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Introduction

Security vs. Privacy

m HTTPS (HTTP-over-TLS) is a protocol for secure
communication over internet.

m Content providers (Google, Facebook, ...) need securing
contents over the web by moving to HTTPS.

m Based on French ISP, the amount of encrypted tra c
represent almost 50% in 2015, compared with 5% in 2012.

m Despite SSL/TLS good intentions, it may be used for
illegitimate purposes.

An identi cation of HTTPS tra ¢ without relying on decryption.
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Related work

Practical solutions

m Legacy solutions: Port Based, DNS, IP, DPI (Don't work).

m Decryption methods: HTTPS proxy, Crack encryption
algorithm! (Privacy issues & Computation complexity)

m Recent solutions: SSL certi cate, SNI [1](Reliability issues).

Research work: ow-based statistical method

m + Applicable to encrypted tra c.
m - Low accuracy and computation overhead issues.
m - Hard to get precise information from general statistics.

lUsed by commercial solution like FireEye & Forefront
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Related work
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Flow-Based Statistical Method

Flow-Based Statistical improvements

m One way is to combined it with algorithms from di erent
elds like Machine Learning (ML) [2].
m Used to identifying the Type of Application3]
m such as (HTTPS, SSH, P2P, Skype, VOIP, etc.)
m Used by Website Fingerprintinggchnique:

m Identify accessed HTTPS web pages base on static object size
parsed from unencrypted pages [4].
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Related work The Multi-
0

Flow-Based Statistical Method

Flow-Based Statistical improvements

m One way is to combined it with algorithms from di erent
elds like Machine Learning (ML) [2].
m Used to identifying the Type of Application3]
m such as (HTTPS, SSH, P2P, Skype, VOIP, etc.)
m Used by Website Fingerprintinggchnique:

m Identify accessed HTTPS web pages base on static object size
parsed from unencrypted pages [4].

What is the proper level of identi cation?

Application type level OR Web pages Level
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Flow-Based Statistical Method

Applications type
Inspector

irres)
—_/
(' encrypted traffic O (il’ilr?ternet )

https://www.xyz.com/index.htm

Of'A(xyz ™
index page;

—\. £/

Website
Fingerprinting
Inspector

Figure : An example of suspicious HTTPS trac
|

- Application Type Level (Too generic)
- Website Fingerprinting Level (Too ne-grained)
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The Multi-Level Framework

A Multi-Level Framework to Identify HTTPS Services

The motivation

m An intermediate identi cation levelService-Level.
m Identify the HTTPS services without relying on header elds.
m Do not decrypt the HTTPS tra c.

The core techniques

Machine Learning techniques.
Novel multi-level classi cation approach.
Well tuned set of features.
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Training Dataset

Machine Learning Techniques

Overview

= Machine learning (ML) is a type of arti cial intelligence (Al).
m The basic requirements:

Training dataset and Labelling
Statistical Features and ML algorithms.
Evaluation techniques.

m ML phases: Training Classication! Validation

Dataset Collection

m We build our own dataset in a well controlled environment
with volunteer users of our lab.

= We use the SNI for HTTPS dataset Labelling.




The Multi-Level Framework
oe

Training Dataset

What is SNI ?

SNI indicates the actual
destination hosthame a
client is attempting to
access over HTTPS.

The Ground-Truth

Since no SNI ltering is
applied in our lab, so we
utilized it as Ground
Truth.

Figure : TLS handshake
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The Multi-Level Framework
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Statistical features and ML algorithms

Statistical features and ML algorithms

Statistical features

m A set of 42 features over the TLS connections is used.
m ClassicaB0 features from previous work [5, 6].
m New 12 features are proposed over the encrypted payload.

ML algorithms

m The ML algorithms use them to build the classi cation model.

m Based on a preliminary experimen®4.5 and RandomForest
algorithms are selected.
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The Multi-Level Framework
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Statistical features and ML algorithms

Figure : Flat classi cation view

Legacy machine learning at classi cation

= |dentifying the websites and applications directly.

m Drawbacks: low scalability, low accuracy and high error rate.
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The Multi-Level Framework

ooe

Statistical features and ML algorithms

Figure : Multi-level presentation (inspired from Biology eld)

A Novel Multi-Level Classi cation Approach

m Reform the training dataset into a tree-like fashion.
m The top level is refereed as Class-level (Root domain)

m The lower Level contains individual Folds-level (Sub-domain)
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Introduction

Evaluation techniques

Common evaluation techniques

m A K-fold cross-validation, Precision, Recall, F-Measure.
m Receiver Operating Characteristics (ROC) analysis.
m The classi cation errors over time and the Con dence-Score.

A novel method more suitable for multi-level approach

m If service provider and the service hame are predicted correctly
I Perfect identi cation

m If service provider is predicted but not the service name
I Partial identi cation

= If neither service provider nor the service name are predicted
I Invalid identi cation
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The Multi-Level Framework

oe

Evaluation techniques

Figure : The work- ow of the HTTPS tra ¢ identi cation framework
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Evaluation Results

The evaluation of the proposed solution contains 3 parts:
m Evaluation of the collected dataset.
m Evaluation of the proposed features set.
m Evaluation of the multi-level classi cation approach.

Evaluation of the collected dataset

m Contains more than 288,901 HTTPS connections.
m Pre-processed to be suitable for multi-level approach.

m Processed to determine a reasonable threshold for the
minimum number of labelled connections per service.
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Evaluation of the proposed features set

Optimized by Features Selection technique

m 18 features are highly relevant: 10 out of 12 from our
proposed set and 8 out of 30 from the classical ones.

m This validates the rationale of the proposed features for
identifying HTTPS services.

Table : The 18 selected features

Client $ Server
Inter Arrival Time (75th percentile)
Client ! Server
Packet size (75th percentile, Maximum), Inter Arrival Time (75th percentile),
Encrypted Payload( Mean, 25th, 50th percentile, Variance, maximum)
Server ! Client
Packet size (50th percentile, Maximum), Inter Arrival Time (25th,
75th percentile),Encrypted payload(25th, 50th, 75th percentile, variance, maximum)
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Evaluation Results

Evaluation of the proposed features set

The proposed features set performance

By using WEKA?Z tool the features set are tested by C4.5 and
RandomForest algorithm:

m Classical 30-features:
C4.5 achieves 83.4%il.0 Precision,
RandomForest achieve35.7% 0.4 Precision.

m Full 42-features:
C4.5 achieves 86.65%0.7 Precision,
RandomForest achieve®7.82% 0.68 Precision.

m Selected 18-features:

C4.5 achieves 85.879%0.64 Precision,
RandomForest achieve®7.60% 0.10 Precision.
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The Multi-level Classi cation Approach Evaluation

HTTPS Identi cation Framework

m The framework has been evaluated in two steps:
m Evaluate each level separately, to measure the performance of
each classi cation model.
m Evaluate the whole framework as one black box.
m Evaluation conditions:
m Full features set (42 features).
m RandomForest as ML algorithm.
m At least 100 connections number per service.
m K-Fold cross validation with k=10.
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Evaluation Results
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The Multi-level Classi cation Approach Evaluation

Figure : Top Level of the framework

Top level evaluation

Experiments show that we can identifying the service provider of
HTTPS tra c with 93.6% overall accuracy.

19/ 26



Evaluation Results
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The Multi-level Classi cation Approach Evaluation

Figure : Second Level of the framework

Second level evaluation

A separate classi cation models are built and evaluated for each
service provider with the same approach used in the Top-level.
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The Multi-level Classi cation Approach Evaluation

Second level evaluation

m From 68 distinct service providers, 51 service providers have
more than 95% of good classi cation of their own di erent
services.

m For example, we can di erentiate between 19 services run
under Google.com, with 93% of Perfect identi cation.

Table : The second level models accuracy

Accuracy Range Nb of service providers
- Classical Features Full Features| Selected Features
100-95% 50 51 51
95-90% 5 5 5
90-80% 6 6 6
Less than 80% 7 6 6
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Evaluation Results
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The Multi-level Classi cation Approach Evaluation

Figure : The complete classi cation model

Evaluate the framework as black-box (Levell&2)

Results show that we achieve 93.10% of Perfect identi cation and
2.9% of Partial identi cation.
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Evaluation Results
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The Multi-level Classi cation Approach Evaluation

The con dence score

m Measures the level of agreement between decision trees.

m Results shows that 86.68% of the predictions are in the
sub-ranges [0.8-0.9[, [0.9,1] and 1.
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The Multi-level Classi cation Approach Evaluation

The classi cation errors over time

[N

Classi cation Error %
e Q@ 9
B (2] [e¢]
[ [ [
| | |

Q
IN)
[
|

| | |
1-week 2-weeks  16-weeks 17-weeks 22-weeks 23-weeks

o

Period per Week

Figure : E ect upon classi cation error over time

We can notice that even after 23 weeks without new learning
phase, we still identify 80% (error 20%) of HTTPS services.

24 26




Conclusion & Future work

Conclusion & Future work

Conclusion

m A complete framework to identify the HTTPS services with
several innovations (Multi-level classi cation, SNI-labelling,
new set of features, without decryption).

m Based on real tra c, the results show that despite the
challenging task, a high level of accuracy of 93.10% achieved.

Future Work

m To adapt and extend our current framework for real-time
analysis identi cation of HTTPS services.

m Improve the global security of networks especially by
developing a HTTPS rewall.
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