Computing Discrete Logarithms in Small Characteristic Finite Fields in Quasi-Polynomial Time

Emmanuel Thomé 1
1 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : The advent of a heuristic quasi-polynomial complexity algorithm in 2013 for solving the discrete logarithm problem over small characteristic finite fields has had the consequence that this problem can no longer be considered as being sufficiently hard for cryptographic needs. We will describe the idea of the algorithm, its more recent modifications, and consider directions for extensions to other contexts.
Type de document :
Communication dans un congrès
Pascale Charpin, Nicolas Sendrier, Jean-Pierre Tillich. The 9th International Workshop on Coding and Cryptography 2015 WCC2015, Apr 2015, Paris, France. 2016, Proceedings of the 9th International Workshop on Coding and Cryptography 2015 WCC2015. 〈wcc2015.inria.fr〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01276702
Contributeur : Jean-Pierre Tillich <>
Soumis le : vendredi 19 février 2016 - 17:54:12
Dernière modification le : lundi 21 janvier 2019 - 14:16:07

Identifiants

  • HAL Id : hal-01276702, version 1

Citation

Emmanuel Thomé. Computing Discrete Logarithms in Small Characteristic Finite Fields in Quasi-Polynomial Time. Pascale Charpin, Nicolas Sendrier, Jean-Pierre Tillich. The 9th International Workshop on Coding and Cryptography 2015 WCC2015, Apr 2015, Paris, France. 2016, Proceedings of the 9th International Workshop on Coding and Cryptography 2015 WCC2015. 〈wcc2015.inria.fr〉. 〈hal-01276702〉

Partager

Métriques

Consultations de la notice

25