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Abstract. MDS matrices are of great importance in the design of block
ciphers and hash functions. MDS matrices are in general not sparse and
have a large description and thus induces costly implementation in soft-
ware/hardware. To overcome this problem, in particular for applications
in light-weight cryptography, it was proposed by Guo et. al. to use recur-
sive MDS matrices. Such matrices can be computed as a power of com-
panion matrices. Following this, some ad-hoc techniques are proposed to
find recursive MDS matrices which are suitable for hardware/software
implementation. In another direction, coding theoretic techniques are
used to directly construct recursive MDS matrices: Berger technique uses
Gabidulin codes and Augot et. al. technique uses shortened BCH codes.
In this paper, we provide a necessary and sufficient condition to con-
struct recursive MDS matrices from non-singular diagonable companion
matrices. Then we provide three methods to construct recursive MDS
matrices. Moreover, recursive MDS matrices obtained through our first
method are same as those obtained using shortened BCH codes. The
other two methods provide those companion matrices which can be ob-
tained from Gabidulin codes. However, our formulation of necessary and
sufficient condition provides many more possibilities to explore to get
recursive MDS matrices.

Keywords: Companion matrix, Recursive MDS matrix, Shortened BCH
code, Gabidulin code.

1 Introduction

Confusion and Diffusion [26] are two essential properties required to design block
ciphers and hash functions. The concept of multipermutation [25, 28] is one pos-
sibility of formalizing the notion of perfect diffusion. Another way to formalize



the notion of perfect diffusion is by using Maximum Distance Seperable (MDS)
codes. MDS [18, 16] matrices provide high branch number [7] which means a
small change in the input will change output bits a lot. Many block ciphers
like AES [9], Twofish [23, 24], SHARK [21], Square [8], Khazad [6], Clefia [27],
MDS-AES [20] etc. use MDS matrices in their diffusion layers. Such matrices
also play an important role in the design of many hash functions like Maelstrom
[10], Grφstl [12] and PHOTON family [13].

A common approach to implement MDS diffusion layers in many ciphers is to
use pre-computed tables, but this may not be suitable for resource constrained
environments. Several other techniques have also been used like circulant or
modification of circulant like matrix to obtain simpler MDS matrix, as in AES
[9] and FOX [17]. Another method proposed recently, particularly for resource
constrained environments, is to use recursive MDS matrices, known examples
that employ such matrices are PHOTON family of hash functions [13] and LED
block cipher [14]. A recursive MDS matrix of size n is an MDS matrix which can
as obtained as a power of a simple companion matrix (see Definition 2) of size n.
The main advantage of this approach is that it can be efficiently implemented in
hardware using LFSRs where the last row (or column) of the companion matrix
gives the connection polynomial of LFSR. Following the work of Guo et. al [13],
some recent papers [22, 15, 4, 30, 1–3] study the construction of efficient recursive
MDS matrices.

In Indocrypt 2013, Berger [4] proposed a method to construct recursive MDS
matrices from Gabidulin Codes [5]. This construction produces not only an MDS
matrix but an MRD (Maximum Rank Distance) [11] matrix also. Then in FSE
2014, Augot and Finiasz [2, 3], gave another construction of recursive MDS ma-
trices using shortened BCH codes. In this method, first a generating polynomial
g(x) for BCH code over Fq is computed with suitable parameters. For such a
BCH code to be an MDS code, it is required that g(x) must belong to Fq[x].
Once a MDS BCH code is obtained, it is shortened to get to get a recursive
MDS matrix. It is equal to a power of the companion matrix associated with the
generating polynomial g(x) of the MDS BCH code.

Our Contribution : We provide a necessary and sufficient condition for a
non-singular diagonable companion matrix to produce an MDS matrix when
it is raised to some power. We also present three methods - I, II(a) and II(b)
derived from the necessary and sufficient conditions to construct non-singular
diagonable companion matrix which can be used to produce MDS matrix by
raising it to some power. Out of these constructions, first one (I) gives the com-
panion matrices that can be obtained from shortened BCH code whereas II(a)
& II(b) give the companion matrices which can be obtained through Gabidulin
codes. However, our formulation of necessary and sufficient condition provides
many more possibilities to construct companion matrices yielding recursive MDS
matrices.



2 Preliminaries

Throughout this paper let Fq denote the field containing q elements for some
prime power q and let Fq[x] denote the polynomial ring over Fq in the variable
x. It is assumed that the characteristic of Fq is char(Fq) = p for some prime p
unless otherwise mentioned, which means q = ps for some positive integer s. Let
f(x) = a0 + a1x+ · · ·+ an−1x

n−1 + anx
n ∈ Fq[x] and an 6= 0. Then the degree

of f is n and we denote it as deg(f). The polynomial f is said to monic if its
leading coefficient an = 1.

Definition 1. Let γ be an element in some extension of Fq. The minimal poly-
nomial of γ over Fq, denoted by MinFq (γ), is the lowest degree monic polynomial
µ(x) with coefficients from Fq such that µ(γ) = 0.

Let Mm×n(Fq) denote the set of all matrices of size m × n over Fq. For
simplicity, we use Mn(Fq) to denote the ring of all n × n matrices (square
matrices of order n) over Fq. Let In denote the identity matrix ofMn(Fq). The
determinant of a matrix A ∈ Mn(Fq) is denoted by det(A). A square matrix A
is said to be non-singular if det(A) 6= 0 or equivalently, the rows (columns) of A
are linearly independent over Fq.

Definition 2. Let f(x) = a0+a1x+· · ·+an−1xn−1+anx
n be a monic polynomial

over Fq of degree n. The companion matrix Cf ∈ Mn(Fq) associated to the
polynomial f is given by

Cg =


0 1 0 . . . 0
...

. . .
...

0 0 . . . . . . 1
−a0 −a1 . . . . . . −an−1

 .

We sometimes use the notation Companion(a0, a1, . . . , an−1) to represent the
companion matrix Cf .

Definition 3. A matrix D = (λi,j) ∈ Mn(Fq) is said to be diagonal if λi,j = 0
for i 6= j.

By setting λi = λi,i, we denote the diagonal matrix D as diag[λ1, λ2, . . . , λn].

It is obvious to see that the determinant of D is det(D) =
∏n

i=1
λi. Hence the

diagonal matrix D is non-singular if and only if λi 6= 0 for all i = 1, . . . , n.

Definition 4. A matrix V ∈ Mn(Fq) is called Vandermonde matrix if it is
represented as

V =



1 1 1 · · · 1 1
λ1 λ2 λ3 · · · λn−1 λn
λ21 λ22 λ23 · · · λ2n−1 λ2n
λ31 λ32 λ33 · · · λ3n−1 λ3n
...

...
...

...
...

λn−21 λn−22 λn−23 · · · λn−2n−1 λ
n−2
n

λn−11 λn−12 λn−13 · · · λn−1n−1 λ
n−1
n


,



where λi ∈ Fq for i = 1, . . . , n. We use the notation vand[λ1, λ2, . . . , λn] to
denote the Vandermonde matrix V . It is well-known that the determinant of V
is given by det(V ) =

∏
1≤i<j≤n(λj − λi), and so the matrix V is non-singular if

and only if λi 6= λj for all 1 ≤ i < j ≤ n.

Definition 5. A matrix GV ∈Mn(Fq) of order n is called generalized Vander-
monde matrix if it is represented as

GV =



λr11 λr12 λr13 · · · λr1n−1 λr1n
λr21 λr22 λr23 · · · λr2n−1 λr2n
λr31 λr32 λr33 · · · λr3n−1 λr3n

...
...

...
...

...
λ
rn−1

1 λ
rn−1

2 λ
rn−1

3 · · · λrn−1

n−1 λ
rn−1
n

λrn1 λrn2 λrn3 · · · λrnn−1 λrnn


where λi ∈ Fq for i = 1, . . . , n and 0 ≤ r1 < r2 < · · · < rn. We denote the
generalized Vandermonde matrix GV by genvand[λ1, λ2, . . . , λn; r1, r2, . . . , rn].
A Vandermonde matrix is a special case of the generalized Vandermonde matrix
where r1 = 0 and ri = ri−1 + 1 for i = 2, . . . , n. The calculation of determinant
of generalized Vandermonde matrix is not straightforward; see [19] for details.

Definition 6. Let θ : x 7→ M × x be a mapping from Fmq to Fnq defined by
M ∈Mm×n(Fq). The matrix M is said to be MDS matrix if the set (x,M × x)
is an MDS code, i.e., a linear code of dimension m, length m + n and minimal
distance n+ 1.

We are interested in only square MDS matrices, i.e., m = n, as the input
and output of diffusion layer are of same size. The following facts can be used
to characterize MDS matrices.

Fact 1: A matrix M ∈Mn(Fq) is MDS if and only if all its square submatrices
are non-singular.
Fact 2: A matrix M ∈Mn(Fq) is MDS if and only if any n rows of the matrix[
In
M

]
are linearly independent.

Definition 7. A matrix M ∈Mn(Fq) of order n is diagonable if there exists a
diagonal matrix D and a non-singular matrix P such that M = PDP−1.

Lemma 1. Let C = Companion(z0, z1, · · · , zn−1) ∈ Mn(Fq) be a non-singular
companion matrix which is diagonable, say C = PDP−1 where P is an n×n non-
singular matrix and D = diag[λ1, λ2, . . . , λn]. Then all entries of P will be non-
zero. Moreover, C can be expressed as V DV −1 where V = vand[λ1, λ2, · · · , λn].

Proof. If C is a non-singular matrix then all λi’s will be non-zero. Now, let
P = [v1 v2 . . . vn] where vi’s are represented as n × 1 column vector. Then
CP = PD and hence Cvi = λivi for all i = 1, . . . , n. (in other words, vi’s are
eigenvectors of C corresponding to eigenvalue λi). Then,




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−z0 −z1 −z2 · · · −zn−1




vi,1
vi,2

...
vi,n−1
vi,n

 = λi


vi,1
vi,2

...
vi,n−1
vi,n


where vi = [vi,1 vi,2 · · · vi,n]T . From the above identity, we get

vi,2 = λivi,1 ; vi,3 = λivi,2 ; · · · ; vi,n = λivi,n−1 (1)

Since λi’s are non-zero, hence for all i = 1, · · · , n and for all j = 1, · · · , n, vi,j ’s

also will be non-zero. From equation (1), it is clear that vi,j = λj−1i vi,1 and
hence P = V D′ where,

V =


1 1 · · · 1
λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
...

λn−11 λn−12 · · · λn−1n

 ;D′ =


v1,1 0 · · · 0
0 v2,1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · vn,1


So, C = PDP−1 = V D′DD′−1V −1 = V DV −1. Hence, the lemma. ut

Corollary 1. A companion matrix C is non-singular and diagonable if and only
if all eigenvalues of C are distinct and non-zero.

Proof. If all eigenvalues of C are non-zero then C is non-singular. If all eigen-
values of C are distinct then it is diagonable. Hence, if all eigenvalues of C are
distinct and non-zero then C is non-singular and diagonable.

Conversely, let C is non-singular, then all its eigenvalues are non-zero. Now,
let companion matrix C is diagonable. Then C = V DV −1 (from Lemma 1) where
V = vand[λ1, λ2, · · · , λn], D = diag[λ1, λ2, · · · , λn] and λis are eigenvalues of C.
For V −1 to exist, it is required that λi’s must be distinct. Hence if companion
matrix C is non-singular and diagonable, all its eigenvalues are distinct and non-
zero. ut

Remark 1. We can also have an analogous result for non-diagonable compan-
ion matrices similar to Lemma 1. In this case we need to deal with confluent
Vandemonde matrices.

3 Necessary and Sufficient Condition for Constructing
Recursive MDS matrix

In this section, we prove a necessary and sufficient condition to construct MDS
matrix recursively from non-singular diagonable companion matrix. Let C be a
companion matrix in Mn(Fq) of order n. If Ck is MDS for some k > 0, then



C must be non-singular. For the proposed necessary and sufficient condition,
we assume one more property on C - diagonable. As mentioned in the above
remark, the case of non-diagonable matrices can be dealt with similarly. In such
a case we can work with Jordan form of the companion matrix and confluent
Vandermonde matrix containing the generalized eigenvectors. In fact, it can be
shown that recursive MDS matrices over binary extension fields can only be
obtained from diagonable companion matrices. We will give the detailed proofs
in the general case in the full version of the paper.

Now we state necessary and sufficient condition to construct recursive MDS
matrices.

Theorem 1. Let C ∈Mn(Fq) be a non-singular diagonable companion matrix,
i.e., C = V DV −1 where D = diag[λ1, λ2, · · · , λn] and V = vand[λ1, λ2, · · · , λn].
Then Ck, k ≥ n, is MDS if and only if genvand[λ1, λ2, · · · , λn; r1, r2, · · · , rn] is
non-singular for all {r1, r2, · · · , rn} ⊆ {0, 1, 2, . . . , n− 1, k, k+ 1, · · · , k+n− 1}.

Proof. If C is an n × n companion matrix, then it is easy to check that Ck

can not be MDS if k < n. Hence k ≥ n. We have C = V DV −1 which implies
Ck = V DkV −1 where Dk = diag[λk1 , λ

k
2 , · · · , λkn]. Let

V̄ = V Dk =


λk1 λk2 · · · λkn
λk+1
1 λk+1

2 · · · λk+1
n

...
...

...

λk+n−11 λk+n−12 · · · λk+n−1n


so Ck = V DkV −1 = V̄ V −1.

Consider the 2n× n matrix

M =

[
In
Ck

]
=

[
In

V̄ V −1

]
and we can see that Ck is MDS if and only if any n rows of M are linearly
independent. Let 1 ≤ i1 < i2 < · · · < in ≤ 2n be the indices of n rows chosen
from M and let the matrix formed by the chosen rows be A. Let l1 be the number
of rows chosen from In×n indexed by i1, i2, · · · , il1 and l2 be the number of rows
chosen from V̄ V −1 indexed by il1+1, il1+2, · · · , il1+l2 such that 0 ≤ l1, 0 ≤ l2;
l1 + l2 = n; 1 ≤ i1 < i2 < · · · < il1 ≤ n and n + 1 ≤ il1+1 < il1+2 < · · · <
il1+l2 = in ≤ 2n. Let S = {i1, i2, · · · , in} and

A = M|S =

[
In

V̄ V −1

]
|S

=

[
V

V̄

]
|S
V −1 = A′V −1

We can now see that the matrix A is non-singular if and only if the matrix A′ =
genvand[λ1, λ2, · · · , λn; i1−1, · · · , il1−1, k+ il1+1−(n+1), · · · , k+ in−(n+1)]



is non-singular. We have

A′ =



λi1−11 λi1−12 · · · λi1−1n
...

...
...

λ
il1−1
1 λ

il1−1
2 · · · λ

il1−1
n

λ
k+il1+1−(n+1)
1 λ

k+il1+1−(n+1)
2 · · · λk+il1+1−(n+1)

n

...
...

...

λ
k+in−(n+1)
1 λ

k+in−(n+1)
2 · · · λ

k+in−(n+1)
n


Let i1−1 = r1, · · · , il1−1 = rl1 , k+il1+1−(n+1) = rl1+1, · · · , k+in−(n+1) = rn.
Since k ≥ n and 1 ≤ i1 < i2 < · · · < in ≤ 2n, hence r1 < · · · < rl1 < rl1+1 <
· · · < rn and {r1, · · · , rn} ⊆ {0, 1, 2, · · · , n − 1, k, k + 1, k + n − 1}. Hence the
proof. ut

Remark 2. The polynomial associated to the companion matrix C is given by
g =

∏n
i=1(x − λi) ∈ Fq[x]. The necessary and sufficient condition is equivalent

to saying that the polynomial f has no multiple of the form m0 + m1x + · · · +
mn−1x

n−1 +mkx
k + · · ·+mn+k−1x

n+k−1 of weight ≤ n. These results can also
be extended to the case of non-diagonable matrices.

Now we provide three constructions of companion matrices by which recursive
MDS matrices can be obtained. In the following we let C ∈ Mn(Fq) be an
n × n non-singular companion matrix which is diagonable, i.e., C = V DV −1

where D = diag[λ1, λ2, · · · , λn] and V = vand[λ1, λ2, · · · , λn]. The polynomial
associated to the companion matrix C is given by g =

∏n
i=1(x− λi) ∈ Fq[x].

Remark 3. Note that if the polynomial g =
∏n
i=1(x− λi) ∈ Fq[x] yields a recur-

sive MDS matrix then for any α ∈ F∗q , the polynomial gα =
∏n
i=1(x−αλi) ∈ Fq[x]

also yields a recursive MDS matrix.

3.1 Construction - I

We start with the first construction of companion matrix whose eigenvalues are
consecutive in powers.

Theorem 2. Let λi = ci−1λ1, i = 1, · · · , n, be such that g(x) =
∏n
i=1(x−λi) ∈

Fq[x]. Then Ck, k ≥ n, is MDS if and only if c, c2, . . . , cn−1, ck, . . . , ck+n−1 are
distinct and not equal to 1.

Proof. From Theorem 1, we can see that the matrix Ck is MDS if and only if
A′ = genvand[λ1, · · · , λn; r1, r2, · · · , rn] is non-singular for all {r1, r2, · · · , rn} ⊆
{0, 1, · · · , n − 1, k, k + 1, · · · , k + n − 1}. We have λi = ci−1λ1 for i = 1, · · · , n,
so A′ = genvand[λ1, cλ1, c

2λ1, · · · , cn−1λ1; r1, r2, · · · , rn]. So we get

A′ =


λr11 (cλ1)r1 · · · (cn−1λ1)r1

λr21 (cλ1)r2 · · · (cn−1λ1)r2

...
...

...
λrn1 (cλ1)rn · · · (cn−1λ1)rn

 =


λr11 (λ1)r1(cr1) · · · (λ1)r1(cr1)n−1

λr21 (λ1)r2(cr2) · · · (λ1)r2(cr2)n−1

...
...

...
λrn1 (λ1)rn(crn) · · · (λ1)rn(crn)n−1





Let yr1 = cr1 , yr2 = cr2 , · · · , yrn = crn , then det(A′) = (

n∏
j=1

λ
rj
1 ) det(A′′), where

A′′ =


1 yr1 y

2
r1 · · · y

n−1
r1

1 yr2 y
2
r2 · · · y

n−1
r2

...
...

...
...

1 yrn y
2
rn · · · y

n−1
rn


We have λ1 6= 0 and so det(A′) 6= 0 if and only if det(A′′) 6= 0. Note that A′′ =
vand[yr1 , yr2 , · · · , yrn ] and so det(A′′) 6= 0 if and only if yr1 6= yr2 6= · · · 6= yrn or
cr1 6= cr2 6= · · · 6= crn for all {r1, r2, · · · , rn} ⊆ {0, 1, · · · , n−1, k, k+1, · · · , k+n−
1} which implies that 1 6= c 6= c2 6= c3 6= · · · 6= cn−1 6= ck 6= ck+1 6= · · · 6= ck+n−1.
Hence the proof. ut

Relationship with [2]: Augot et. al. proposed a recursive MDS construction
using shortened BCH code. First, a generator polynomial g(x) of a BCH code
with suitable parameter choices is obtained. The roots of g(x) are non-zero and
consecutive in powers, say βl, βl+1, · · · , βl+n−1. These roots must be conjugate
to each other, i.e., g(x) ∈ Fq[x], to ensure that g(x) generates a BCH code which
is also MDS. Then this code is finally shortened to get a recursive MDS matrix
that is a power of the companion matrix associated to the polynomial g(x). Our
proposed construction - I yields the same kind of companion matrices. If we take
λ1 = βl ∈ Fpm and c = β ∈ Fpm , then λi = βl+i−1 for i = 1, · · · , n which are
exactly the roots of the generating polynomial g(x).

The above theorem is true for any field and any k ≥ n. In the next two
subsections, we provide two constructions of companion matrices but with some
restrictions - (a) the characteristic Fq is equal to 2 and (b) k = n. These two
constructions appear to be similar (but not same) and hence we denote them by
II(a) and II(b).

3.2 Construction - II(a)

Theorem 3. Let λ1 and c be in some extension of Fq and let λi = c2
i−2

λ1 for
i = 2, . . . , n. Then Cn will be an MDS matrix if deg(MinF2

(c)) ≥ 2n, where
MinF2

(c) is the minimal polynomial of c over F2.

Proof. The proof goes along in the same way as it is in Theorem 2. We get,

A′′ =


1 yr1 y

2
r1 y

22

r1 · · · y
2n−2

r1

1 yr2 y
2
r2 y

22

r2 · · · y
2n−2

r2
...

...
...

...
...

1 yrn y
2
rn y

22

rn · · · y
2n−2

rn


where yr1 = cr1 , yr2 = cr2 , · · · , yrn = crn . Let,

P2 =
∏

r1≤j1<j2≤rn

(yj1 + yj2); P4 =
∏

r1≤j1<j2<j3<j4≤rn

(yj1 + yj2 + yj3 + yj4)



...
Pn = (yr1 + yr2 + · · ·+ yrn) if n is even, else

Pn−1 =
∏

r1≤j1<j2<j3<···<jn−1≤rn

(yj1 + yj2 + yj3 + · · ·+ yjn−1
).

Then det(A′′) = P2P4 · · ·Pn if n is even otherwise det(A′′) = P2P4 · · ·Pn−1.
From Theorem 1, we can see that the matrix Cn is MDS if and only if det(A′′) 6=
0 for all {r1, r2, · · · , rn} ⊆ {0, 1, 2, · · · , n − 1, n, n + 1, · · · , 2n − 1}. Maximum
degree of any irreducible term in any Pi can be at most 2n−1. If deg(M(c)) ≥ 2n,
then none of Pi’s will be zero and hence det(A′′) will be non-zero. Thus Cn is

an MDS matrix if deg(M(c)) ≥ 2n when λi = c2
i−2

λ1 for i = 2, · · · , n. Hence
the proof. ut

In the above theorem if (deg(M(c)) ≥ 2n then the elements λi for i = 1, . . . , n
are linearly independent. So this construction can be seen as similar to the
construction discussed in [4, Section 3.2].

3.3 Construction - II(b)

In this subsection, we provide another construction of companion matrices whose
eigenvalues’ powers are in geometric progression. We then show that the con-
struction proposed in Section 3.4 of [4] gives exactly the same kind of companion
matrices.

Theorem 4. Let λ be in an extension of Fq and let λi = λ2
i−1

for i = 1, · · · , n.
Then the matrix Cn is MDS if deg(MinF2

(λ)) ≥ 2n, where MinF2
(λ) is the

minimal polynomial of λ over F2.

Proof. The proof goes along in the same way as it is in Theorem 2. We get,

A′′ =


yr1 y

2
r1 y

22

r1 · · · y
2n−2

r1 y2
n−1

r1

yr2 y
2
r2 y

22

r2 · · · y
2n−2

r2 y2
n−1

r2
...

...
...

...
...

yrn y
2
rn y

22

rn · · · y
2n−2

rn y2
n−1

rn

 ,
where yr1 = λr1 , yr2 = λr2 , · · · , yrn = λrn . Let

P1 =

rn∏
j1=r1

yj1 ; P2 =
∏

r1≤j1<j2≤rn

(yj1 + yj2); P3 =
∏

r1≤j1<j2<j3≤rn

(yj1 + yj2 + yj3);

· · · ;
Pn = (yr1 + yr2 + · · ·+ yrn)

Then we have det(A′′) =
∏n
j=1 Pj . From Theorem 1, we can see that Cn is

MDS if and only if det(A′′) is non-zero for all {r1, r2, · · · , rn} ⊆ {0, 1, 2, · · · , n−
1, n, n + 1, · · · , 2n − 1}. Maximum degree of any irreducible term in any Pi
can be at most 2n − 1. If deg(M(λ)) ≥ 2n, then none of Pi’s will be zero
and hence Det(A′′) will be non-zero. Thus Cnis an MDS matrix if and only if

deg(M(λ)) ≥ 2n when λi = λ2
i−1

for i = 1, · · · , n. Hence the proof. ut



Relationship with [4]: Berger proposed a method to construct recursive MDS
matrix using Gabidulin code. The generator matrix described in Section 3.4 of
[4] is of the form

G = [V T |V̂ T ] =


1 α α2 · · · α2n−1

1 α2 α4 · · · α2(2n−1)

1 α4 α8 · · · α4(2n−1)

...
...

...
...

1 α2n−1

(α2n−1

)2 · · · (α2n−1

)2n−1

 ,

where V = vand[α, α2, α4, · · · , α2n−1

], V̂ = genvand[α, α2, α4, · · · , α2n−1

;n, n+
1, · · · , 2n−1] and {1, α, α2, · · · , α2n−1} is a polynomial basis of F2m . By applying
elementary row operations on G we can get its systematic form [I|A]. In other

words, (V T )
−1
G = (V T )

−1
[V T |V̂ T ] = [I|A]. The first column of the matrix A =

(V T )−1V̂ T gives the zi’s of companion matrix C = Companion(z0, z1, · · · , zn−1)
so that Cn gives an MDS matrix. It is easy to check that the eigenvalues of C
are α, α2, α4, · · · , α2n−1

.
In our construction proposed in - II(b), if we take λ ∈ F2s to be an element

where the degree t of its minimal polynomial satisfies n ≤ t
2 ≤

s
2 . Then λi =

λ2
i−1

for i = 1, · · · , n, and so λis will be distinct and non-zero and the companion
matrix formed using these λis as eigenvalues will give the same companion matrix
as described in Section 3.4 of [4].

4 Conclusion

This paper gives a general construction of recursive MDS matrix using a compan-
ion matrix which is diagonable. Although diagonable property is not required,
in general, to construct recursive MDS matrix, it may provide a wide range of
companion matrices whose kth power yield MDS matrices. To the best of our
knowledge, only two methods are known so far to construct recursive MDS ma-
trix directly using - (a) shortened MDS BCH code and (b) Gabidulin code. We
have shown that these two constructions directly come from our proposed con-
structions - I and IIa) (subsection 2 and 4). We provided one more construction
that is related to Gabadulin code.

The necessary and sufficient condition for constructing recursive MDS matrix
from non-singular diagonable companion matrix may provide many more con-
structions to construct recursive MDS matrix from companion matrix. We have
given three constructions and the possibilities are many more. And, in future, it
could be worth exploring the other possibilities of recursive MDS matrix from
non-singular and non-diagonable companion matrix.
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