O. Alliez, J. Devillers, and . Snoeyink, Removing degeneracies by perturbing the problem or the world, Reliable Computing, vol.6, issue.1, pp.61-79, 2000.
DOI : 10.1023/A:1009942427413

URL : https://hal.archives-ouvertes.fr/inria-00338566

O. Brönnimann, V. Devillers, H. Dujmovi?, M. Everett, X. Glisse et al., Lines and Free Line Segments Tangent to Arbitrary Three-Dimensional Convex Polyhedra, SIAM Journal on Computing, vol.37, issue.2, pp.522-551, 2007.
DOI : 10.1137/S0097539705447116

K. Burnikel, S. Mehlhorn, and . Schirra, On degeneracy in geometric computations, 5th ACM-SIAM Sympos. Discrete Algorithms, pp.16-23, 1994.

M. Devillers, S. Glisse, and . Lazard, Predicates for line transversals to lines and line segments in three-dimensional space, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.174-181, 2008.
DOI : 10.1145/1377676.1377704

URL : https://hal.archives-ouvertes.fr/inria-00336256

M. Devillers, M. Karavelas, and . Teillaud, Qualitative symbolic perturbation: two applications of a new geometry-based perturbation framework, Research Report, vol.8153

M. Devillers and . Teillaud, Perturbations for Delaunay and weighted Delaunay 3D triangulations, Computational Geometry, vol.44, issue.3, pp.160-168, 2011.
DOI : 10.1016/j.comgeo.2010.09.010

URL : https://hal.archives-ouvertes.fr/inria-00560388

E. P. Edelsbrunner and . Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Transactions on Graphics, vol.9, issue.1, pp.66-104, 1990.
DOI : 10.1145/77635.77639

J. Emiris and . Canny, A General Approach to Removing Degeneracies, SIAM Journal on Computing, vol.24, issue.3, pp.650-664, 1995.
DOI : 10.1137/S0097539792235918

M. Emiris and . Karavelas, The predicates of the Apollonius diagram: Algorithmic analysis and implementation, Computational Geometry, vol.33, issue.1-2, pp.18-57, 2006.
DOI : 10.1016/j.comgeo.2004.02.006

F. Irving and . Green, A deterministic pseudorandom perturbation scheme for arbitrary polynomial predicates, 1986.

R. Mehlhorn, M. Osbild, and . Sagraloff, A general approach to the analysis of controlled perturbation algorithms, Computational Geometry, vol.44, issue.9, pp.507-528, 2011.
DOI : 10.1016/j.comgeo.2011.06.001

. Seidel, The Nature and Meaning of Perturbations in Geometric Computing, Discrete & Computational Geometry, vol.19, issue.1, pp.1-17, 1998.
DOI : 10.1007/PL00009330

. Seidel, Perturbations in geometric computing, Workshop on Geometric Computing, 2013.

K. Yap, A geometric consistency theorem for a symbolic perturbation scheme, 15 C. K. Yap. Symbolic treatment of geometric degeneracies, pp.2-18, 1990.
DOI : 10.1016/0022-0000(90)90016-E

K. Yap and T. Dubé, THE EXACT COMPUTATION PARADIGM, Computing in Euclidean Geometry, pp.452-492, 1995.
DOI : 10.1142/9789812831699_0011