Vectorial quadratic bent functions as a product of two linearized polynomials

Abstract : To identify and specify trace bent functions of the form T r n 1 (P (x)), where P (x) ∈ GF (2 n)[x], has been an important research topic lately. We show that an infinite class of quadratic vectorial bent functions can be specified in the univariate polynomial form as F (x) = T r^n_k (αx^2^i (x + x^k)), where n = 2k, i = 0,n-1, and α \notin GF(2^k). Most notably apart from the cases i \in {0,k} for which the polynomial x^2^i (x+x^2^k) is affinely inequivalent to the monomial x^{2^k+1}, for the remaining indices i the function x^2^i (x+x^2^k) seems to be affinely inequivalent to x^2^k+1, as confi rmed by computer simulations for small n. It is well-known that Tr^n_1( x^2^k+1) is Boolean bent for exactly 2^{2k}-2^k values (this is at the same time the maximum cardinality possible) of α \in GF(2n) and the same is true for our class of quadratic bent functions of the form T r^n_k (αx^2^i (x + x^k)) though for i > 0 the associated functions F : GF(2^n) -> GF(2^n) are in general CCZ inequivalent and also have di erent di erential distributions.
Type de document :
Communication dans un congrès
Pascale Charpin, Nicolas Sendrier, Jean-Pierre Tillich. WCC2015 - 9th International Workshop on Coding and Cryptography 2015, Apr 2015, Paris, France. 2016, Proceedings of the 9th International Workshop on Coding and Cryptography 2015 WCC2015
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01275717
Contributeur : Jean-Pierre Tillich <>
Soumis le : jeudi 18 février 2016 - 09:32:11
Dernière modification le : jeudi 18 février 2016 - 15:46:41
Document(s) archivé(s) le : jeudi 19 mai 2016 - 10:15:41

Fichier

wcc15-mo2-4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01275717, version 1

Collections

Citation

A Pott, E Pasalic, A Muratovic-Ribic, S Bajric. Vectorial quadratic bent functions as a product of two linearized polynomials. Pascale Charpin, Nicolas Sendrier, Jean-Pierre Tillich. WCC2015 - 9th International Workshop on Coding and Cryptography 2015, Apr 2015, Paris, France. 2016, Proceedings of the 9th International Workshop on Coding and Cryptography 2015 WCC2015. 〈hal-01275717〉

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

100