A non-parametric k-nearest neighbor entropy estimator

Damiano Lombardi 1 Sanjay Pant 1
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, UPMC - Université Pierre et Marie Curie - Paris 6, Inria de Paris
Abstract : A non-parametric k-nearest neighbor based entropy estimator is proposed a. It improves on the classical Kozachenko-Leonenko estimator by considering non-uniform probability densities in the region of k-nearest neighbors around each sample point. It aims at improving the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-functional relationships leading to high correlation between components of the random variable are present; and third, when the marginal variances of random variable components vary significantly with respect to each other. Heuristics on the error of the proposed and classical estimators are presented. Finally, the proposed estimator is tested for a variety of distributions in successively increasing dimensions and in the presence of a near-functional relationship. Its performance is compared with a classical estimator and shown to be a significant improvement.
Type de document :
Article dans une revue
Physical Reviev E, 2016, 〈10.1103/PhysRevE.93.013310〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01272527
Contributeur : Damiano Lombardi <>
Soumis le : jeudi 11 février 2016 - 08:17:09
Dernière modification le : jeudi 26 avril 2018 - 10:28:08
Document(s) archivé(s) le : samedi 12 novembre 2016 - 17:01:06

Fichier

articleRev.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Damiano Lombardi, Sanjay Pant. A non-parametric k-nearest neighbor entropy estimator. Physical Reviev E, 2016, 〈10.1103/PhysRevE.93.013310〉. 〈hal-01272527〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

198