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Security vs. Privacy

HTTPS (HTTP-over-TLS) is a protocol for secure
communication over internet.

Content providers (Google, Facebook, ...) need securing
contents over the web by moving to HTTPS.

Based on French ISP, the amount of encrypted tra�c
represent almost 50% in 2015, compared with 5% in 2012.

Despite SSL/TLS good intentions, it may be used for
illegitimate purposes.

The Issue

An identi�cation of HTTPS tra�c without relying on decryption.
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Practical solutions

Legacy solutions: Port Based, DNS, IP, DPI! (Don't work).

Decryption methods: HTTPS proxy1, Crack encryption
algorithm ! (Privacy issues & Computation complexity)

Recent solutions: SSL certi�cate, SNI [1]! (Reliability issues).

Research work: ow-based statistical method

+ Applicable to encrypted tra�c.

- Low accuracy and computation overhead issues.

- Hard to get precise information from general statistics.

1Used by commercial solution like FireEye & Forefront
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Flow-Based Statistical Method

Flow-Based Statistical improvements

One way is to combined it with algorithms from di�erent
�elds like Machine Learning (ML) [2].
Used to identifying the Type of Applications[3]

such as (HTTPS, SSH, P2P, Skype, VOIP, etc.)

Used by Website Fingerprintingtechnique:
Identify accessed HTTPS web pages base on static object size
parsed from unencrypted pages [4].

What is the proper level of identi�cation?

Application type level OR Web pages Level
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Flow-Based Statistical Method

Figure : An example of suspicious HTTPS tra�c

- Application Type Level (Too generic)
- Website Fingerprinting Level (Too �ne-grained)
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A Multi-Level Framework to Identify HTTPS Services

The motivation

An intermediate identi�cation levelService-Level.

Identify the HTTPS services without relying on header �elds.

Do not decrypt the HTTPS tra�c.

The core techniques

1 Machine Learning techniques.

2 Novel multi-level classi�cation approach.

3 Well tuned set of features.
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Training Dataset

Machine Learning Techniques

Overview

Machine learning (ML) is a type of arti�cial intelligence (AI).
The basic requirements:

1 Training dataset and Labelling
2 Statistical Features and ML algorithms.
3 Evaluation techniques.

ML phases: Training! Classi�cation ! Validation

Dataset Collection

We build our own dataset in a well controlled environment
with volunteer users of our lab.

We use the SNI for HTTPS dataset Labelling.
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Training Dataset

What is SNI ?

SNI indicates the actual
destination hostname a
client is attempting to
access over HTTPS.

The Ground-Truth

Since no SNI �ltering is
applied in our lab, so we
utilized it as Ground
Truth.

Figure : TLS handshake

9 / 26



Introduction Related work The Multi-Level Framework Evaluation Results Conclusion & Future work

Statistical features and ML algorithms

Statistical features and ML algorithms

Statistical features

A set of 42 features over the TLS connections is used.

Classical30 features from previous work [5, 6].

New 12 features are proposed over the encrypted payload.

ML algorithms

The ML algorithms use them to build the classi�cation model.

Based on a preliminary experimentsC4.5 and RandomForest
algorithms are selected.
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Statistical features and ML algorithms

Figure : Flat classi�cation view

Legacy machine learning at classi�cation

Identifying the websites and applications directly.

Drawbacks: low scalability, low accuracy and high error rate.
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Statistical features and ML algorithms

Figure : Multi-level presentation (inspired from Biology �eld)

A Novel Multi-Level Classi�cation Approach

Reform the training dataset into a tree-like fashion.

The top level is refereed as Class-level (Root domain)

The lower Level contains individual Folds-level (Sub-domain)
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Evaluation techniques

Common evaluation techniques

A K-fold cross-validation, Precision, Recall, F-Measure.

Receiver Operating Characteristics (ROC) analysis.

The classi�cation errors over time and the Con�dence-Score.

A novel method more suitable for multi-level approach

If service provider and the service name are predicted correctly
! Perfect identi�cation .

If service provider is predicted but not the service name
! Partial identi�cation .

If neither service provider nor the service name are predicted
! Invalid identi�cation
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Evaluation techniques

Figure : The work-ow of the HTTPS tra�c identi�cation framework
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Evaluation Results

Overview

The evaluation of the proposed solution contains 3 parts:

Evaluation of the collected dataset.

Evaluation of the proposed features set.

Evaluation of the multi-level classi�cation approach.

Evaluation of the collected dataset

Contains more than 288,901 HTTPS connections.

Pre-processed to be suitable for multi-level approach.

Processed to determine a reasonable threshold for the
minimum number of labelled connections per service.
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Evaluation of the proposed features set

Optimized by Features Selection technique

18 features are highly relevant: 10 out of 12 from our
proposed set and 8 out of 30 from the classical ones.

This validates the rationale of the proposed features for
identifying HTTPS services.

Table : The 18 selected features

Client $ Server
Inter Arrival Time (75th percentile)

Client ! Server
Packet size (75th percentile, Maximum), Inter Arrival Time (75th percentile),
Encrypted Payload( Mean, 25th, 50th percentile, Variance, maximum)

Server ! Client
Packet size (50th percentile, Maximum), Inter Arrival Time (25th,

75th percentile),Encrypted payload(25th, 50th, 75th percentile, variance, maximum)
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Evaluation of the proposed features set

The proposed features set performance

By using WEKA2 tool the features set are tested by C4.5 and
RandomForest algorithm:

Classical 30-features:
C4.5 achieves 83.4%� 1.0 Precision,
RandomForest achieves85.7% � 0.4 Precision.

Full 42-features :
C4.5 achieves 86.65%� 0.7 Precision,
RandomForest achieves87.82% � 0.68 Precision.

Selected 18-features:
C4.5 achieves 85.87%� 0.64 Precision,
RandomForest achieves87.60% � 0.10 Precision.

2www.cs.waikato.ac.nz
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The Multi-level Classi�cation Approach Evaluation

HTTPS Identi�cation Framework

The framework has been evaluated in two steps:
Evaluate each level separately, to measure the performance of
each classi�cation model.
Evaluate the whole framework as one black box.

Evaluation conditions:
Full features set (42 features).
RandomForest as ML algorithm.
At least 100 connections number per service.
K-Fold cross validation with k=10.
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The Multi-level Classi�cation Approach Evaluation

Figure : Top Level of the framework

Top level evaluation

Experiments show that we can identifying the service provider of
HTTPS tra�c with 93.6% overall accuracy.

19 / 26



Introduction Related work The Multi-Level Framework Evaluation Results Conclusion & Future work

The Multi-level Classi�cation Approach Evaluation

Figure : Second Level of the framework

Second level evaluation

A separate classi�cation models are built and evaluated for each
service provider with the same approach used in the Top-level.
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The Multi-level Classi�cation Approach Evaluation

Second level evaluation

From 68 distinct service providers, 51 service providers have
more than 95% of good classi�cation of their own di�erent
services.

For example, we can di�erentiate between 19 services run
under Google.com, with 93% of Perfect identi�cation.

Table : The second level models accuracy
Accuracy Range Nb of service providers

- Classical Features Full Features Selected Features
100-95% 50 51 51
95-90% 5 5 5
90-80% 6 6 6

Less than 80% 7 6 6
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The Multi-level Classi�cation Approach Evaluation

Figure : The complete classi�cation model

Evaluate the framework as black-box (Level1&2)

Results show that we achieve 93.10% of Perfect identi�cation and
2.9% of Partial identi�cation.
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The Multi-level Classi�cation Approach Evaluation

The con�dence score

Measures the level of agreement between decision trees.

Results shows that 86.68% of the predictions are in the
sub-ranges [0.8-0.9[, [0.9,1[ and 1.
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The Multi-level Classi�cation Approach Evaluation

The classi�cation errors over time
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Figure : E�ect upon classi�cation error over time

Result

We can notice that even after 23 weeks without new learning
phase, we still identify 80% (error< 20%) of HTTPS services.
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Conclusion & Future work

Conclusion

A complete framework to identify the HTTPS services with
several innovations (Multi-level classi�cation, SNI-labelling,
new set of features, without decryption).

Based on real tra�c, the results show that despite the
challenging task, a high level of accuracy of 93.10% achieved.

Future Work

To adapt and extend our current framework for real-time
analysis identi�cation of HTTPS services.

Improve the global security of networks especially by
developing a HTTPS �rewall.
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