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Abstract. We prove a better than previously known lower bound on
the rate of codes for multiple access adder channel with noise and dis-
cuss its application to well-known coin weighing problem with not exact
measurements.

1 Introduction

A q-ary code C of the length r and cardinality N over alphabet A = {0, 1, . . . , q−
1} ⊂ Z is called s-signature code if sums of any s or less codevectors (as vectors
over the field of real numbers) are distinct, [1]. A binary s-signature code is the
same as columns of a “parity” r × N -matrix H of non-adaptive search of s or
less counterfeit coins among N coins on “spring scale”, see [2]. Note that the
problem of detecting s counterfeit coins is elder (see [3]) than codes for multiple
access adder channel.
Denote by r(s;N) the minimal number of “weighings” to detect s or less counter-
feit coins among N coins and by N(s; r) the maximal cardinality of s-signature
code of length r. Denote also by R(s; r) = r−1 logq N(s; r) the rate of optimal
s-signature code of length r.
The case of arbitrary number of counterfeit coins (namely, s = N) was solved in
[4] and [5], where it was proved that

r(N ;N) =
2N

log2 N
(1 + o(1)) (1)

Investigation of the case s-fixed was initiated in [6], where the notion of Bs

sequences of vectors was introduced. In particular, for the case s = 2 it was
proved in [6] that

5/3 log2 N ≤ r(2;N) ≤ 2 log2 N

or, equivalently,
0.6 ≥ R(2; r) ≥ 0.5

and much later it was improved in [7] to R(2; r) ≤ 0.5753 or, equivalently,
r(2;N) ≥ 1.738 log2 N . Note that for the case of two counterfeit coins adaptive
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search appears to be much more effective, namely, the minimal number of weigh-
ings is not more than 1.4 log2 N [8].
It is obvious that a parity check matrix of a linear binary code correcting s errors
is a “parity” matrix of non-adaptive algorithm for detecting s or less counterfeit
coins and therefore binary BCH codes provide r(s;N) ≤ s log2 N(1+ o(1)) with
explicit construction of matrix H and effective algorithm of “counterfeit coins
detection” (i.e. decoding) of complexity O(sN logN).
By random coding technique the bound r(s;N) ≤ s log2 N was improved in [9]
for all s ≥ 5, and later it was further improved in [10] to the following form

r(s;N) ≤ rrand(s;N) =
2s− 1

Ps
log2 N(1 + o(1)), (2)

where Ps = 2s − log2 C
s
2s. The latter bound is better than BCH-codes for all

s ≥ 3, but for s = 2 binary BCH-codes, correcting two errors, give the best for
today result.

In this paper we consider two generalizations of the original problems detect-
ing counterfeit coins or codes for MAA channel. First, we consider measurements
with errors or equivalently MAA channel with noise (noisy MAAC). Consider-
ing noise, i.e., measurements with errors, is a natural extension of group testing
models with different types of measurements. For traditional group testing model
it was first considered by M.Malyutov in 70-s of last century, see [11], but it be-
came much more popular after discovery of compressed sensing in [12],[13]. For
instance, the model of detecting counterfeit coins on “spring scale with noise”,
see [2], is equivalent to compressed sensing model with restriction that unknown
real s-sparse vector x = (x1, . . . , xN ) as well as the measurement matrix H
consist of only 0 and 1, see also [14]. Note, that we consider below a model of
noisy MAAC which is different from model of [15] where errors in l1 metric are
considered as well as our model is different from model in [2], where a noise in
s-sparse vector x was considered. Moreover, we propose constructions which are
very different from known before.

As second extension of traditional problem of counterfeit coins detection we
consider two-stage adaptive detection algorithms as a “middle point” between
adaptive and deterministic detection algorithms. Note that it is equivalent to
sending messages over MAA channel with once feedback.

2 Signature codes for noisy MAAC or toward to
compressed sensing over Z

Recall that a binary code C of length r and cardinality N is called a binary
s-signature code if sums of any s or less codevectors are distinct, where sums of
vectors are taken over the field R of real numbers [1].
Denote by H = HC a binary r × N matrix, which columns are all vectors of
the code C. Then the property of s-signature code is equivalent to the property



that for any two different s-sparse vectors x and y their “syndroms” S = HxT

and S′ = HyT are distinct also (here matrix, vectors and their products are
considered over R). We call such matrix as a “parity” matrix of non-adaptive
algorithm detecting s or less counterfeit coins on exact scale. Indeed, consider
N coins which are enumerated as 1, . . . , N and let X be a subset of 1, . . . , N
corresponding to counterfeit coins. We assume as usual that it is known that the
weight of a counterfeit coin is 1 gram less than for a right coin. If we put a set
A ⊂ {1, 2, . . . , N} of coins on an exact scale and the scale shows that the total
weight is on SA grams less than for |A| right coins then it means that there are SA

counterfeit coins among chosen set A. Equivalently, SA = |X ∩ A| = (x, χ(A)),
where the scalar product is taken over R, χ(A) denotes the characteristic vector
of the set A and x = χ(X). Let sets A1, . . . , Ar be chosen in such way that
χ(Ai) = hi. Hence, if we put sets A1, . . . , Ar on the scale then we know (x, hi)
for all i, i.e., we know HxT , and therefore can uniquely recover x if the Hamming
weight wt(x) ≤ s.

Consider the noisy MAAC. We assume that for any s codewords c(1), . . . , c(s)

of a signature code C being transmitted through the noisy MAAC the corre-
sponding output vector z = (z1, . . . , zr) may differ from the vector

∑s
i=1 c

(i) in
at most l coordinates, i.e.,

d(z,
s∑

i=1

c(i)) ≤ l, (3)

where d(a, b) = |{i : ai ̸= bi} is the Hamming distance between vectors a and
b (and wt(a) = d(a, 0) is the Hamming weight of a). For detecting counterfeit
coins it is equivalent to the assumption that some but not more than l of r
measurements have been distorted by noise. Therefore we use the following

Definition 1. We shall say that a code C is (s, l)-signature code, or s-signature
code correcting l errors, if

d(
∑

c∈I⊂C

c,
∑

c∈J⊂C

c) ≥ 2l + 1, (4)

for any two different subsets I and J both cardinality not more than s.

Let again H = HC be an r × N -matrix which columns are codewords of (s, l)-
signature code code C, where N = |C|. Then (4) is equivalent to the property
that for any Ŝ the following equation

Ŝ = HxT + e, (5)

has not more than a single solution among pairs {x, e} such that wt(x) ≤ s and
wt(e) ≤ l. Equivalently, for any “distorted syndrom” Ŝ there is at most one
binary s-sparse vector x such that d(Ŝ,HxT ) ≤ l. A very similar problem was
considered in [16] as a discrete variant of compressed sensing problem. Later
classes of optimal and asymptotically optimal “codes” were constructed in [17].



Let us describe that construction and apply it for the considered problem.
Denote by N(s, l; r) the maximal cardinality of (s, l)-signature code of length r
and by r(s, l;N) the minimal number of “weighings” to detect s or less counter-
feit coins among N coins in presence of at most l wrong “weighings”.
Let a binary r̃×N matrix H̃ be a parity-check matrix of an (N,N− r̃)-code over
F2, correcting s errors, i.e. any 2s columns of H̃ are linear independent. And let
G be a generator matrix of an (r, r̃)-code over F2 of length r, correcting l errors.
Let matrix H consists of columns h1, . . . , hN , where

hT
j = h̃T

j G (6)

and transposition T means, that vectors hj and h̃j are considered in (6) as row
vectors, i.e.

H = GT H̃ (7)

Saying in words, we encode columns of parity-check matrix H̃, which is already
capable to correct s errors, by a linear binary code, correcting l errors, in order
to restore correctly syndrom of H̃. It was proved [17] that the constructed matrix
has a desirable property even in a bit stronger sense, namely, over the binary
field F2. Since sum of any s (or less) columns of H differs by mod 2 from sum
of any other s columns of H in at least l positions the same is true for sums as
real numbers, hence we have the desirable property.
Let us choose both constituent codes as binary BCH-codes, for which it is known
that the redundancy rBCH(t, n) of binary BCH t error-correcting code of length
n is at most t⌈log2(n + 1)⌉, see [18]. Hence this construction provides r × N
parity matrices for detecting s counterfeit coins in presence of at most l wrong
measurements, or an s-signature code of length r and cardinality N for the noisy
MAAC with at most l errors during the transmission, with

r ≤ (s log2 N + l log2 log2 N)(1 + o(1)) (8)

It is clear that this construction does not use in full the property that addition of
vectors is over real numbers field. The next construction exploits this property
more effective.

We will use the same idea as above, namely, we construct a parity r × N
binary matrix H consisting of two submatrices - upper r1 × N matrix H1 and
lower r2 ×N matrix H2. Let matrix H1 be capable to detect up to s counterfeit
coins among N , i.e. all sums of s or less column vectors of H1 are distinct.
Let p be a minimal prime number such that p > s and let C be a systematic
linear (r, r1)-code of length r over the field Zp with r1 information symbols and
r2 = r − r1 parity symbols, which is capable to correct l errors (over Zp).
Encode columns of the matrix H1 by the code C. We cannot use directly these
vectors as columns of H since the result of encoding gives vectors which r2
parity symbols aren’t binary vectors, but belong to Zp. Instead we replace each
parity symbol of these vectors by the corresponding m-bit column based on the
following simple mapping Ψ(a) : Zp → {0, 1}m, where m = ⌈log2(p + 1)⌉ and



Ψ(a) = (a0, . . . , am−1) is the binary representation of integer number a.
Now consider decoding procedure. Note that from sum

Ψ(a) + Ψ(b) = (a0 + b0, . . . , am−1 + bm−1),

taken over R, we can recover a + b as a + b =
∑m−1

i=0 (ai + bi)2
i. Of course, the

same is true for sums of s or less elements. Hence from the sum of parity parts
of column vectors of H, namely,

(Ψ(a(1)), . . . , Ψ(a(r2))) + (Ψ(b(1)), . . . , Ψ(b(r2))) + (Ψ(c(1)), . . . , Ψ(c(r2))) + . . .

we can recover the corresponding vector

(a(1) + b(1) + c(1) + . . . , . . . , a(r2) + b(r2) + c(r2) + . . .)

and then we take residues of these coordinates by mod p. Therefore in presence
of l or less errors we will correct them since columns of H are taken from linear
code and therefore their sum is also a codevector. Hence decoding gives us a
correct sum vector of s columns vectors and we can recover x by the property
that the matrix H1 is capable to detect up to s counterfeit coins.
The redundancy rp of p-ary BCH code of length n, correcting l errors, is

rp ≤ 1 + (2l − 1− ⌈2l − 1

p
⌉)⌈logp(n+ 1)⌉ (9)

Note, that there are codes with asymptotically better redundancy for d > p,
see[19], but the corresponding gain is not very large. Therefore for the second
term r2 of redundancy we have that r2 ≤ mrp and therefore

r(s, l;N) ≤ r(s,N) + 2l⌈log2(p+ 1)⌉ (p− 1) log2 log2 N

p log2 p
(1 + o(1)) (10)

Rather straightforward calculations for random codes with expurgation give the
following lower bound

r(s, l;N) ≤ rrand(s,N) + 2l log2 log2 N(1 + o(1)) (11)

It is clear from (10) and (11) that “semi-constructive” codes of (10) are better
than random codes (even with expurgation) when p log2 p > (p−1)⌈log2(p+1)⌉,
for instance, for p = 7 (and s ≤ 6).

3 Two-stage adaptive detection algorithms

Consider the case of two counterfeit coins. Let 2m−1 ≤ N < 2m. For the first
stage we use m × N binary matrix H1 which columns are distinct binary m-
tuples. Let x be a binary vector of weight 2 corresponding to the positions of
two counterfeit coins. Vector S = H1x

T is the result of measurements at first
stage. It is clear that different vectors x of weight 2 such that H1x

T = S have



nonintersecting supports, and there are 2W1(S)−1 such vectors, where W1(S) is
the number of coordinates in S which are equal to 1. Let us enumerate these
vectors {x} by ternary vectors of length L = ⌈log3 2W1(S)−1⌉ and let ternary
vector ci,j = (c1, . . . , cL) corresponds to the vector x which has 1 on positions i
and j. Now we form parity matrixH2 for the second stage by choosing as i-th and
j-th columns ofH2 binary vectors hi and hj such than hi+hj = ci,j . For example,
if ci,j = (0, 2, 1, 2, 1) then we choose hi = (0, 1, 0, 1, 0) and hj = (0, 1, 1, 1, 1).
Then H2x

T = ci,j and different vectors x of weight 2 such that H1x
T = S are

distinguished by the second stage. The total redundancy

rtwo ≤ ⌈log2(N + 1)⌉+ ⌈log3 2m−1⌉ = (1 + log3 2) log2 N(1 + o(1)) (12)

and hence the redundancy of two-stage search is asymptotically rtwo ≤ 1.631 log2 N .
It is better than any deterministic detection because r(2;N) ≥ 1.738 log2 N , but
worse than adaptive search with 1.4 log2 N weighings [8] .

Consider the case of three counterfeit coins. Let for simplicity of notations
N = 2m−1. For the first stage we use parity-check 2m×N matrix H1 of binary
BCH-code, correcting two errors, plus extra row consisting of all ones. Because of
this row after first stage we know exactly the number of counterfeit coins and if
this number is less than 3 then we can find them from “syndrom” S = H1x

T . Let
x be a binary vector of weight 3 which has ones on positions i, j, k, and set {i, j, k}
is the support set of x. And let y be another binary vector of weight 3 which
has ones on positions i′, j′, k′ and H1x

T = H1y
T . Then these two vectors have

disjoint supports. Indeed, let k = k′, then h
(i)
1 + h

(j)
1 + h

(k)
1 = h

(i′)
1 + h

(j′)
1 + h

(k)
1

and hence h
(i)
1 + h

(j)
1 = h

(i′)
1 + h

(j′)
1 but all pairwise sums of columns of H1

are different (since the code correct two errors). Now we have similar problem
as above - we enumerate all vectors x : wt(x) = 3,H1x

T = S by quaternary
vectors of length L ≤ ⌈log4(N/3)⌉ and repeat all aforementioned arguments
by replacing pairs on triples. The total redundancy of this two-stage algorithm
doesn’t exceed 2.5 log2 N(1 + o(1)) what is much better than random codes
having r ≈ 2.97 log2 N , see (2).
It is an interesting open question to establish lower bound on the redundancy of
two-stage detection.
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