Delaunay triangulations on orientable surfaces of low genus - Archive ouverte HAL Access content directly
Conference Papers Year : 2016

Delaunay triangulations on orientable surfaces of low genus

(1) , (2) , (3)
1
2
3

Abstract

Earlier work on Delaunay triangulation of point sets on the 2D flat torus, which is locally isometric to the Euclidean plane, was based on lifting the point set to a locally isometric 9-sheeted covering space of the torus. Under mild conditions the Delaunay triangulation of the lifted point set, consisting of 9 copies of the input set, projects to the Delaunay triangulation of the input set. We improve and generalize this work. First we present a new construction based on an 8-sheeted covering space, which shows that eight copies suffice for the standard flat torus. Then we generalize this construction to the context of compact orientable surfaces of higher genus, which are locally isometric to the hyperbolic plane. We investigate more thoroughly the Bolza surface, homeomorphic to a sphere with two handles, both because it is the hyperbolic surface with lowest genus, and because triangulations on the Bolza surface have applications in various fields such as neuromathematics and cosmological models. While the general properties (existence results of appropriate covering spaces) show similarities with the results for the flat case, explicit constructions and their proofs are much more complex, even in the case of the apparently simple Bolza surface. One of the main reasons is the fact that two hyperbolic translations do not commute in general. To the best of our knowledge, the results in this paper are the first ones of this kind. The interest of our contribution lies not only in the results, but most of all in the construction of covering spaces itself and the study of their properties.
Fichier principal
Vignette du fichier
paper20.pdf (1.17 Mo) Télécharger le fichier
Vignette du fichier
triangles-238.png (45.35 Ko) Télécharger le fichier
Vignette du fichier
triangles-238.pdf (23.32 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01276386 , version 1 (01-04-2016)

Identifiers

Cite

Mikhail Bogdanov, Monique Teillaud, Gert Vegter. Delaunay triangulations on orientable surfaces of low genus. 32nd International Symposium on Computational Geometry, Jun 2016, Boston, United States. pp.20:1--20:15, ⟨10.4230/LIPIcs.SoCG.2016.20⟩. ⟨hal-01276386⟩
365 View
385 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More