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Abstract. Most bounds on the size of codes hold for any code, whether linear or

nonlinear. Notably, the Griesmer bound holds only in the linear case. In this paper

we identify code parameters (q, d, k) for which the Griesmer bound holds also in

the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does

not necessarily hold for a systematic code by showing explicit counterexamples.

On the other hand, we are also able to provide some versions of the Griesmer

bound holding for all systematic codes.

1 Introduction

We consider codes over a finite field Fq of length n, with M codewords, and distance
d. A code C with such parameters is denoted as an (n,M, d)q-code.

Definition 1. An (n, qk, d)q-systematic code C is the image of a map F : (Fq)
k →

(Fq)
n, n ≥ k, s.t. a vector x = (x1, . . . , xk) ∈ (Fq)k is mapped to a vector

(x1, . . . , xk, fk+1(x), . . . , fn(x)) ∈ (Fq)n,

where fi, i = k + 1, . . . , n, are maps from (Fq)k to Fq . We refer to k as the dimension

of C. The coordinates from 1 to k are called systematic, while those from k+ 1 to n are

called non-systematic.

If the maps fi are all linear, then the systematic code C is a subspace of dimension k
of (Fq)n and we say it is a [n, k, d]q-linear code. A nonlinear code is a code that is not
necessarily linear or systematic.
We denote with len(C),dim(C),d(C), respectively, the length, the dimension (when
defined) and the minimum distance of a code C.
Recent results on systematic codes can be found in [AB08] and [AG09], where it is
proved that if a linear code admits an extension, then it admits also a linear extension.



This implies that if a systematic code C can be puntured obtaining a linear code, then
there exists a linear code with the same parameters of C.
A central problem of coding theory is to determine the minimum value of n for which
an (n,M, d)q-code or an [n, k, d]q-linear code exists. We denote by Nq(M,d) the min-
imum length of a nonlinear code over Fq , withM codewords and distance d. We denote
by Sq(k, d) the same value in the case of a systematic code of dimension k, while we
use Lq(k, d) in the case of a linear code of dimension k. Observe that

Nq

(
qk, d

)
≤ Sq(k, d) ≤ Lq(k, d).

A well-known lower bound for Lq(k, d) is

Theorem 1 (Griesmer bound). All [n, k, d]q linear codes satisfy the following bound:

n ≥ Lq(k, d) ≥ gq(k, d) :=

k−1∑
i=0

⌈
d

qi

⌉
(1)

The Griesmer bound was introduced by Griesmer [Gri60] in the case of binary linear
codes and then generalized by Solomon and Stiffler [SS65] in the case of q-ary linear
codes. It is known that the Griesmer bound is not always sharp [Van80].
Important examples of linear codes meeting the Griesmer bound are the simplex code
[HP03] (Section 1.8) and the [5, 6, 11]3 Golay code [HP03] (Section 1.9).
Many authors such as [Mar97] and [Kle04], have identified classes of linear codes meet-
ing the Griesmer bound. In particular, finite projective geometries play an important
role in the study of these codes. Many known bounds on the size of nonlinear codes, for
example the Johnson bound ([Joh71]), the Plotkin bound ([Plo60], the Bellini-Guerrini-
Sala bound ([BGS14]) and the Linear Programming bound ([Del73]), are true for both
linear and nonlinear codes.

2 When the Griesmer bound holds for systematic codes

The following proposition and lemma are well-known.

Proposition 1. Let C be an (n, qk, d)q-systematic code, and C ′ be the code obtained

by shortening C in a systematic coordinate. Then C ′ is an (n−1, qk−1, d′)q-systematic

code with d′ ≥ d.

Lemma 1. If n > k, then given an (n, qk, d)q-systematic code C, there exists an

(n, qk, d̄)q-systematic code C̄ for any 1 ≤ d̄ ≤ d.



Theorem 2. For fixed q and d, if

Sq(k, d) ≥ gq(k, d) (2)

for all k such that 1 ≤ k < 1 + logq d, then (2) holds for any positive k.

Proof. It is sufficient to show that if an (n, qk, d)q-systematic code not satisfying the
Griesmer bound exists, then an (n′, qk

′
, d)q-systematic code not satisfying the Griesmer

bound exists with k′ < 1 + logq d, and n′ > k′.
For each fixed d, q suppose there exists k such that Sq(k, d) < gq(k, d). Let us call
Λq,d = {k ≥ 1 | Sq(k, d) < gq(k, d)}. If Λq,d is empty then the Griesmer bound is
true for such parameters q, d. Otherwise there exists a minimum k′ ∈ Λq,d such that
Sq(k′, d) < gq(k′, d). In this case we can consider an (n, qk

′
, d)q systematic code C

with n = Sq(k′, d). We build a new codeC ′ by shorteningC in a systematic coordinate.
Clearly, C ′ is an (n− 1, qk

′−1, d′)q systematic code and d′ ≥ d. Applying Lemma 1 to
C ′, we can obtain an (n− 1, qk

′−1, d)q systematic code C̄. Since k′ was the minimum
among all the values in Λq,d, the Griesmer bound holds for C̄, and so

n− 1 ≥ gq(k′ − 1, d) =

k′−2∑
i=0

⌈
d

qi

⌉
. (3)

We observe that, if qk
′−1 ≥ d, then

⌈
d

qk′−1

⌉
= 1, so we can rewrite (3) as

n ≥
k′−2∑
i=0

⌈
d

qi

⌉
+ 1 ≥

k′−2∑
i=0

⌈
d

qi

⌉
+

⌈
d

qk′−1

⌉
=

k′−1∑
i=0

⌈
d

qi

⌉
= gq(k′, d)

Since we supposed n < gq(k′, d), we have reached a contradiction.

�

3 Set of parameters for which the Griesmer bound holds in the
nonlinear case

In this section we identify several sets of parameters (q, d) for which the Griesmer
bound holds for systematic codes.

Theorem 3. If d ≤ 2q then Sq(k, d) ≥ gq(k, d).

Proof. First, consider the case d ≤ q. By Theorem 2 it is sufficient to show that, fixing
q, d, for any n an (n, qk, d)q-systematic code with 1 ≤ k < 1+logq d and n < gq(k, d)



does not exist. If 1 ≤ k < 1 + logq d then logq d ≤ logq q = 1, and so k may only be
1. Since gq(1, d) = d and n ≥ d, we clearly have that n ≥ gq(1, d).
Now consider the case q < d ≤ 2q. If 1 ≤ k < 1 + logq d then logq d ≤ logq 2q =

1 + logq 2, and so k can only be 1 or 2. We have already seen that if k = 1 then
n ≥ gq(k, d) for any n, so suppose k = 2. If an (n, q2, d)q-systematic code C exists
with n <

∑1
i=0

⌈
d
qi

⌉
= d+2, then by the Singleton bound we can only have n = d+1.

Therefore C must have parameters (d+ 1, q2, d).
In [Hil86, Ch. 10] it is proved that a q-ary (n, q2, n− 1)q code is equivalent to a set of
n− 2 mutually orthogonal Latin squares (MOLS) of order q (Theorem 10.20), and that
there are at most q − 1 Latin squares in any set of MOLS of order q (Theorem 10.18).
In our case n = d + 1 > q + 1, therefore n − 2 > q − 1. The existence of C would
imply the existence of a set of more than q − 1 MOLS, which is impossible.

�

Theorem 4 (Plotkin bound). Consider an (n,M, d)q code, with M being the number

of codewords in the code. If n < qd
q−1 , then M ≤ d/(d− (1− 1/q)n), or equivalently

n ≥ d((1− 1/M)/(1− 1/q)).

Proposition 2. Let r be a positive integer, then Nq(qk, qk−1r) ≥ gq(k, qk−1r).

Proof. Suppose there exists an (n, qk, qk−1r)q-code C that does not satisfy the Gries-
mer bound. Hence n <

∑k−1
i=0

⌈
qk−1r
qi

⌉
. Observe that in this case

∑k−1
i=0

⌈
qk−1r
qi

⌉
=∑k−1

i=0
qk−1r
qi = qk−1r

∑k−1
i=0

1
qi . Since

∑k−1
i=0

1
qi =

1− 1

qk

1− 1
q

, we obtain

n < qk−1r

(
1− 1/qk

1− 1/q

)
. (4)

We also observe that n < qk−1r
(
(1− 1/qk)/(1− 1/q)

)
< qk−1r (1/(1− 1/q)) =

d/(1− 1/q), and we can write this inequality as n < dq
q−1 , which is the hypothesis for

the Plotkin bound. Applying Theorem 4, we get qk ≤
⌊

d
d−n(1−1/q)

⌋
≤ d

d−n(1−1/q) ,

i.e. n ≥ d
(

1−1/qk
1−1/q

)
, which contradicts equation (4). Hence each (n, qk, qk−1r)q-code

satisfies the Griesmer bound.

�

Note that Proposition 2 is not restricted to systematic codes, but it holds for nonlinear
codes with at least qk codewords, as the next corollary explains.



Corollary 1. Let M ≥ qk and let r be a positive integer. Then Nq(M, qk−1r) ≥
gq(k, qk−1r).

Lemma 2. Let q be fixed, d = qlr for a certain r such that 1 ≤ r < q and l ≥ 0, and

let k be such that qk−1 ≤ d. Then Nq(qk, d) ≥ gq(k, d).

Proof. Since 1 ≤ r < q, the hypothesis qk−1 ≤ d is equivalent to k − 1 ≤ l. We use
Proposition 4 and we set h = min(k − 1, l), obtaining n ≥

∑k−1
i=0

⌈
d
qi

⌉
.

�

Theorem 5. Let 1 ≤ r < q and l a positive integer. Then Sq(k, qlr) ≥ gq(k, qlr).

Proof. To prove that the Griesmer bound is true for these particular choices of d we use
Theorem 2, hence we only need to prove that the Griesmer bound is true for all choices
of k such that qk−1 ≤ d.
We now use Lemma 2, which ensures that all such codes respect the Griesmer bound.

�

Corollary 2. Let q = 2 and let l be a positive integer, then S2(k, 2l) ≥ g2(k, 2l).

We need the following numerical lemmas, whose proofs we omit and are present in
[BGMS15].

Lemma 3. Let r be a positive integer, and let k ≤ r+1. Then g2(k, 2r+1) = 2g2(k, 2r).

Lemma 4. For each k and d it holds

g2(k, d+ 1) = g2(k, d) + min(k, l + 1), (5)

where l is the maximum integer such that 2l divides d.

Lemma 5. If k ≤ r, then g2(k, 2r) < 2r+1.

Theorem 6. Let r and s be two positive integers such that r > s, and let d = 2r − 2s.

Then S2(k, d) ≥ g2(k, d).

Proof. If r = s+ 1, then 2r − 2s = 2s, hence we can apply Corollary 2 and our claim
holds. Therefore we can assume r > s+ 1 in the rest of the proof. Suppose there exists
s < r s.t. S2(k, 2r − 2s) < g2(k, 2r − 2s), i.e. the Griesmer bound does not hold for



an (n, 2k, d)2-systematic code C, with d = 2r − 2s and n = S2(k, d). Due to Theorem
2, we can consider the case k < 1 + log2 d, and so k ≤ r. Let m = n/d. For C

m =
S2(k, 2r − 2s)

2r − 2s
≤ g2(k, 2r − 2s)− 1

2r − 2s

We claim that m < g2(k, 2r)/(2r). First we observe that if k ≤ r, then

g2(k, 2r)

2r
=

k−1∑
i=0

1

2i
= 2

(
1− 1

2k

)
.

We consider now the ratio m:

m ≤ g2(k, 2r − 2s)− 1

2r − 2s
=

1

2r − 2s

k−1∑
i=0

⌈
2r − 2s

2i

⌉
− 1

2r − 2s
(6)

We start from the case k ≤ s+ 1, and we can write (6) as

m <
1

2r − 2s

k−1∑
i=0

2r − 2s

2i
=

k−1∑
i=0

1

2i
= 2

(
1− 1

2k

)
,

so m < g2(k, 2r)/(2r). We consider now the case k > s+ 1, and we write our claim in
an equivalent way: 2r(g2(k, 2r− 2s)− 1) < (2r− 2s)g2(k, 2r). Rearranging the terms
we obtain

2sg2(k, 2r) < 2r(g2(k, 2r)− g2(k, 2r − 2s) + 1), (7)

and we focus on the difference g2(k, 2r) − g2(k, 2r − 2s). For any d′ in the range
2r − 2s ≤ d′ < 2r we can apply Lemma 4, observing that d′ = 2lr where l ≤ s, and
this implies k > l + 1. We obtain g2(k, d′ + 1) = g2(k, d′) + l + 1. Applying it for all
distances from 2r − 2s till we reach 2r we obtain

g2(k, 2r)− g2(k, 2r − 2s) = 2s+1 − 1 (8)

We substitute now (8) into (7), which becomes

2sg2(k, 2r) < 2r · 2s+1 =⇒ g2(k, 2r) < 2r+1,

and this is always true provided k ≤ r, as shown in Lemma 5.
We now consider the (tn, 2k, td)2-systematic code Ct obtained by repeating t times
the code C. We remark that the value m can be thought of as the slope of the line



d(Ct) 7→ len(Ct), and we proved that m < g2(k, 2r)/(2r). On the other hand, since
k ≤ r we can apply Lemma 3, which ensures that g2(k, 2r+b) = 2bg2(k, 2r), namely
the Griesmer bound computed on the powers of 2 is itself a line, and its slope is strictly
greater than m. Due to this we can find a pair (t, b) such that td > 2b and tn <

g2(k, 2b). This means that we can find a systematic code C̄ with distance greater than
2b and length smaller than g2(k, 2b). We can apply Lemma 1, and find a systematic
code with the same length of C̄ and distance equal to 2b. This contradicts Corollary 2,
hence for each k ≤ r we have

S2(k, 2r − 2s) ≥ g2(k, 2r − 2s).

Finally, observe that k ≤ r implies k ≤ log2(2r) = dlog2(2r − 2s)e < 1 + log2 d, so
we can apply Theorem 2 and conclude.

�

Corollary 3. Let r and s be two positive integers such that r > s, and let d = 2r − 1

or d = 2r − 2s − 1. Then S2(k, d) ≥ g2(k, d).

Proof. We give the proof for the case d = 2r − 2s − 1, the same argument can be
applied to the other case by applying Corollary 2 instead of Theorem 6.
Suppose S2(k, d) < g2(k, d), i..e. there exists an (n, k, d)2-systematic code for which

n < g2(k, d). (9)

We can extend such a code to an (n+1, k, d+1)2-systematic code C by adding a parity
check component to each codeword. Then C has distance d(C) = d + 1 = 2r − 2s,
so we can apply Theorem 6, finding n + 1 ≥ g2(k, d + 1). Observe that d is odd, so
applying Lemma 4 we obtain

n+ 1 ≥ g2(k, d+ 1) = g2(k, d) + 1 =⇒ n ≥ g2(k, d),

which contradicts (9).

�

4 Versions of the Griesmer bound holding for nonlinear codes

In this section we provide some versions of the Griesmer bound holding for any sys-
tematic code, whose proofs we omit and can be found in [BGMS15]. For systematic
codes we can improve the Singleton bound as follows.



Proposition 3. Let k and d be any positive integers, then

S2(k, d) ≥ k +

⌈
3

2
d

⌉
− 2.

We derive from Theorem 5 a weaker version of the Griesmer bound holding for any
systematic code.

Remark 1. Considering an integer d, there exist 1 ≤ r < q and l ≥ 0 such that

qlr ≤ d < ql(r + 1) ≤ ql+1 . (10)

In particular, l has to be equal to
⌊
logq d

⌋
, and from inequality (10) we obtain d/ql−1 <

r ≤ d/ql, namely r =
⌊
d/ql

⌋
.

Corollary 4 (Bound A). Let l =
⌊
logq d

⌋
and r =

⌊
d/ql

⌋
. Then

Sq(k, d) ≥ d+

k−1∑
i=1

⌈
qlr

qi

⌉
.

Next we generalize Proposition 2.

Proposition 4. Let q, k and d be fixed, and let l be the maximum integer such that ql

divides d. Then

Nq(qk, d) ≥
h∑

i=0

⌈
d

qi

⌉
,

where h is the minimum between k − 1 and l.

Corollary 5 (Bound B). Let q, M and d be fixed, let k be the maximum integer such

that qk ≤M , and let l be the maximum integer such that ql divides d. Then

Nq(M,d) ≥
h∑

i=0

⌈
d

qi

⌉
,

where h is the minimum between k − 1 and l.

We consider now the following bounds, which can be seen as weaker versions of the
Griesmer bound or as an extension of the Plotkin bound.

Proposition 5. For each choice of q, k and d, we have

Nq(qk, d) ≥

⌈
k−1∑
i=0

d

qi

⌉
=

⌈
d

(
1− 1

qk

1− 1
q

)⌉
.



Observe that if the code has a number of words M ≥ qk, then by removing M − qk

codewords we obtain an (n, qk, d)q-code and we can apply Proposition 5. We obtain
the following Corollary.

Corollary 6 (Bound C). For each choice of q, k and d,

Nq(M,d) ≥

⌈
d

(
1− 1

qk

1− 1
q

)⌉
. (11)

where k is the larger integer such that M ≥ qk.

5 Counterexamples to the Griesmer bound

In this section we provide a binary systematic (nonlinear) code for which the Gries-
mer bound does not hold. It has been known that there exist pairs (k, d) for which
N2(2k, d) < g2(k, d), but it has not so far been clear whether the same is true for
systematic codes or not. We consider a nonlinear non-systematic code whose length
contradicts the Griesmer bound. Then we make use of this code to construct a system-
atic code contradicting the Griesmer bound. In [Lev64], Levenshtein has shown that if
Hadamard matrices of certain orders exist, then the binary codes obtained from them
meet the Plotkin Bound. Levenshtein’s method to construct such codes can be found
also in the proof of Theorem 8, of [MS77, Ch. 3,§2].

We can construct a (19, 16, 10)2-nonlinear and non-systematic code C, obtained using
Levensthein’s method, as explained in [MS77, Ch. 3,§2]. For details, see [BGMS15].
We consider the cyclic code Cl of length 15 associated to the complete defining set
S = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12}, which is a code with 16 codewords and distance 8.
We obtain a new code C̄ by concatenating each codeword in Cl with a different code-
word in C. In this way C̄ is an (34, 16, 18)2-systematic code. Since g2(4, 18) = 35,
S2(4, 18) < g2(4, 18), proving that the Griesmer bound is in general not true for sys-
tematic codes (for details, see [BGMS15]).
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