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Abstract. In this paper we provide two variants of the Naccache-Stern
knapsack scheme using the framework of [5] that are meant to hide the
prime elements used for decryption.

1 Introduction

The Naccache Stern Knapsack cryptosystem (NSK) is a public key cryptosystem
first presented in [6]. It is based on the subset product problem in a large prime
field. However, as it has already been observed in [2, Subsection 5.2], in the
NSK protocol a quite obvious DLP reduction is available. In Section 2 we recall
the NSK and give few details on an attack that can be performed. In Section 3
we will produce a version of the polynomial knapsack presented in [5] that is
menat to hide the carriers pi for which one performs the attack. The main idea
behind this new instance of the knapsack problem relies on the following two
facts, which we present here in an informal way:

– In the isomorphism class of the prime field Fp (that contains the space of
cyphertexts of the NSK) there is “somehow” just one standard representa-
tive, which consists of the integers modulo p.

– In the isomorphism class of the finite field Fqn with n > 1 (that contains
the space of cyphertexts of the polynomial knapsack cryptosystem described
in [5]) there are many equally valid representatives: one for each irreducible
polynomial of degree n over Fq.

This difference will be exploited in what follows. Some security considerations
are also provided in Section 5.1. Finally a more general function field version of
the protocol is provided in Section 6.

1.1 Notation

Let q be a prime power and let Fq be the field with q elements. In this pa-
per, the univariate polynomial ring in Z will be denoted by Fq[Z]. Let now
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g(Z) ∈ Fq[Z] be an irreducible polynomial of degree d, and consider the quo-
tient map π : Fq[Z] −→ Fq[Z]/(g(Z)). We will denote by z the element π(Z).
More generally, in the whole paper a transcendental element over Fq will al-
ways be denoted by a capital letter, whereas its image in some quotient field of
the polynomial ring will be denoted by a lower case letter if it is clear which
projection we are considering. We write an element of Fq[z] = Fq[Z]/(g(Z)) as
h(z), where h(Z) is its unique lift to Fq[Z] of degree at most d − 1. We mainly
encounter the following situation in this paper: Let X, Y transcendental over Fq

and f(X) ∈ Fq[X], g(Y ) ∈ Fq[Y ] irreducible polynomials over Fq of degree d.
Then,

Fqd
∼= Fq[X]/(f(X)) = Fq[x]

but also
Fqd
∼= Fq[Y ]/(g(Y )) = Fq[y].

2 Recalling the NSK protocol

We recall the Naccache-Stern knapsack cryptosystem [6]. Let p and p1, . . . , pn be
primes such that

∏n
i=1 pi < p. Often, the pi are the first n primes, and p is the

smallest prime greater than their product. The secret key is a random invertible
integer modulo p − 1: s ∈ Z∗p−1 as well as its inverse t = s−1. The public key
consists of vi = psi ∈ Fp. We will often call these elements carriers. An n-bit
message m = (m1, . . . ,mn) ∈ {0, 1}n is now ecrypted as

c =

n∏
i=1

vmi
i ∈ Fp.

In order to decrypt a ciphertext c, it is first raised to the power t:

ct =

n∏
i=1

(pmi
i )st =

n∏
i=1

pmi
i ∈ Fp.

Now, since
∏n

i=1 p
mi
i < p, this can be lifted to the integers, where it is easy to

check divisibility by the pi.

Remark 1. The main parameter that has to be tuned in the NSK protocol is the
information rate n/ log2(p) i.e. the ratio between the information contained in
the message (number of bits of the message) divided by the modulus (number of
bits of the cyphertext). For practical implementations, this ratio is about 1/10
[5, Table 1].

Remark 2. It is clear how to attack NSK assuming we can solve a DLP in Fp as
follows: If the pi have been chosen as the first n primes (that is a greedy choice
if we want to maximize the information rate), they are assumed to be known,
and s can be recovered by solving psi = vi for any i. Even if the pi are chosen
otherwise, the smallest among them has to be less than p1/n. Since n is usually
quite large (the original paper recommends n ≥ 160 [6]), it can thus be guessed
for reasonable parameters.

In what follows we will provide a a way to avoid this kind of attack.



3 Hidden field version

In what follows we will in fact show a strategy that hides the knowledge of the
low degree polynomials keeping the information rate unchanged. The basic idea
is to work in two representations of the same finite field, only one of which is
public. We first observe that prime fields are not suited for this, since for each
prime p we have exactly one representation of Fp for which the computations
in the NSK are possible. The polynomial based variant presented in [5] on the
other hand is very well suited for this, since each finite field Fqd has roughly qd/d
representations of the form Fq[X]/(f(X)) (see for example [4]).

Let Fq be a finite field and p1(Z), . . . , pL(Z), f(Z), g(Z) ∈ Fq[Z] be irre-

ducible polynomials such that
∑L

i=1 deg pi(Z) < deg f(Z) = deg g(Z) =: d. Fix
furthermore a field isomorphism

φ : Fq[X]/(f(X))→ Fq[Y ]/(g(Y )).

Fix now a random exponent s ∈ Z∗qd−1 as well as its inverse t = s−1 and

let vi(y) = φ(pi(x))s ∈ Fq[y] for i ∈ {1, . . . , n}. The public key consists of
(g(Y ), {vi(Y )}i). The secret key consists of (t, {pi(X)}i, f(X), φ).

The encryption of an n-bit message m = (m1, . . . ,mn) ∈ {0, 1}n is essentially
the same as in Section 2:

c(y) =

n∏
i=1

vi(y)mi ∈ Fq[y] = Fq[Y ]/(g(Y )).

To decrypt, compute

m(x) := φ−1(c(y)t) =

n∏
i=1

pi(x)mi ∈ Fq[x] = Fq[X]/(f(X)),

and canonically lift the result to Fq[X]. For all i, decrypt as

mi = 1⇔ m(X) ≡ 0 mod pi(X).

Remark 3. Here we would like to point out the advantage of this version of
the polynomial based protocol compared to the NSK: The information rate of
the NSK protocol can be tuned by minimizing the degree of the modulus p,
which can be done by minimizing the degree of the carriers pi. Unfortunately,
whenever this is done, a DLP reduction becomes easier, as we already pointed
out in Remark 2. More generally, in the NSK and the polynomial based variant of
[5] it is possible to balance information rate and security. In what we presented,
the information rate can always be tuned to the top, since the carriers will be
hidden by the (arbitrary) choice of the finite field representation. In Section 5 a
deeper analysis of the security is provided.

Remark 4. Notice that breaking this variant of the polynomial based protocol is
at least as difficult as breaking the original one: just fix f = g and φ the identity
morphism. Moreover



– the encryption is exactly as expensive as in the NSK and the polynomial
based variant (under the formalism presented in [5, Section 2] it is actually
the same).

– the decryption differs from the NSK for just one additional step: the com-
putation of φ−1 of the cyphertext.

3.1 Example

In order to immediately clarify the ideas, we give a small example over F2. All
calculations were done using the Sage computer algebra system [7]. We choose
d = 11 and the public polynomial

g(Y ) = Y 11 + Y 10 + Y 8 + Y 7 + Y 6 + Y 3 + 1.

Further, we pick a random element of F2[y] = F2[Y ]/(g(Y )) that is not contained
in a proper subfield:

a(y) = y10 + y9 + y4 + y

and compute its minimal polynomial in X i.e. f(X) ∈ Fq[X] :

f(X) = X11 +X10 +X9 +X8 +X7 +X6 +X5 +X4 +X3 +X + 1.

The isomorphism φ is now given by

φ : F2[x]→ F2[y]

x 7→ a(y).

To compute the inverse of φ, we just need to find the preimage of y. Since this
preimage is a root of g(X), we can find it by factoring g(X) over the field F211

in the representation Fq[x] and checking for each root r(x) whether φ(r(x)) = y.

b(x) = φ−1(y) = x10 + x3 + 1.

We now choose p1(X), . . . , pn(X) to be the five irreducible polynomials of
lowest degree in F2[X]:

p1(X) = X p2(X) = X + 1

p3(X) = X2 +X + 1 p4(X) = X3 +X + 1

p5(X) = X3 +X2 + 1,

and randomly select the secret exponents s = 1967 ∈ Z∗2d−1 and t = s−1 = 1612.
The public key consists of the elements vi(y) = φ(pi(x))s ∈ F2[Y ]/(g(Y )):

v1(y) = y9 + y6 + y5 + y

v2(y) = y8 + y7 + y6 + y5 + y4 + y2

v3(y) = y8 + y4 + y3 + 1

v4(y) = y9 + y6 + y3 + y + 1

v5(y) = y10 + y9 + y8.



We now encrypt the message m = (1, 1, 0, 0, 1) and get the ciphertext c =
v1(y)v2(y)v5(y) = y9 + y4 + y2 + y. To decrypt, compute φ−1(c(y)t) = x5 +
x3 + x2 + x, which, when lifted to F2[X], factors as

X5 +X3 +X2 +X = X · (X + 1) · (X3 +X2 + 1) = p1(X)p2(X)p5(X),

from which the message m is recovered.

4 Efficiency analysis

In this section, we compare the efficiency and performance of our new protocol
to the traditional NSK [6] and the unmodified polynomial based variant [5], as
well as other public key cryptosystems.

The size of the public key is unchanged compared to [5], being roughly (n+
1)d log q bits. The secret key contains an additional polynomial of degree d and
one field element of Fq[x], so it is roughly twice as large, at around 4d log q bits.

Encryption consists of up to n − 1 multiplications in Fqd . Decryption on
the other hand requires raising an element of Fqd to the exponent t ≤ qd − 1,
which takes up to 2d log q multiplications with the square-and-multiply method.
Furthermore, the evaluation of the inverse field isomorphism φ−1 consists of
evaluating a polynomial in Fq[Z] of degree less than d at an element of Fqd ,
taking at most d multiplications in Fqd by Horner’s method. Finally, decryption
involves the reduction of a polynomial in Fq[Z] of degree less than d by n fixed
distinct polynomials of small degree, which is cheap compared to the first two
steps even when done naively. Compared to [5], the only difference in cost is
the evaluation of the isomorphism, so the cost of decryption only increases by a
factor of roughly 1 + (2 log q)−1.

For the multiplication of polynomials and elements of Fqd , it may be worth-
while to use algorithms based on the fast Fourier transform [1], since our poly-
nomials have large degree.

We now try to find concrete secure parameters. It is recommended in [6]
to use at least n ≥ 160 carriers in order to avoid birthday attacks. Following
this recommendation, we can for example choose the parameters q = 19 and
d = 307, which allows for n = 162 carriers. The reason we do not choose q = 2
or another very small prime is that this causes the polynomials f and g to have
very large degree, making it harder to compute the preimage φ−1(y). With these
parameters, we get a public key size of roughly 212 kbit. Using different q and
d that achieve a similar number of carriers does not seem to change the key size
dramatically. Indeed, it appears that the value d log q is similar in size to n log n
whenever n is chosen maximally.

Regarding information rate, we again get similar values to [5, 6]. In particular,
the above parameters give an information rate of 11.8%. There are various tricks
to improve on this at the cost of key size, see for example [6, 2]. We will however
not discuss these in this paper.



5 Security analysis

In this section we will analyse the difficulty of recovering either a field repre-
sentation in which a certain set of elements has small degree or attacking the
relations between the carriers vi.

5.1 Recovering the hidden field

Given a finite field Fq and d > 1, we consider the question of finding a represen-
tation of Fqd in which a set of field elements have low degree. By a representation
of Fqd , we mean a pair (f(X), φ) with f(X) ∈ Fq[X] irreducible of degree d and
φ : Fqd → Fq[X]/(f(X)) a field isomorphism fixing Fq.

Proposition 1. Let a ∈ Fqd and 2 ≤ m ≤ d. Then, there exist at most (m−1)qm

representations (f(X), φ) of Fqd such that φ(a), canonically lifted to Fq[X], has

degree less than m. All of these pairs can be listed in time Õ(qm).

Proof. Let (f(X), φ) be such a representation. We have that φ(a) = h(x), where
x ∈ Fq[X]/(f(X)) is the equivalence class of X and h(X) ∈ Fq[X] has degree
less than m. By inverting the isomorphism, we get that h(φ−1(x)) − a = 0, so
φ−1(x) is a root of h(X)− a in Fqd .

h(X)− a has at most m− 1 roots in Fqd . Each root ρ, if not contained in a
proper subfield of Fqd , uniquely determines a representation (f(X), φ). Indeed,
f(X) is the minimal polynomial of ρ, and φ : Fqd → Fq[X]/(f(X)) is determined
by φ(ρ) = x.

Hence, for a fixed polynomial h(X) of degree less than m, there are at most
m − 1 representations such that φ(a) = h(x). Since there are only qm choices
for h(X), there are at most (m− 1)qm representations with φ(a) having degree
less than m. They can be listed by simply enumerating all possible h(X) and
the roots of h(X)− a in Fqd .

We now consider the question of finding a representation in which a set of
elements a1, . . . , an have a low degree simultaneously. Clearly, if such a represen-
tation exists, it can again be found in time Õ(qm) by listing all representations
in which a1 has low degree. However, we show that such a representation is
unlikely to exist for most parameters.

Corollary 1. Let 2 ≤ m ≤ d, and let a1, . . . , an ∈ Fqd be chosen independently
and uniformly at random. Then, a representation (f(X), φ) with φ(ai) having
degree less than m for all i exists with probability less than (m− 1)qd+n(m−d).

Proof. Fix a representation (f(X), φ) such that φ(a1) has degree less than m.
Since the ai are independent, we have that φ(ai) ∈ Fq[X]/(f(X)) are still uni-
formly random for i ∈ {2, . . . , n}. Hence, the probability of all of them having

degree less than m is
(

qm

qd

)n−1
= q(n−1)(m−d). Since there are at most (m−1)qm

choices for the representation, the total probability of a desired representation
existing is less than (m− 1)qm+(n−1)(m−d) = (m− 1)qd+n(m−d).



For our cryptosystem, we conclude that the exponents s are essential for
security. If the public parameters are simply chosen as vi(y) = φ(pi(x)), it is
easy to recover a field representation that allows decryption. On the other hand,
assuming the values (φ(pi(x))e)i∈{1,...,n} for a random large e are sufficiently
close to uniformly random elements, it is not possible to find a representation
that allows decryption without finding the secret exponent s.

5.2 Attacking the relations between the vi

It is easy to see that in our scheme, unlike in the original NSK, there is no
way to recover the secret exponents s and t from a single public key element
vi(y) = φ(pi(x))s. Indeed, given a fixed vi(y) ∈ Fq[y], there exists for each
exponent t and low degree polynomial pi(X) a representation (f(X), φ) such
that vi(y)t = φ(pi(x)) ∈ F[y], assuming that pi(X) − vi(y)t has a root in Fq[y]
that is not in any proper subfield.

However, the public key consists of many elements vi(y) = φ(pi(x))s, and
they are not independent of each other. For example, consider the case p1(X) =
X, p2(X) = X + 1. The attacker knows that v1(y)t + 1 = v2(y)t for some
unknown t. Hence, the attacker has a criterion to check whether a guess for the
secret exponents s and t is correct.

Since our goal is to repair the structural weakness of the polynomials NSK
against attacks on the small factors pi, let us assume for a moment that the
attacker has a way to solve the DLP in the finite field Fq[y]. For example, assume
the attacker knows that v2(y) = v1(y)a for some a. The above relation can be
rewritten as (v1(y)t)a − (v1(y)t) + 1 = 0, so t can be recovered by finding roots
of Xa−X+ 1 = 0 in Fq[y] and solving another DLP. However, the degree of the
polynomial equation is a, which in general is exponential, so standard methods
for finding roots are not applicable.

To reduce the degree of the equation, the attacker can hope to find an integer
e ∈ [1, αqd/2] such that (ea mod qd−1) ≤ αqd/2, where α > 0 is some parameter.
This can often be found by brute force. In that case, the solutions to the equation

Xae mod qd−1 −Xe + 1 = 0 correspond to the solutions of Xa −X + 1 = 0, so it
is enough to solve a polynomial equation of degree at most αqd/2. However, the
attack still runs in exponential time and is infeasible for practical parameters.

5.3 An attack using both a DLP-oracle and an SVP-oracle

We thank Cristophe Petit for pointing out that, having access to an SVP- and
a DLP-oracle, a simple way to attack the problem is the following: Solve the
discrete logarithms vxi

1 = vi and vl1 = c. Then try to solve the additive knapsack

m1 +
∑L

i=2mixi ≡ l mod qd − 1. This can be done using the algorithm in [3]

for solving any of the subset sum problems m1 +
∑L

i=2mixi = l + k(qd − 1)
for k ∈ {1, . . . , L}. It is a matter of further investigation whether this attack is
practical for reasonable parameters.

The following is an attempt to prevent this kind of reduction: Restrict the
space of messages to strings of constant Hamming weight T . The condition on g



then becomes deg(g) >
∑L

i=L−T+1 deg(pi). Moreover, T , g and L must be chosen

in such a way that qdeg(g) << 2L. We now expect there to be many solutions
to the subset sum problem, of which only one leads to the plaintext. Further
analysis would be needed to establish whether this trick effectively prevents the
attack.

5.4 Challenge

We provide the following instance as a challenge. Again, all calculations were
done using Sage [7]. Let q = 19, d = 307, L = 162 and

g = 72CI64EI6I6D9DGA81B2EC0GH5074I42C0F3I9B7GA22
2874FGFF2AI5CA68B20909IH60I7DH42HD8BH3964E20
H4DH39128C2I2I9FHIE4371D8HBBC4A94997BHAF6F86
GEF9BDGH4CA7H69GC21GFGEG19GH68E8CH74HAE619IB
6C35F5D7A1CFE0DD61724BD8C29F235F6C65CAB2G718
2DD9F2I22I5GCII03E0AI9399C43IC4BC453A65B3CEE
497BAC44290915DF537D0F3468D49F630C037DC06D71.

The polynomial is encoded as follows: The first character is the coefficient of the
constant term, the last is the coefficient of x307. The elements 0 through 18 of
F19 are represented by the characters 0 through 9 and A through I. The values
of the carriers vi are available upon request.

The following ciphertext encrypts a random message:

c = 97ADFGDEEH5FI3C0700E6EF4F7117CCIEG2FAFC88123
5HB7H754G406BC40D278FGEA2BA80E442DBE8F96G1E8
B2610AF99B5386DBH921A665I581F960II9D022IH0H3
A02I2E1B2HHHBDG16CID71A6GD62A7B090CGE605H1BB
A5802I9279GI1CD317BGH1H7IB8857BC71848A6ABC99
21G0CE57BG3C666B4II100IGC60G2IDCA79EG857A6FF
0GE0E1F0HC9H53I4D2H67D949G4GHG2G0HA8CF5820H0.

The corresponding message should be recovered as an element of {0, 1}162.

6 Function Field Knapsack Scheme

In this section we show a more theoretical version of the scheme that uses the
context of function fields of curves. For the notation and definitions we refer to
[8]. Let F be a function field over a finite field Fq. We denote by OP the valuation
ring associated to the place P . Moreover, if f ∈ OP , then we denote by f(P )
its image in the residue field OP /P . Let {P1, . . . , PL} distinct places of F . Let
xi be a uniformizer of the place Pi invertible in the valuation ring OPj

for j 6= i
(this can be done thanks to the Approximation Theorem for valuations).

Fix P a place of the holomorphy ring O containing the subring generated by
x1, . . . xL. Choose P satisfying

deg(P ) >

L∑
i=1

deg((xi)∞)



and let D =
∑L

i=1(xi)∞ Let l(D) := dimFq (L(D)).

Remark 5. Notice that, for any (m1, . . . ,mL) ∈ {0, 1}L, we have

L∏
i=1

xmi
i ∈ L(D).

Now observe that L(D) evaluates at P into the finite field Fqdeg(P ) . In addition
L(D) embeds into Fqdeg(P ) since an element in the kernel of the evaluation would
live in L(D − P ) but D − P is a divisor of negative degree, so L(D − P ) = 0.

Remark 6. Call ψ the embedding of L(D) into Fqdeg(P ) . Observe that, given an
Fq-basis {e1, . . . , el(D)} of L(D), ψ−1(c) is computable for any c in the image of

ψ. In fact it is enough to write down c =
∑L

i=1 aiψ(ei) for some ai ∈ Fq; then

ψ−1(c) =
∑L

i aiei.

Let M = {0, 1}L be the space of messages and C := Fqdeg(P ) be the space of

cyphertexts. Let e, d ∈ Z for which ed ≡ 1 mod qdeg(P ) − 1. Now we are able to
set up public and private key:

– Public key: (Fqdeg(P ) , {x1(P )e, . . . , xL(P )e})
– Private key: (F, d, {x1, . . . , xL}, ψ)

Encryption and decryption are defined as

– Encryption: let m = (m1, . . . ,mL) ∈ M. The encryption map is defined

by E(m) :=
∏L

i=1(xi(P )e)mi .

– Decryption: Let c ∈ C. Compute cd and invert ψ, getting c =
∏L

i=1 x
mi
i .

Remark 7. The reader should notice that in this case hiding the residue field is
not necessary, since the attack does not have available the function field used
for decryption, but only the residue field.
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