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Abstract. Among statistical attacks, we often make a distinction be-
tween attacks in the linear context, for which the knowledge of plaintexts
and corresponding ciphertexts is enough to perform the attack, and at-
tacks in the differential context, for which the plaintexts are chosen.
Such attacks are usually referred as known- or chosen-plaintext attacks.
It is commonly believed that attacks in the known-plaintext model are
more practical than attacks in the chosen-plaintext model. Neverthe-
less, it is usual in the literature, to only compare the data, time and
memory complexity of these attacks without considering the model. In
this paper, we reconsider some known-plaintext attacks, by considering
them in the distinct-known-plaintext model. We explain and develop the
statistical model for the multiple zero-correlation linear cryptanalysis,
multidimensional linear cryptanalysis, as well as for the key-difference-
invariant-bias related-key attack introduced at ASIACRYPT 2013. Based
on these models validated by experiments, we improve attacks on some
ciphers.

Keywords: multidimensional linear attack, zero-correlation linear at-
tack, key-difference-invariant-bias attack, known plaintext, distinct known
plaintext, statistical model.

1 Introduction

Among statistical attacks, we often make a distinction between attacks in the
linear context, for which the knowledge of plaintexts and corresponding cipher-
texts is enough to perform the attack, and attacks in the differential context, for
which the plaintexts are chosen. Such attacks are usually referred as known- or
chosen-plaintext (KP, CP) attacks. It is commonly believed that attacks in the
known-plaintext model are more practical than attacks in the chosen-plaintext
model. Nevertheless, it is usual in the literature to only compare the data, time
and memory complexity of these attacks without considering the model.

In [4, 6, 7] zero-correlation linear attacks were introduced. For these attacks,
depending on the number of used approximations and on the relation between
the involved linear masks, different statistical models are presented. For in-
stance in [4] the two models to compute respectively the data complexity of
multiple zero-correlation linear attacks and multidimensional zero-correlation
linear attacks are recalled. While the statistical model for multidimensional zero-
correlation linear attack assumes that the plaintexts involved in the attacks are



distinct, the one for multiple zero-correlation linear attack assumes a normal
distribution of the expected capacity for the wrong keys.

In [3] key-difference-invariant-bias attacks are introduced. In these related-
key attacks, the attacker takes advantage of linear approximations that have the
same bias for keys with a specific difference. The statistical model [3] for this
related-key known-plaintext attack is similar to the one presented in [7] in the
context of multiple zero-correlation linear attack.

In this paper we develop on distinct-known-plaintext (DKP) attacks. In partic-
ular, we show the importance of avoiding repetition when the data complexity of
the attack is close to the full codebook. More importantly, while it is commonly
believed that there is a difference in the evaluation of the data complexity of a
multiple zero-correlation linear attack and of a multidimensional zero-correlation
linear attack, we show that the difference is only in the way the plaintexts are
handled. Based on theoretical and experimental observations, we provide new
formulas to compute the data complexity of multiple zero-correlation linear at-
tacks and key-difference-invariant bias attacks. As an illustration, we have in-
stantiated our formulas on existing attacks reducing their data complexity. A
model for distinct-known-plaintext multiple/multidimensional linear attacks is
also introduced.

The outline of this paper is as follows. The notation is introduced in Sect. 2.
In Sect. 3 we present the statistical model which is validated by experiments in
Sect. 4. In Sect. 5 we apply our model on some existing attacks and improve
their complexity. Sect. 6 concludes this paper.

2 Preliminaries

2.1 Linear Attacks

While the idea of using distinct-known plaintexts can be extended to any statis-
tical attack, we focus on the most common known-plaintext statistical attacks
which are generalizations of linear cryptanalysis [11].

Given an n-bit permutation F , we denote by (u, v) ∈ Fn
2 ×Fn

2 , a pair of input
and output masks. In linear attacks, we take advantage of linear approximations
of the form u · x⊕ v ·F (x) = 0. The strength of a linear relation is measured by
its correlation. The correlation of a Boolean function fu,v(x) = u · x ⊕ v · F (x)
is defined as

cor(u, v) = 2−n
[
# {x ∈ Fn

2 |fu,v(x) = 0} −# {x ∈ Fn
2 |fu,v(x) = 1}

]
.

In [2] the idea of taking advantage of multiple independent linear approxima-
tions is introduced. In [10] multidimensional linear attacks are presented. In these
more recent attacks, the attacker takes advantage of all linear approximations
with linear masks (u, v) u 6= 0 in a linear space.



The capacity C is used to collect the information of a set of linear approxi-
mations. Given sets of input and output linear masks U and V , it is defined as
the sum of the squared correlations:

C =
∑

u∈U,v∈V,u6=0

cor2(u, v).

While multiple/multidimensional linear attacks take advantage of a set of lin-
ear approximations with large capacity, multiple and multidimensional zero-
correlation linear attacks [4, 6, 7] take advantage of linear approximations with
correlation equal to zero. These attacks have been proven efficient on word-
oriented structures such as Feistel-type ciphers. When multiple approximations
with zero-correlation are used, the capacity C of the set of linear approximations
is equal to zero.

In the remainder of this paper, we denote by ` the number of linear approxima-
tions involved in our attacks. Given s the dimension of the linear space U × V ,
in (zero-correlation) multidimensional linear attacks we have ` = 2s − 1. The
block cipher size is denoted by n.

2.2 Statistics

The data complexity N of a statistical attack corresponds to the number of
plaintexts necessary to perform the attack. In general, we want to find the en-
cryption key (right key) by differentiating the score of the right key from the
one of the wrong keys. In (zero-correlation) multiple/multidimensional linear
attacks the scoring function corresponds to the estimated capacity of the multi-
ple/multidimensional linear approximations:

T = N ·
∑

1≤i≤`

( ˆcori)
2,

where ˆcori is the empirical correlation of the i-th linear approximation. In (zero-
correlation) multidimensional linear attacks the computation of this score T can
be simplified and is equivalent to:

T =
∑̀
j=0

(V [j]−N/(`+ 1))2

N/(`+ 1)
,

where V [j] corresponds to the number of occurrences of the j-th element of the
multidimensional distribution.

Following the notation of [12], we denote by Ps the success probability and
by a the advantage of the attack where 2−a is the proportion of discarded keys.

Throughout this paper, we denote by Φ the cumulative distribution function
of the central normal distribution. To simplify the notation, we also introduce:
ϕa = Φ−1(1 − 2−a) and ϕPS

= Φ−1(PS). Given µR and σR (resp. µR and σw),



the mean and variance of the normal random variable TR for the right key (resp.
TW for the wrong keys), we have (see i.e. [12]):

PS ≈ Φ
(
|µR − µW | − σWϕa

σR

)
. (1)

3 Statistical Models

3.1 Multiple and Multidimensional Zero-Correlation Linear Attacks

In [4] we have the following two estimates of the data complexity of a multiple
and multidimensional zero-correlation linear attacks derived from [6,7].

Lemma 1. [7] The number N of known plaintexts required in a multiple zero-
correlation linear cryptanalysis is:

N ≈ 2n(ϕPS + ϕa)√
`/2− ϕa

. (2)

The proof [7] follows from (1) using the fact that the distribution of TR (resp

TW ) can be estimated by a normal distribution with parameters µR =
`

N
and

σR =

√
2`

N
(resp. µW =

`

N
+

`

2n
and σW =

√
2`

N
+

√
2`

2n
).

Lemma 2. [4, 6]1 The number N of distinct-known plaintexts required in a
multidimensional zero-correlation linear cryptanalysis is:

N ≈ 2n(ϕPS + ϕa)√
`/2 + ϕPS

. (3)

The proof [4,6] follows from the use of the hypergeometric distribution as given
in a more general case in Th. 1.

Assuming as in the proof of Lemma 1 that the correlation of the involved
linear approximations are independent, we can adapt this result to the context
of multiple zero-correlation linear cryptanalysis. In practice we observed, see
Sect. 4.1, that the data complexity of a multiple zero-correlation linear attack
can be estimated by (3) when assuming distinct-known plaintexts.

Corollary 1. Given ` the number of used linear approximations. The data com-
plexity of a known-plaintext multiple/multidimensional zero-correlation linear at-
tack is given by (2). If we consider distinct-known plaintexts, the data complexity
is given by (3).

1 The distribution of the random variables has been derived in [6], the estimation of
the data complexity appears in [4].



Since for most attacks 0.5 ≤ PS ≤ 0.99, meaning that 0 ≤ ϕPS ≤ 2.4, the
difference between (3) and (2) is particularly noticeable when

√
`/2 and ϕa are

in the same order of magnitude. From (3) and (2) we deduce that the success
probability of a known-plaintext zero-correlation linear attack is:

PS ≈ Φ
(
N

2n

√
`/2− ϕa · (

N

2n
+ 1)

)
, (4)

and the one of a distinct-known-plaintext zero-correlation linear attack is:

PS ≈ Φ

(
N
√
`/2

2n −N
− ϕa

2n

2n −N

)
. (5)

3.2 Multidimensional Linear Attacks

In the previous section we show that the data complexity of zero-correlation
linear attacks is reduced once we consider distinct-known plaintexts. In this
section we focus on the classical multidimensional linear attack.

Lemma 3. [10] In the known-plaintext model, the random variable TR involved
in a multiple/multidimensional linear attack follows a normal distribution with
parameters:

µR ≈ `+N · C, and (6)

σ2
R ≈ 2(`+ 2 ·N · C).

The random variable TW follows a normal distribution with parameters µW = `,
σ2
W = 2`.

From these results, the data complexity of a known-plaintext multidimensional
linear attack is computed as [10]:

N ≈
√

4a`+ 4Φ−1(2PS − 1)2

C
. (7)

In the following we study the distribution of the variable TR in the context of
a distinct-known-plaintext attack.

Theorem 1. Assuming distinct-known plaintexts the random variable TR in-
volved in a multiple/multidimensional linear attack follows a normal distribution
with parameters:

µR ≈ `(1−
N

2n
) +N · C, and (8)

σ2
R ≈ 2`(1−N/2n)2 + 4(1−N/2n)N · C.



Proof. For the purpose of this proof, we denote by E(X) the mean of a random
variable X and by V ar(X) its variance. We denote by Zi the random variable
corresponding to the number of solutions of the i-th equation of the form u ·x⊕
v · F (x) = 0 and by N · pi the expected number of solutions of this equation.
Assuming that the plaintexts are distinct, from the hypergeometric distribution,

we have E(Zi) = N · pi =
N

2
(1 + cori) and V ar(Zi) = Npi (1− pi) =

N

4
(1 −

cor2i )
2n −N
2n − 1

since pi = 1/2(1 + cori). Given Xi = 2 · Zi/N − 1 we deduce that

E(Xi) = cori and V ar(Xi) =
4

N2
V ar(Zi) ≈

1

N
· 2n −N

2n − 1
.

We have TR = N
∑

iX
2
i . We denote V =

∑
i≤`

X2
i

V ar(Xi)
. The random vari-

able V follows a non-central χ2 distribution with parameters E(V ) = ` + λ

and V ar(V ) = 2(` + 2λ) where λ =
∑

i

E(Xi)
2

V ar(Xi)
= N · C 2n − 1

2n −N
. From

V = TR
2n − 1

2n −N
, we deduce that E(TR) ≈ `(1−N/2n) +N · C and V ar(TR) ≈

2`(1−N/2n)2 + 4(1−N/2n) ·N · C. ut
Experiments which confirm the value µR are presented in Sect. 4.2. From this
result we can extract using C = 0 the distribution of the random variable TR
(see [6]) in the case of a distinct-known-plaintext zero-correlation linear attack.

4 Experimental Results

As usually zero-correlation linear attacks and multidimensional linear attacks are
not targeting the same cipher construction, we have implemented experiments
on a Feistel-type cipher and on a SPN-type cipher. The used ciphers are depicted
in Fig. 1 and could correspond to scaled versions of CLEFIA [13] (a 16-bit type-
II GFN with 4 branches) and PRESENT [5] (SMALLPRESENT-[32], a 32-bit
SPN-cipher).
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Fig. 1: Left: Description of the key-recovery attack done on a Type-II GFN. Right: One
round of SMALLPRESENT-[8].



While in [14] experiments showing the distribution of µR and µW have been
presented, there is, to the best of our knowledge, no mentioning of experimental
zero-correlation linear attacks, in the literature.

4.1 Zero-Correlation Attacks on a Type-II GFN with 4 Branches

The results of our experiments averaged over 1000 keys are provided in Fig. 2.
In these graphics we compare the success probability of multidimensional and
multiple zero-correlation linear attacks with the theoretical ones given by (5)
for distinct plaintexts and by (4) for non-distinct plaintexts. This experiments
confirm the theory given in Sect. 3.1 showing that the same formula can be used
to compute the complexity of multiple zero-correlation and multidimensional
zero-correlation linear attacks.
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Fig. 2: Attacks on a type-II-GFN cipher. Left: multidimensional zero-correlation linear
attacks, right: multiple zero-correlation linear attacks.

4.2 Experiments on SMALLPRESENT-[8]

In Fig. 3 we compare the experimental and theoretical mean µR of the variable
TR in the cases of distinct-known-plaintext and of known-plaintext distinguishing
attacks. For this cipher, we observe that the theoretical value of µR given in Th.1
is accurate.
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Fig. 3: The mean µR of TR for a 8-bit multidimensional distribution (` = 28−1) over 9
rounds of SMALLPRESENT-[8] with capacity C = 2−21.29 (left), over 12 rounds with
capacity C = 2−24.13 ≤ `/2n (right).

Remark 1. Distinct-known-plaintext attacks should require less data than known-
plaintext attack when the data complexity of the attack is close to the full code-
book. In practice, as illustrated by (8), this occurs when the capacity of the
multiple/multidimensional linear approximations is such that C ≤ `/2n. In the
distinct-known-plaintext model this would correspond to the case where µR de-
creases as the data complexity increases (see i.e. the right side of Fig. 3). An
attack in this model will only be possible if we have a good estimate of the ca-
pacity. However, in practice, see for instance [9], we only have an underestimate
of the capacity which can be problematic when it comes to estimate the data
complexity of a distinct-known-plaintext multidimensional linear attack.

5 Applications

5.1 Multiple Zero-Correlation Linear Attacks

As explained in this paper, by considering distinct-known plaintexts we can
use (3) to compute the data complexity of a multiple zero-correlation linear
attack. As the data complexity of multidimensional linear attacks has already
been computed under this setting, and because other comparable (in number
of attacked rounds) attacks have been performed in the chosen-plaintext model,
this should give us a better comparison factor. The result of our computation and
a comparison with the best attacks on the block cipher Camellia [1] are provided
in Table 1. The attack is from [4]. The data complexity has been computed using
(3) instead of using (2) with the parameters of the attack chosen as PS = 0.85
and a = 96 or a = 160. The time complexity has been computed according to
the description given in [4].

Similarly we can improve the data complexity of the multiple zero-correlation
linear attack on CAST-128 [15]. The parameters of the attack being n = 128,
` = 64770, a = 50 and PS = 0.85, the data complexity of the attack using
known plaintexts2 is N = 2123.73 and the data complexity of the attack using
distinct-known plaintexts is N = 2123.67.

2 With these parameters, the data complexity can not be equal to 2123.2 as given
in [15].



Version #R Attack ` a PS N Time Mem. Ref.

Camellia-128 11 Impossible - - 1 2118.4 CP 2118.43 296.4 [8]

Camellia-128 11 Zero-Correlation 214 96 85% 2125.3 KP 2125.8 2112 [4]

Camellia-128 11 Zero-Correlation 214 96 85% 2125.1 DKP 2125.8 2112 This paper

Camellia-192 12 Impossible - - 1 2119.7 CP 2161.06 2147.7 [8]

Camellia-192 12 Zero-Correlation 214 160 85% 2125.7 KP 2125.8 2112 [4]

Camellia-192 12 Zero-Correlation 214 160 85% 2125.46 DKP 2125.8 2112 This paper
Table 1: Best key-recovery attacks on Camellia (attacks starting from the first round).
The memory is expressed in number of bytes. #R denotes the number of attacked
rounds.

5.2 Key-Difference-Invariant-Bias Attacks

To the best of our knowledge, the only paper presenting attacks in this context is
the similar paper [3]. In Table 2 we resume the complexity of the best related key-
attacks on LBlock [17] and show that by assuming distinct-known plaintexts the
data and time complexity of the attack can be improved. Similar improvement
can be obtained for the related-key attack on TWINE presented in [3].

#R Type #Keys ` a PS N Time Mem. Ref.

23 Imp. Diff 4 - 100% 261.4 RKCP 278.3 261.4 [16]

24 Key Inv Bias 32 27.81 4.5 85% 262.29 RKKP 274.59 261 [15]

24 Key Inv Bias 32 27.81 8.5 85% 262.95 RKKP 270.67 261 [15]

24 Key Inv Bias 32 27.81 8.5 85% 262.38RKDKP 270.67 261 This paper

24 Key Inv Bias 32 27.81 16 85% 262.84 RKDKP 266.57 261 This paper*
Table 2: Best related-key attacks on LBlock. *: Computation of the time complexity
according to the description given in Sect. 5.3 of [3].

6 Conclusion

In this paper, we reconsider the statistical model for multiple zero-correlation
linear and key-difference-invariant-bias attacks. We show that when using dis-
tinct plaintexts, the attacks can be performed using less plaintexts. We also
consider for the first time a statistical model for distinct-known-plaintext mul-
tiple/multidimensional linear attacks. Nevertheless questions remain regarding
how this model will be useful when we only have an underestimate of the capac-
ity.
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