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Abstract. Algebraic manipulation detection codes were introduced in
2008 as a primitive for providing data integrity in the case of a special at-
tack model � an algebraic manipulation. In this paper two constructions
of strongly secure algebraic manipulation detection codes are researched.
These codes are both based on a scalar product operation in a �nite �eld
and guarantee �exibility, low complexity and high detection probability.

Keywords: Algebraic manipulation, secure hardware, scalar product,
nonlinear codes.

1 Introduction

Several applications have been found for algebraic manipulation detection (AMD)
codes. In the paper a concept of AMD codes is described in accordance to a de-
sign of secure cryptographic devices. More detailed introduction to this �eld can
be found in [1, 2]

It is well known that cryptographic algorithms' implementations are vulner-
able to side�channel attacks [3]. One of the most e�cient attacks is a fault-
injection attack. The attack is based on an analysis of a cryptographic device's
functioning in a presence of faults and computational errors. Almost all popular
ciphers including RSA, DES and AES are recognized to be vulnerable to the
fault�injection attack [4].

As a model of injected faults an algebraic manipulation model is considered
[5, 6]. The algebraic manipulation is the attack when an attacker is able to modify
data being processed or stored (distort it by injecting a fault) by some device,
but not able to obtain any information on the value of the data. Two attacker
models are distinguished: a weak attacker model and a strong attacker model.
The weak attacker is not able to control an input to the device�under�attack.
In other words, an informational message input into the device is considered to
be uniformly distributed. The strong attacker model is used for situations when
the attacker is able to control the input to the device.

To protect cryptographic devices against fault�injection attacks, several meth-
ods based on redundancy are often used. The most common is to use linear er-
ror detecting codes such as duplication codes, parity check codes and Hamming
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codes. But in cases when an attacker is able to inject speci�c error patterns, lin-
ear codes are not e�ective. Every q�ary linear code of a dimension k has qk − 1
error patterns (corresponding to non�zero codewords) that are undetectable by
this code. Therefore, the attacker can successfully inject one of the codewords
as an error into the device.

To protect devices against the weak attacker model nonlinear weakly secure
algebraic manipulation detection codes were proposed (these codes are also called
robust codes)[7]. The codes are able to detect every error pattern with some
non�zero probability. Thus, weakly secure AMD codes provide robust protection
against all error patterns even if the attacker is able to inject speci�c errors.
But in the case of the strong attacker model these codes are not e�ective. The
encoding procedure is deterministic that implies that the attacker is able to
predict the codeword on the basis of the known input to the device. So the error
which can be successfully injected is a di�erence between some codeword and
the predicted one.

Nonlinear strongly secure AMD codes were proposed for the protection against
the strong attacker model. Its encoding procedure is probabilistic and controlled
by the random number that is located inside the device is and not accessible by
the attacker (but may be distorted by him). Therefore, for each informational
message there are several possible codewords and the encoding result is chosen
between them on the basis of the random number's value. Strongly secure AMD
codes are constructed in such a way that even if the attacker knows the informa-
tional message, he is not able to choose an error that will be undetected for all
values of the random number. In other words, strongly secure AMD codes have
no undetectable errors under the strong attacker model.

Two constructions of strongly secure AMD codes are explored in the paper.
In this paper only systematic codes over GF (2n) are explored since they are
more practical. The rest part of the paper is organized as follows. In Section 2,
we give de�nitions of two types of strongly secure AMD codes: a narrow�sense
and a wide�sense code. References to main code constructions are presented.
In Section 3 a narrow�sense AMD code based on a scalar product operation is
examined. A new wide�sense AMD code also based on a scalar product operation
is described in Section 4. Both Sections 3 and 4 contain a comparison of the
explored construction with the state�of�the�art.

2 De�nitions of AMD codes

De�nition 1. Let y ∈ GF (2k) be an informational message to be encoded, x ∈
GF (2m) be a random number. A code

C = {(y, x, f(x, y))}

is a strongly secure AMD code if the encoding function f(x, y) ∈ GF (2r) satis�es
the following inequality:

max
y,e6=0

|{x : S = 0}|
|{x}|

< 1, (1)



where |·| is the number of entries, the error e = (ey ∈ GF (2k), ex ∈ GF (2m), ef ∈
GF (2r)), and the syndrome is S = f(x, y) + f(x+ ex, y + ey) + ef .

In other words, there are no pairs of y and e 6= 0 such that the syndrome S will
be equal to zero (meaning the error is undetected) at all values of the random
variable x.

In practice it is often required to maintain a data integrity only for an infor-
mational message and not for a redundant part of a codeword. Let's introduce
the next de�nition.

De�nition 2. A narrow�sense AMD code is a code that satis�es the inequality
(1) only for errors e with a non�zero informational part of the error ey 6= 0 ∈
GF (2k):

max
y,e:ey 6=0

|{x : S = 0}|
|{x}|

< 1.

In opposite, codes de�ned by the de�nition 1 will be called wide�sense AMD
codes (stronger AMD codes in [8]). In general, wide�sense codes have more com-
plicated constructions and provide a lower detecting probability than narrow�
sense ones.

It is easy to see that the upper bound on the error masking probability P
follows from the de�nition of an AMD code:

P ≤ max
y,e6=0

|{x : S = 0}|
|{x}|

< 1. (2)

In other words, the error masking probability depends on the number of solutions
for x to the syndrome equation. A ratio of the maximum number of solutions
to the number of all possible values of x gives us the worst�case error masking
probability.

An attacker is assumed to have an adaptive behavior meaning he is able
to select the most suitable and e�ective errors to be injected. In that case the
upper bound on the error masking probability P is a reasonable measure for a
detection capability of a code.

The �rst AMD code described in 2008 has the following construction [5]:

C = {(y ∈ GF (2tr), x ∈ GF (2r), f(x, y) ∈ GF (2r))},

where y = (y1, y2, . . . , yt), yi ∈ GF (2r), and the encoding function is a polyno-
mial:

f(x, y) = y1x+ y2x
2 + . . .+ ytx

t + xt+2. (3)

The code is a wide�sense AMD code with the error masking probability P ≤
(t + 1)2−r. Karpovsky et al. have developed this code into a sophisticated and
�exible construction called the AMD codes based on a generalized Reed�Muller
codes.

Further goes a list of existing systematic AMD constructions. There are
narrow�sense AMD codes based on: multiplication in �nite �eld [5], message



authentication codes (MAC) [6, 8], error correcting codes (ECC) [6, 8], and oth-
ers. The only known class of wide�sense AMD codes is a construction based on
polynomials [5, 6, 1, 2] (see the encoding function (3)).

A secure memory block protected with an AMD code is demonstrated in the
Fig. 1. More protection schemes for di�erent elements of cryptographic devices
are presented in [2].
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Fig. 1. A principle of a secure memory block protection using an AMD code

In this paper two AMD codes based on a scalar product operation in a �nite
�eld are presented. These codes are �exible in terms of the achieved code rate
and the error masking probability. The encoding function is a linear polynomial
so its computational complexity is quite low.

3 Analysis of a narrow�sense AMD code based on a

scalar product operation

3.1 Construction

Let's examine the following code:

C = {(y ∈ GF (2tr), x ∈ GF (2tr), f(x, y) ∈ GF (2r))},

where y = (y1, y2, . . . , yt), x = (x1, x2, . . . , xt), xi, yi ∈ GF (2r), and an encoding
function:

f(x, y) = x1y1 + x2y2 + . . .+ xtyt =

t∑
i=1

xiyi.



Thereby a scalar product of the informational vector and the random vector
is used as the encoding function. Vectors' components xi, yi are considered as
elements of the �nite �eld GF (2r). This code was brie�y mentioned in [1, 2]. The
following analysis of this code shows that it is undeservedly missing in review
papers like [6, 8].

Theorem 1. The code is a narrow�sense AMD code with the error masking
probability P = 2−r.

Proof. As it was mentioned above the error masking probability depends on the
syndrome's maximum number of roots x for all messages y and errors e. The
syndrome of an arbitrary codeword is:

S = f(x, y) + f(x+ ex, y + ey) + ef

=

t∑
i=1

xiyi +

t∑
i=1

(xi + exi)(yi + eyi) + ef

=

t∑
i=1

(xieyi + yiexi + eyiexi) + ef .

By equating the syndrome to zero we get:

t∑
i=1

xieyi =

t∑
j=1

(yjexj + eyjexj ) + ef . (4)

The syndrome equation is a linear polynomial of, in general, t variables xi ∈
GF (2r). The actual number of xi that a�ect the syndrome's value depends on
the number of non-zero eyi

. Let's denote this actual number w.
For �xed y and e the RHS of (4) is a constant. It is easy to see that the LHS

could be equal to that constant at all values of x only if the constant is zero and
all eyi

= 0. In that case the syndrome equation does not depend on the random
number x.

But the code was claimed to be a narrow�sense AMD code. Therefore the
code must detect every error e with the non�zero informational part of the error
ey 6= 0 ∈ GF (2tr) with the probability P stated above. It means that at least
one eyi 6= 0, hence 1 ≤ w ≤ t. So the LHS of (4) cannot be equal to the RHS at
all x. Consequently, there are no pairs of y and e : ey 6= 0 such that equation (4)
will be correct at all values of x. That means that by de�nition 2 the code is a
narrow�sense AMD code.

Now let's examine the number of solutions (roots) to the syndrome equation
(4). It is well�known that a linear polynomial of w q�ary variables (q = 2r) has
qw−1 roots. Hence, at 2r(w−1) values of the random variable x the syndrome will
be equal to zero and an error will not be detected. From (2) follows that the
error masking probability is

P = max
y,e:ey 6=0

|{x : S = 0}|
|{x}|

=
2r(w−1)

2rw
= 2−r.ut



Example 1. Let y ∈ GF (232), x ∈ GF (232), r = 8 bits. Then y = (y1, y2, y3, y4),
x = (x1, x2, x3, x4), yi, xi ∈ GF (28). The encoding function is f(x, y) = x1y1 +
x2y2 + x3y3 + x4y4. The code rate R = k/(k +m+ r) ≈ 0.44. The usage of this
code leads to the error masking probability P = 2−8 ≈ 4 · 10−3.

It is worth mentioning that the random variable x could be an element of
a smaller �eld GF (2th), h < r. In that case we also divide x into t parts:
x = (x1, . . . , xt), xi ∈ GF (2h). Each monomial yixi of the encoding function is
computed with an assumption that xi is an element of the bigger �led GF (2r).
That means that we use an element from GF (2r) with the same decimal repre-
sentation. With this manipulation we get a code with a reduced random part:

C = {(y ∈ GF (2tr), x ∈ GF (2th), f(x, y) ∈ GF (2r))},

where h < r. The code provides P ≤ 2−h. Thus the required size of the random
number x is not strictly �xed and can be reduced from tr to th, 1 ≤ h ≤ r.

Example 2. Let's modify the code from the previous example in this way. The
informational message y is still in GF (232). Let h be equal to 4 bits, x ∈ GF (220).
The required size of the random number x is reduced by 12 bits. It leads to the
code rate increase from 0.44 to 0.53 in exchange for the error masking probability
decrease to P ≤ 2−5 ≈ 3 · 10−2.

3.2 Comparison with other AMD codes

Next let's compare the described code with other constructions.
Comparing to narrow�sense codes the presented one provides more �exibility

guaranteeing the same error detecting probability. The size r of the redundant
check symbol f(x, y) can be selected from dividers of the informational part's
size k. Also, it was shown that the size m of the random number can be reduced
from k bits to a smaller value. Described in [5] a narrow�sense AMD code based
on the multiplication in a �nite �eld is a special case of the presented code with
t = 1. For that code the size of an informational message determines all other
parameters: m = r = k, P = 2−k and R = 1/3. An example of the AMD code
based on error correcting codes from [6] also has �xed parameters and the code
rate equal to 1/3. The code based on message authentication codes presented
in [6] requires at least two times bigger random number x demonstrating the
same error masking probability as the presented code with t = 1. Also, it should
be mentioned that the encoding function of the code described in the section
3.1 generally has lower computational complexity. The encoding polynomial is
linear and only t multiplications in a �nite �eld should be done. The size of the
�eld is at most the same as for other constructions (t = 1), but mainly the size
is t times smaller. It is known that the complexity of a GF (2n) multiplication
implementation is O(n log n log log n). It means that often t multiplications in
GF (2r=k/t) require less hardware overhead than one multiplication in GF (2k).

A comparison of the code based on a scalar product and a wide�sense AMD
code based on polynomials demonstrates that the �rst one requires bigger ran-
dom number x, but its computational complexity is much lower. The code based



on polynomials uses an encoding polynomial of a degree t + 2 (at least 3), see
equation (3). It has the equal number of multiplications in the same �eld GF (2r),
but also requires a computation of x2, x3, . . . , xt and xt+2. Also, the code based
on a scalar product provides up to t+1 times the lower error masking probability
P . For applications like secure hardware design where computational resources
are limited it may be more suitable to use the presented code than the one based
on polynomials. In that case we lose an ability to detect errors with a zero infor-
mational part ey in exchange for the bigger required random number and lower
complexity and error masking probability.

4 A new wide�sense AMD code based on a scalar

product operation

4.1 Construction

A scalar product operation can be used to construct also a wide�sense AMD
code.
The next construction is proposed by the author:

C = {(y ∈ GF (2ta), x ∈ GF (2tb), f(x, y) ∈ GF (2r=a+b))},

where y = (y1, y2, . . . , yt) is an informational message, yi ∈ GF (2a), x =
(x1, x2, . . . , xt) is a random number, xi ∈ GF (2b), and t is even. The encod-
ing function is again a scalar product of two vectors, but each vector now is a
combination of yi and xi:

v1 = ((y1, x1), (y3, x3), . . . , (yt−1, xt−1)) and v2 = ((y2, x2), (y4, x4), . . . , (yt, xt)).

It is assumed that components of vectors are (yi, xi) ∈ GF (2a+b). Thus, a com-
putation of the scalar product of these two vectors v1 and v2 leads to the following
encoding function:

f(x, y) = (y1, x1)(y2, x2) + . . .+ (yt−1, xt−1)(yt, xt) =

t−1∑
i=1,3,...

(yi, xi)(yi+1, xi+1).

Theorem 2. The code is a wide�sense AMD code with the error masking prob-
ability P = 2−b.

Proof. Let's denote each element (yi, xi) as zi and (eyi , exi) as ezi . Then the
encoding polynomial is the following:

f(z) = z1z2 + z3z4 + . . .+ zt−1zt =

t−1∑
i=1,3,...

zizi+1.

Similarly to the previous theorem, we get the following syndrome equation:

t−1∑
i=1,3,...

ziezi+1 + zi+1ezi =

t−1∑
i=1,3,...

eziezi+1 + ef . (5)



Thus we obtain a linear polynomial with t q�ary variables zi, where q = 2r=a+b.
The only way for the attacker to eliminate all zi (and all xi) from the equation

(5) is to inject errors ezi = 0 for all i = 1, . . . , t. Then the syndrome equation
will not depend on the random number x:

S = ef .

But in this case ef should also be equal to zero that leads to the all�zero error e.
That means there is no non�zero error e ∈ GF (2ta+tb+a+b) that will be masked
for all values of z.

Similarly to the previous theorem, the syndrome equation has qw−1 = 2r(w−1)

solutions for z, where 1 ≤ w ≤ t is the number of non�zero ezi . It means there
are 2r(w−1) combinations of vectors (yi, xi), i = 1, . . . , t, at which the syndrome
equation is equal to zero. But in a strong attack model the informational part y
and the error e are �xed, then each zi = (yi, xi) takes only 2b values instead of
q = 2r=a+b. Therefore, the maximum number of solutions for x to the syndrome
equation is upper bounded by 2b(w−1). By de�nition 1 the code is a wide�sense
AMD code with the error masking probability

P ≤ max
y,e6=0

|x : S = 0|
|x|

=
2b(w−1)

2bw
= 2−b.ut

Corollary 1. In the case of a weak attack model (when the encoded informa-
tional message y is unknown to an attacker and considered to be uniformly dis-
tributed) the code provides P = 2−r=−(a+b).

Proof. It follows from the fact that zi from the previous theorem now takes
2r=a+b possible values because y is not �xed in a weak attack model. Therefore,
the syndrome equation has 2r(w−1) solutions for z. According to the equation
(2) from [7] we get the following expression for the error masking probability in
the case of a weak attack model:

Pweak = max
e 6=0

|{(y, x) : S = 0}|
|{y}| · |{x}|

=
2r(w−1)

2rw
= 2−r.ut

Example 3. Let y ∈ GF (248) be an informational message and r = 13 bits. Let
y = (y1, y2, y3, y4, y5, y6), yi ∈ GF (28), t = 6. Then x ∈ GF (2t(r−a)=30) and
x = (x1, x2, x3, x4, x5, x6), xi ∈ GF (2b=5). The following wide�sense AMD code
can be constructed:

C = {(y ∈ GF (248), x ∈ GF (230), f(x, y) ∈ GF (213))}

using the encoding function

f(x, y) = (y1, x1)(y2, x2) + (y3, x3)(y4, x4) + (y5, x5)(y6, x6).

The code rate is R ≈ 0.53, the error masking probability is P = 2−5 ≈ 3 · 10−2.
In the case of the weak attacker Pweak = 2−13 ≈ 10−4.

It is easy to see that for codes based on polynomials P = Pweak. It should
be mentioned that other strongly secure AMD codes also look likely to provide
the same error masking probability for both weak and strong attacker models.



4.2 Comparison with other AMD codes

In comparison with the �rst presented code based on a scalar product, this one is
a wide�sense AMD code. It guarantees the error detecting probability 1−P for
all errors while the other one detects only those with a non�zero informational
part ey. For the same t the wide�sense code requires twice less multiplications,
but, in general, in a bigger �eld. On the whole, a wide�sense code has the lower
code rate. To get the same error masking probability as the �rst code does, the
wide�sense code requires b more bits for the redundant part (for two codes with
�xed k = tr and m = tb). However, in that case the wide�sense code has the 2r

times lower error masking probability of the weak algebraic manipulations. In
general, these observations are applicable when comparing the code with other
narrow-sense AMD codes.

Now let's compare a wide�sense AMD code based on a scalar product to
the wide�sense construction based on polynomials. The second one requires a
smaller random number's size and check symbol's size resulting in a higher code
rate. The �rst one can reach the at least two times lower error masking prob-
ability. In the case of the weak attacker model the �rst code demonstrates the
even lower masking probability. The main point of the wide�sense AMD code
based on a scalar product is that it has the simple encoding function that is a
linear polynomial. In applications where the hardware complexity is critical the
proposed wide�sense code may be chosen. In that case the code rate decreases
in exchange for the lower computational complexity.

All discussed AMD constructions are presented in the Table 1: �N� is for the
�Narrow�sense�, �W� is for the �Wide�sense�, �c/c� is for the �computational
complexity�. For codes based on polynomials, parameters and the error masking
probability shown are correct for the special case of the construction (the code
with the minimum P among all variants).

Table 1. AMD codes

Construction Type Parameters P Features

Multiplication [5] N k = m = r 2−k in�exible;
average c/c;

ECC [6] N k = m = r 2−k in�exible;
average c/c;

MAC [6] N k = r, m = 2k 2−k
in�exible;

require a large x;
average c/c;

Polynomials [1, 2, 5, 6] W k = tr, m = r (t+ 1)2−r �exible;
high or average c/c;

Scalar product (Sect. 3.1) N
k = tr, m = th,

h ≤ r
2−h �exible;

low c/c;

Scalar product (Sect. 4.1) W
k = ta, m = tb,

r = a+ b
P = 2−b

Pweak = 2−r
�exible;

high or average c/c.



5 Conclusion

In this paper, two strongly secure algebraic manipulation detection codes based
on a scalar product operation in a �nite �eld were researched. The �rst one was
brie�y mentioned in [2], but wasn't examined in details and compared to other
codes. The second one is a new wide�sense AMD code proposed by the author.
Both code constructions provide the lowest error masking probability and rela-
tively low computational complexity. Codes can be applied to many applications
such as robust secret sharing schemes, robust fuzzy extractors, anonymous quan-
tum communication and secure cryptographic devices resistant to fault injection
attacks.
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