling and simulation of transitic systems under uncertain environ-
ment. In 9th Int. Industrial Stimulation Conf., pages 11-17, 2011.

O. Dahmoune and R. de B. Johnston. Applying model-checking to post-
silicon-verification: Bridging the specification-realisation gap. In Proc.
Conf. on ReConFig, pages 73-78, 2010.

G. Delaval, H. Marchand, and E. Rutten. Contracts for modular discrete
controller synthesis. In Conf. on Languages, Compilers, and Tools for Em-
bedded Systems, pages 57—-66, 2010.

E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten. Multicriteria
optimal discrete controller synthesis for fault-tolerant tasks. In Workshop
on Discrete Fvent Systems, pages 366-373, Sept. 2010.

Y. Eustache and J.-P. Diguet. Specification and os-based implementation
of self-adaptive, hardware/software embedded systems. In Proc. 6th Int.
Conf. on CODES/ISSS, pages 67-72, 2008.

A. Gamatié, H. YU, G. Delaval, and E. Rutten. A case study on controller
synthesis for data-intensive embedded systems. In Proc. 6th IEEE Int.
Conf. on Embedded Software and Systems, ICESS’09, pages 75-82, 2009.

F. Ghaffari, M. Auguin, M. Abid, and M.B. Ben Jemaa. Dynamic and
on-line design space exploration for reconfigurable architectures. In Trans-
actions on High-Performance Embedded Architectures and Compilers I, vol-
ume 4050, pages 179-193. 2007.

D. Gohringer, M.Hubner, V.Schatz, and J.Becker. Runtime adaptive multi-
processor system-on-chip: RAMPSoC. In Symp. on Parallel & Distributed
Processing, pages 1-7, April 2008.

L. Gong and O. Diessel. Modeling dynamically reconfigurable systems
for simulation-based functional verification. In 19th Int. Symp. on Field-
Programmable Custom Computing Machines, pages 9-16, 2011.

S. Guillet, F. de Lamotte, N. Le Griguer, E. Rutten, G. Gogniat, and J-
P. Diguet. Designing formal reconfiguration control using uml/marte. In
Proc. Int. Conf. on ReCoSoC, pages 1-8, 2012.

S. Guillet, F. de Lamotte, N. le Griguer, E. Rutten, G. Gogniat, and J.-
P. Diguet. Extending uml/marte to support discrete controller synthesis,
application to reconfigurable systems-on-chip modeling. ACM Trans. Re-
configurable Technol. Syst., 7(3):27:1-27:17, 2014.

33

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

H. Hinkelmann, P. Zipf, and M. Glesner. Design and evaluation of an
energy-efficient dynamically reconfigurable architecture for wireless sensor
nodes. In FPL Conf., pages 359-366, 2009.

S. Jovanovié¢, C. Tanougast, and S. Weber. A new self-managing hardware
design approach for fpga-based reconfigurable systems. In Reconfigurable
Computing: Architectures, Tools and Applications, volume 4943 of Lecture
Notes in Computer Science, pages 160-171. 2008.

C. Lu, J.A. Stankovic, S.H. Son, and G. Tao. Feedback control real-
time scheduling: Framework, modeling and algorithms. Real-Time Systems
Journal, 23(1/2):85-126, 2002.

F. Madlener, J. Weingart, and S. A. Huss. Verification of dynamically
reconfigurable embedded systems by model transformation rules. In Int.
Conf. on CODES+ISSS, pages 33-40, 2010.

M. Maggio, H. Hoffmann, A. V. Papadopoulos, J. Panerati, M. D. Santam-
brogio, A. Agarwal, and A. Leva. Comparison of decision-making strategies

for self-optimization in autonomic computing systems. ACM Trans. Auton.
Adapt. Syst., 7(4):36:1-36:32, 2012.

M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. The erlangen slot ma-
chine: A dynamically reconfigurable fpga-based computer. The Journal of
VLSI Signal Processing Systems for Signal, Image, and Video Technology,
47:15-31, 2007.

H. Marchand and M. Samaan. Incremental design of a power transformer
station controller using a controller synthesis methodology. IFEE Trans.
on Soft. Eng., 26(8):729 —741, 2000.

G. Martin, B. Bailey, and A. Piziali. ESL design and verification: a pre-
scription for electronic system level methodology. Morgan Kaufmann, 2010.

C. Maxfield. The design warrior’s guide to FPGAs: devices, tools and
flows. Elsevier, 2004.

Juanjo Noguera and Rosa M. Badia. Multitasking on reconfigurable archi-
tectures: Microarchitecture support and dynamic scheduling. ACM Trans.
Embed. Comput. Syst., 3(2):385-406, 2004.

V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal. Run-
time management of a mpsoc containing fpga fabric tiles. IEEE Trans.
VLSI Systems, 16(1):24 —33, 2008.

Object Management Group. A UML profile for MARTE, 2013.

K. Paulsson, M. Hubner, and J. Becker. Strategies to on-line failure recov-
ery in self-adaptive systems based on dynamic and partial reconfiguration.
In Conf. Adap. Hardware and Systems, pages 288-291, 2006.

34

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

I. R. Quadri, H. Yu, A. Gamatié, E. Rutten, S. Meftali, and J-L. Dekeyser.
Targeting reconfigurable fpga based socs using the uml marte profile: from
high abstraction levels to code generation. Int. J. of Embedded Systems,
4(3/4):204-224, 2010.

P.J. Ramadge and W.M. Wonham. The control of discrete event systems.
Proc. of the IEEE, 77(1):81-98, 1989.

S. Singh and C. J. Lillieroth. Formal verification of reconfigurable cores.
In FCCM, pages 25-32, 1999.

F. Sironi, M. Triverio, H. Hoffmann, M. Maggio, and M.D. Santambrogio.
Self-aware adaptation in FPGA-based systems. In Field Programmable
Logic and Applications, pages 187-192, 2010.

D. Suzuki, N Natsui, A Mochizuki, S Miura, H. Honjo, K. Kinoshita,
H. Sato, S. Ikeda, T. Endoh, H. Ohno, and T. Hanyu. Fabrication of
a magnetic tunnel junction-based 240-tile nonvolatile field-programmable
gate array chip skipping wasted write operations for greedy power-reduced
logic applications. IEICE Electronics Express, 10(23):20130772, 2013.

K.S. Vallerio and N.K. Jha. Task graph extraction for embedded system
synthesis. In Proc.16th Int. Conf. on VLSI Design, pages 480-486, 2003.

J. Vidal, F. De Lamotte, G. Gogniat, P. Soulard, and J-P. Diguet. A co-
design approach for embedded system modeling and code generation with
uml and marte. In DATE, pages 226-231, 2009.

L. Ye, J-P Diguet, and G. Gogniat. Rapid application development
on multi-processor reconfigurable systems. In Int. Conf. on Field Pro-
grammable Logic and Applications (FPL), pages 285-290, 2010.

35

	Introduction
	Reconfigurable Architecture Validation Problem
	Objective and Contribution of this Paper

	Related Work
	DPR Control Problem
	Hardware Architecture Model
	Application Software
	Task Implementations
	System Reconfiguration
	System Objectives

	Modeling Formalism and DCS
	Modeling Formalism
	Discrete Controller Synthesis

	Modeling Reconfiguration Management Computation as a DCS Problem
	Architecture Behaviour
	Application Behaviour
	Informal Description
	Scheduler Automaton Derivation

	Task Execution Behaviour
	Global System Behaviour Model
	Global behavior.
	Global costs.

	System Objectives

	Design Flow
	Controller Generation and Simulation
	Controller Integration
	A Typical Experimental Setup

	Case Studies
	Case Study I: A Video Processing System
	Case Study Description
	System Modeling and Controller Generation

	Case Study II: ASmart Camera Object Detection System
	Case Study Description
	System Modeling and Controller Generation

	Discussion on Scalability
	Conclusion and perspectives

