S. Bai, R. Brent, and E. Thomé, Root optimization of polynomials in the number field sieve, Mathematics of Computation, vol.84, issue.295, pp.2447-2457, 2015.
DOI : 10.1090/S0025-5718-2015-02926-3

URL : https://hal.archives-ouvertes.fr/hal-00919367

R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, Improving NFS for the Discrete Logarithm Problem in Non-prime Finite Fields, EUROCRYPT 2015, pp.129-155, 2015.
DOI : 10.1007/978-3-662-46800-5_6

URL : https://hal.archives-ouvertes.fr/hal-01112879

R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic, EUROCRYPT 2014, pp.1-16, 2014.
DOI : 10.1007/978-3-642-55220-5_1

URL : https://hal.archives-ouvertes.fr/hal-00835446

R. Barbulescu, P. Gaudry, and T. Kleinjung, The Tower Number Field Sieve, ASIACRYPT 2015, pp.31-55, 2015.
DOI : 10.1007/978-3-662-48800-3_2

URL : https://hal.archives-ouvertes.fr/hal-01155635

R. Barbulescu and A. Lachand, Some mathematical remarks on the polynomial selection in NFS, Mathematics of Computation, vol.86, issue.303, 2014.
DOI : 10.1090/mcom/3112

URL : https://hal.archives-ouvertes.fr/hal-00954365

R. Barbulescu and C. Pierrot, Abstract, LMS Journal of Computation and Mathematics, vol.17, issue.A, pp.230-246, 2014.
DOI : 10.1017/CBO9781139856065

A. Commeine and I. Semaev, An Algorithm to Solve the Discrete Logarithm Problem with the Number Field Sieve, PKC 2006, pp.174-190, 2006.
DOI : 10.1007/11745853_12

D. Coppersmith, Modifications to the Number Field Sieve, Journal of Cryptology, vol.6, issue.3, pp.169-180, 1993.
DOI : 10.1007/BF00198464

J. Franke and T. Kleinjung, Continued fractions and lattice sieving, In: SHARCS, 2005.

D. Freeman, M. Scott, and E. Teske, A Taxonomy of Pairing-Friendly Elliptic Curves, Journal of Cryptology, vol.2, issue.5, pp.224-280, 2010.
DOI : 10.1007/s00145-009-9048-z

D. M. Gordon, Discrete Logarithms in $GF ( P )$ Using the Number Field Sieve, SIAM Journal on Discrete Mathematics, vol.6, issue.1, pp.124-138, 1993.
DOI : 10.1137/0406010

A. Guillevic, Computing individual discrete logarithms faster in GFpp n q with the NFS-DL algorithm, ASIACRYPT 2015, pp.149-173, 2015.

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi, An Experiment of Number Field Sieve for Discrete Logarithm Problem over GF(p 12), Number Theory and Cryptography, pp.108-120, 2013.
DOI : 10.1007/978-3-642-42001-6_8

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi, A construction of 3-dimensional lattice sieve for number field sieve over F p n, Cryptology ePrint Archive, p.1179, 2015.

A. Joux and R. Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method, Mathematics of Computation, vol.72, issue.242, pp.953-967, 2003.
DOI : 10.1090/S0025-5718-02-01482-5

URL : https://hal.archives-ouvertes.fr/hal-01102016

A. Joux, R. Lercier, N. P. Smart, and F. Vercauteren, The Number Field Sieve in the Medium Prime Case, CRYPTO 2006, pp.326-344, 2006.
DOI : 10.1007/11818175_19

URL : https://hal.archives-ouvertes.fr/hal-01102034

A. Joux and C. Pierrot, The special number field sieve in F p n ? application to pairing-friendly constructions, Pairing 2013, pp.45-61, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01213666

T. Kim and R. Barbulescu, Extended Tower Number Field Sieve: A New Complexity for the Medium Prime Case, Cryptology ePrint Archive, vol.32, issue.1, p.1027, 2015.
DOI : 10.1007/978-3-662-49890-3_17

URL : https://hal.archives-ouvertes.fr/hal-01281966

T. Kleinjung, On polynomial selection for the general number field sieve, Mathematics of Computation, vol.75, issue.256, pp.2037-2047, 2006.
DOI : 10.1090/S0025-5718-06-01870-9

A. K. Lenstra and E. R. Verheul, The XTR Public Key System, CRYPTO 2000, pp.1-19, 2000.
DOI : 10.1007/3-540-44598-6_1

B. A. Murphy, Polynomial selection for the number field sieve integer factorisation algorithm, 1999.

C. Pierrot, The Multiple Number Field Sieve with Conjugation and Generalized Joux-Lercier Methods, EUROCRYPT 2015, pp.156-170, 2015.
DOI : 10.1007/978-3-662-46800-5_7

URL : https://hal.archives-ouvertes.fr/hal-01056205

J. Pollard, A. K. Lenstra, J. Lenstra, and H. W. , The lattice sieve, Lecture Notes in Math, vol.1554, pp.43-49, 1993.
DOI : 10.1090/psapm/042/1095550

K. Rubin and A. Silverberg, Torus-Based Cryptography, CRYPTO 2003, pp.349-365, 2003.
DOI : 10.1007/978-3-540-45146-4_21

P. Sarkar and S. Singh, New Complexity Trade-Offs for the (Multiple) Number Field Sieve Algorithm in Non-Prime Fields, Cryptology ePrint Archive, p.944, 2015.
DOI : 10.1007/978-3-662-49890-3_17

O. Schirokauer, Virtual logarithms, Journal of Algorithms, vol.57, issue.2, pp.140-147, 2005.
DOI : 10.1016/j.jalgor.2004.11.004

O. Schirokauer, Discrete Logarithms and Local Units, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.345, issue.1676, pp.409-423, 1676.
DOI : 10.1098/rsta.1993.0139

C. The and . Team, CADO-NFS, an implementation of the number field sieve algorithm, 2015.

P. Zajac, Discrete Logarithm Problem in Degree Six Finite Fields, 2008.

P. Zajac, On the use of the lattice sieve in the 3D NFS, Tatra Mountains Mathematical Publications, vol.45, issue.1, pp.161-172, 2010.
DOI : 10.2478/v10127-010-0012-y