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Abstract. This work is motivated by the challenging problem of the
computer-aided generation of approximations (viewed as a series of trans-
formations) of partial derivative equations. In this framework, the ap-
proximations posed over complex settings are incrementally constructed
by extending an approximation posed on a simple setting and combining
these extensions.
In order to formalize these extensions and their combination, we in-
troduce a class of rewriting strategies, called context-embedding itera-
tive strategies (CE-strategies, for short). Roughly speaking, the class of
CE-strategies is constructed by means of adding contexts and an iter-
ation operator allowing the definition of recursive strategies. We show
that the class of CE-strategies is closed under combination with respect
to a correctness-completeness criterion. It turns out that the class CE-
strategies enjoy nice algebraic properties, namely, the combination is
associative, has a neutral element, and all the elements are idempotents.

1 Introduction

The motivation of this work originates in an undergoing project for the model-
ing and simulation of complex systems in micro or nano-technologies, e.g. [12,
2, 3]. The systems under consideration are governed by partial differential equa-
tions (PDEs) and are too complex to be simulated by straightforward numerical
methods, at least in the time-scale of design engineering. In mathematics the
asymptotic methods, also called perturbation methods in physics, have been
developed for more than seventy years for PDEs with the purpose of their trans-
formation to “simpler” PDEs when they involve one or several small parameters.
The latter can refer to geometry characteristics of the PDE domain or to coef-
ficients. They are used in all fields where PDEs are used for modeling ranging
from physics, biology, finance etc. As an illustration, we refer to the review paper
[6] for some applications in mechanics of periodic media where the small param-
eter is the ratio of a periodic cell size to the full body size. Today, asymptotic
methods are developed for producing models with drastically reduced simulation
? This work was supported by LABEX ACTION ANR-11-LABX-0001-01.



time together with keeping the essence of the model. Their main drawback pre-
venting their dissemination in the engineering community is their case-by-case
derivation. That is, for each new problem, the full process of model derivation
is redone from the scratch even though the new problem shares many features
with an already solved problem. Thus, they are implemented only in specialized
software. We adopted an alternate approach by developing a software package
called MEMSALab (for MEMS Array Lab) whose aim is to incrementally derive
asymptotic models for input equations by taking into account their own features
e.g. the scalar valued or vector valued solution, different estimates on the so-
lutions and sources, thin structures, periodic structures, multiple nested scales,
heterogeneity etc.

Our approach takes advantage of the modularity and the algebraic flavour of
the asymptotic method of [10]. It relies on the so called by-extension-combination
method [3] that we sketch. An asymptotic model derivation starts with an input
PDE coming from any scientific field to which a derivation, also said proof,
is applied ending to the expected model. This scheme is build for a reference
case, which is the simplest that we can consider, so we call it the reference
scheme. Then, it is complexified, we say extended, in several manners to take
into account new features yielding new schemes. The input PDEs still arise from
an application area but with additional features. Accordingly, the reference proof
is extended in different ways to cover the new features. Applying the extended
proofs to the enriched PDEs yields new asymptotic models. Finally, a new scheme
for an input PDE covering a group of new features is built by combination.
Precisely, its input PDE is still issued from a practical problem. Its proof is
obtained by applying a combination of two or more extensions, built in the
previous step, to the reference proof. Finally, applying the resulting proof to
the input PDE yields an asymptotic model enjoying the groups of features. In
summary, combining extensions related to new elementary features allows for
building new proofs and therefore new asymptotic models in an incremental
manner.

The concept of combination is not an isolated one, we identified works in
several fields involving different techniques but with the same key idea. We refer
to combination of logics [9, 4], algorithms, verification methods [5], and decision
procedures [11]. These works share a common principle of incremental design of
complex systems by integration of simple and heterogeneous subsystems.

The above idea of extension and their combination was introduced in [12],
but in this seminal work the combination of extensions was done via compo-
sition, not allowing for conflicts between extensions. The complete principle of
the extension-combination method was introduced in [3]. In this work, we have
presented the design and implementation of a user language for the specification
of rewriting strategies based proofs and extensions. We also stated computation
rules for combinations of extensions. Although we considered combinations for a
small class of usual rewriting strategies as TopDown and BottomUp, the question
whether this class, or possibly a wider class, is closed under combination was left

2



open, as well as the question of the correctness and soundness of the combination
formulae.

Here, we address these two questions, in a framework involving more ele-
mentary operations but generating a wider class of rewriting strategies called
CE-strategies. Although the idea of combination is kept the same, the tools and
the techniques are different. The elementary extension operation on a term is
still an enrichment by context insertion. However, the traversal strategies in a
CE-strategy are built with a jump operator and an iterator/fixed-point operator
instead of TopDown a more complex strategy. The resulting strategy language was
inspired from [1] wherein it was shown that many syntactic iterative objects, like
automata, games, logic, strategies etc, can be turned into a µ-calculus. In other
words, instead of formulating the strategy language as in [7], the µ-calculus-
like approach makes the strategy constructors more rudimentary and therefore
tractable the question of language closure for combinations. Moreover, the for-
mulae of combination of CE-strategies together with their verification is also
much simplified.

Contributions. We address the key problem of extension and combination
of proofs encountered in the field of computer aided asymptotic model derivation.
Precisely, we identify an operation of combination over a class of extensions
named CE-strategies, expressed as rewriting strategies that navigate along trees
and insert contexts. We prove that this class is closed by combination after
establishing an explicit formula of combinations. We introduce a correctness
criteria that guarantees the validity of the combination formulas. All of them
have been rigorously proved, which is an important piece of this work. We shown
that usual traversal strategies as TopDown or BottomUp belong to the class of CE-
strategies. Several nice algebraic properties of the CE-strategies are proved.

Organization of the paper. The paper is structured as follows. In Sec-
tion 3 we introduce the class of elementary CE-strategies, which is a subclass of
CE-strategies. It provides an illustration of the concept of unification and combi-
nation in simple cases and serves as a set of basic building blocks for the class of
CE-strategies. The syntax and the semantics of the latter as well as their unifica-
tion and combination are introduced in Section 4. Finally, in Section 5 we show
that the unification and combination of CE-strategies is sound and complete,
and state its main algebraic properties.

2 Preliminaries

We introduce preliminary definitions and notations.

Terms, contexts. Let F = ∪n≥0Fn be a set of symbols called function symbols.
The arity of a symbol f in Fn is n and is denoted ar(f). Elements of arity zero
are called constants and often denoted by the letters a, b, c, etc. The set F0 of
constants is always assumed to be not empty. Given a denumerable set X of
variable symbols, the set of terms T (F ,X ), is the smallest set containing X and
such that f(t1, . . . , tn) is in T (F ,X ) whenever ar(f) = n and ti ∈ T (F ,X )
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for i ∈ [1..n]. Let the constant � 6∈ F , the set T�(F ,X ) of "contexts", denoted
simply by T�, is made with terms with symbols in F ∪ X ∪ {�} which includes
exactly one occurence of �. Evidently, T�(F ,X ) and T (F ,X ) are two disjoint
sets. We shall write simply T (resp. T�) instead of T (F ,X ) (resp. T�(F ,X )).
We denote by Var (t) the set of variables occurring in t.

Positions, prefix-order, combination of contexts. Let t be a term in T (F ,X ). A
position in a tree is a sequence of integers of Nωε = {ε} ∪ N ∪ (N × N) ∪ · · · . In
particular we shall write Nε for {ε} ∪N. Given two positions p = p1p2 . . . pn and
q = q1q2 . . . qm, the concatenation of p and q, denoted by p · q or simply pq, is
the position p1p2 . . . pnq1q2 . . . qm. The set of positions of the term t, denoted by
Pos (t), is a set of positions of positive integers such that, if t ∈ X is a variable
or t ∈ F0 is a constant, then Pos (t) = {ε}. If t = f (t1, ..., tn) then Pos (t) =
{ε}∪

⋃
i=1,n {ip | p ∈ Pos (ti)}. The position ε is called the root position of term

t, and the function or variable symbol at this position is called root symbol of t.
The prefix order defined as p ≤ q iff there exists p′ such that pp′ = q, is a

partial order on positions. If p′ 6= ε then we obtain the strict order p < q. We write
(p ‖ q) iff p and q are incomparable with respect to ≤. The binary relations @ and
v defined by p @ q iff

(
p < q or p ‖ q

)
and p v q iff

(
p ≤ q or p ‖ q

)
,

are total relations on positions.
For any p ∈ Pos(t) we denote by t|p the subterm of t at position p, that

is, t|ε = t, and f(t1, ..., tn)|iq = (ti)|q. For a term t, we shall denote by δ(t) the
depth of t, defined by δ(t0) = 0, if t0 ∈ X ∪ F0 is a variable or a constant, and
δ(f(t1, . . . , tn)) = 1 + max(δ(ti)), for i = 1, . . . , n. For any position p ∈ Pos (t)
we denote by t [s]p the term obtained by replacing the subterm of t at position
p by s: t[s]ε = s and f(t1, ..., tn)[s]iq = f(t1, ..., ti[s]q, ..., tn).

For any τ, τ ′ ∈ T�, we define the combination of two contexts by τ [τ ′] =
τ [τ ′]Pos(t,�), where Pos (t,�) is the position of � in t. For any two tuples of
contexts τ = (τ1, . . . , τn) and τ ′ = (τ ′1, . . . , τ ′m) in T ω� = T� ∪ (T� × T�) ∪ · · · ,
we define the concatenation operation "·" by τ · τ ′ = (τ1, . . . , τn, τ

′
1, . . . , τ

′
m).

The evaluation of a tuple of contexts τ = τ 1 · . . . · τn, denoted as eval(τ ), is
inductively defined by

i.) if τ i = τ i+1, for some i ∈ [1, . . . , n], then
eval(τ 1 ·. . . · τ i ·τ i+1 ·. . .·τn) = eval(τ 1 ·. . .·τ i ·τ i+2 ·. . .·τn),

ii.) otherwise,

eval ((τ1, . . . , τm)) =
{
τ1, if n = 1
τ1[eval ((τ2, . . . , τm))], if n ≥ 2.

A substitution is a mapping σ : X → T (F ,X ) such that σ(x) 6= x for
only finitely many xs. The finite set of variables that σ does not map to them-
selves is called the domain of σ: Dom(σ) def= {x ∈ X | σ(x) 6= x}. If Dom(σ) =
{x1, ..., xn} then we write σ as: σ = {x1 7→ σ (x1) , ..., xn 7→ σ (xn)}. A substitu-
tion σ : X → T (F ,X ) uniquely extends to an endomorphism σ̂ : T (F ,X ) →
T (F ,X ) defined by: σ̂(x) = σ(x) for all x ∈ Dom(σ), and σ̂(x) = x for all
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x 6∈ Dom(σ), and σ̂(f(t1, . . . , tn)) = f(σ̂(t1), . . . , σ̂(tn)) for f ∈ F . In what
follows we do not distinguish between a substitution and its extension.

For two terms t, t′ ∈ T , we say that t matches t′, written t � t′, iff there
exists a substitution σ, such that σ(t) = t′. It turns out that if such a substitution
exists, then it is unique. The most general unifier of the two terms u and u′ is a
substitution γ such that γ(u) = γ(u′) and, for any other substitution γ′ satisfying
γ′(u) = γ′(u′), we have that γ′ is subsumed by γ. Besides, we shall write u ∧ u′
to denote the term γ(u). The composition of functions will be denoted by “◦”.
For a set A, the set of all functions from A to A will be denoted by F(A). If l1
and l2 are lists, then we denote by l1t l2 (resp. l1u l2) their concatenation (resp.
intersection). Sometimes we shall write ti=1,nei to denote the list [e1, . . . , en].
For any n ∈ N we simply denote by [n] the interval [1, . . . , n].

3 Elementary CE-strategies and their combination

To define the elementary CE-strategies, we introduce two elementary strategies.
For a position p and a tuple of context τ , the jump strategy @p.τ applied to a
term t inserts τ at the position p of the input term t. The failing strategy ∅ fails
when apply to any term. Their precise semantics are given in Definition below
for Semantics of elementary CE-strategies.

Definition 1 (Elementary CE-strategies). An elementary CE-strategy is ei-
ther the failing strategy ∅ or the list [@p1.τ 1, . . . ,@pn.τn], where n ≥ 1, each pi
is a positions and each τ i is a tuple of contexts in T ω

�
.

We impose that the elementary CE-strategies respect some constraints on
positions of insertions to avoid conflicts: the order of context insertions goes
from the leave to the root.

Definition 2 (Well-founded elementary CE-strategy). An elementary CE-
strategy E = [@p1.τ 1, ...,@pn.τn] is well-founded iff
i.) a position occurs at most one time in E, i.e. pi 6= pj for all i 6= j, and
ii.) insertions at lower positions occur earlier in E, i.e. i < j iff pi @ pj, for

all i, j ∈ [n].
In particular, the empty elementary CE-strategy ∅ is well-founded.

In all what follows we work only with the set of well-founded elementary CE-
strategies, denoted by E . For two elementary CE-strategies E′ and E′, we shall
write E = E′ to mean that they are equal up to a permutation of their parallel
positions. For a position p, we let p.[@p1.τ 1, . . . ,@pn.τn] = [@pp1.τ 1, . . . ,@ppn.τn].
We next define the semantics of an elementary CE-strategy as a function in
F(T ∪ {F}), with the idea that if the application of an elementary CE-strategy
to a term fails, the result is F.

Definition 3 (Semantics of elementary CE-strategies). The semantics of
an elementary CE-strategy E is a function [[E]] in F(T ∪{F}) inductively defined
by:
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[[∅]](t) def= F, [[@p.τ ]](t) def=
{
t[eval(τ )[t|p]]p if p ∈ Pos(t)
F otherwise,

[[E]](F) def= F, [[[(p1, τ 1), . . . , (pn, τn)]]](t) def= ([[@pn.τn]] ◦ · · · ◦ [[@p1.τ 1]])(t).

Example 1. We illustrate the idea and the interest of elementary CE-strategies
through the simple example, presented in [3], of an extension of a mathematical
expression encountered in an extension of a proof. The context τ = list(�, j)
depicted in Figure 1 captures the idea that the extension transforms a one-
dimensional space coordinate variable x to an indexed multi-dimensional space
coordinate variable xj . The application of @p.τ to the term t = ∂xv(x) at the
position of p of the variable x (the parameter of the differential operator ∂) yields
the term [[@p.τ ]](t) = ∂xj

v(x).

∂

v

x nil

q

x

nil

p

list

� j

∂

v

x nil

x

list

nil j

Fig. 1. Application of the elementary CE-
strategy @p.τ (with the context τ =
list(�, j)) to the term t = ∂xv(x) at the
position p, yielding the term ∂xjv(x).

∂

v

x nil

q

x

nil

p

list

� i

∂

v

x list

nil i

x

nil

Fig. 2. Application of the elementary CE-
strategy @q.τ ′ (with the context τ ′ =
list(�, i)) to the term t = ∂xv(x) at the
position q, yielding the term ∂xvi(x).

Besides, Figure 2 illustrates
the elementary CE-strategy
@q.τ ′ and its application to
the term t = ∂xv(x) at the po-
sition of the function v which
yields the term [[@q.τ ′]](t) =
∂xvi(x). When an elementary
CE-strategy @p.τ , where p is a
position, is applied to a term t
at the position p, the context
τ is inserted at the position p
of t, and the subterm of t at
the position p is inserted at �.
Figure 3 shows the combina-
tion of the two elementary CE-
strategy @p.τ and @q.τ ′.

∂

v

x nil

q

x

list

nil j

p

∂

v

x list

nil i

q

x

nil

p

∂

v

x list

nil j

x

list

nil i

Fig. 3. The elementary CE-strategy (@q.τ) g
(@q.τ ′), that is the combination of the two el-
ementary CE-strategies @q.τ and @q.τ ′, and its
application to the term t = ∂xv(x), yielding the
term ∂xjvi(x).
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Definition 4 (Unification of two elementary CE-strategies). The unifi-
cation of two elementary CE-strategies is the binary operation f : E × E −→ E
defined as

E f E′ =
{
E′′ if E 6= ∅ and E′ 6= ∅
∅ if E = ∅ or E′ = ∅

where the first case E = [@p1.τ 1, . . . ,@pn.τn], E′ = [@p′1.τ ′1, . . . ,@p′m.τ ′m] and
E′′ = [@p′′1 .τ ′′1 , . . . ,@p′′r .τ ′′r ] with sets of positions P , P ′ and P ′′ = P ∪ P ′ and
the contexts τ ′′k defined as follows. For a position p′′k ∈ P ′′ \ P ∩ P ′,

τ ′′k = τ i if p′′k = pi ∈ P and τ ′′k = τ ′j if p′′k = p′j ∈ P ′.

Otherwise, p′′k = pi = p′j ∈ P ∩ P ′ for some i, j and τ ′′k = τ ′j · τ i. Besides, the
other of the positions in P ′′ is chosen so that E′′ is well-founded.
Definition 5 (Combination of two elementary CE-strategies). The com-
bination of two elementary CE-strategies is a binary operation g : E × E −→ E
defined for any E and E′ in E by

E g E′ =


E f E′ if E 6= ∅ and E′ 6= ∅
E if E 6= ∅ and E′ = ∅
E′ if E = ∅ and E′ 6= ∅
∅ if E = ∅ and E′ = ∅

Proposition 1. The following hold.
1. The set E of elementary CE-strategies together with the unification and com-

bination operations enjoys the following properties.
(a) The neutral element of the unification and combination is @ε.�.
(b) Every elementary CE-strategy E is idempotent for the unification and

combination, i.e. E f E = E and E g E = E.
(c) The unification and combination are associative.

2. The unification and combination of elementary CE-strategies is non commu-
tative.

The idempotence follows from the equality eval(τ · τ ) = eval(τ ), the associa-
tivity follows from the equality eval((τ1 ·τ 2)·τ 3) = eval(τ1 ·(τ 2 ·τ 3)), and the
non-commutativity is a consequence of eval(τ 1 ·τ 2) 6= eval(τ 2 ·τ 1) in general,
for any tuples of contexts τ , τ 1, τ 2 and τ 3.

4 The class of context-embedding strategies
(CE-strategies)

We introduced the elementary CE-strategies to clarify the ideas behind contexts,
their insertion as well as their combination. However, elementary CE-strategies
are not satisfactory for practical applications, since the positions are generally
not accessible and cannot be used on a regular basis in applications. So, we
enrich this framework by introducing navigation strategies to form a class of
CE-strategies that is closed under combination.
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4.1 Specification of failure by Boolean formulas

The first enrichment of the elementary CE-strategies is to specify and handle the
failure. Assume that we applied the elementary CE-strategy E = [@p1.τ 1, . . . ,
@pn.τn] to a term, and assume that one of the @pi.τ i fails. In this case the whole
elementary CE-strategy E fails. We shall relax this strong failure specification
by allowing one to explicitly specify whether the application of a strategy to a
term fails depending on the failure of the application of its sub-strategies. In
this subsection we propose to specify the failure by means of Boolean formulas
that we next introduce. For this purpose, to each position p in Nωε , we associate
a Boolean position-variable denoted by p̂. The idea is that when we apply a
CE-strategy, say @p.τ , to a term, then we get p̂ := True if this application
succeeds, and p̂ := False if it fails. For instance, assume that we want that
the application of the elementary CE-strategy [@p1.τ 1,@p2.τ 2] succeeds if the
application of @p1.τ 1 succeeds or the application of @p2.τ 2 succeeds. This is
specified by the Boolean formula p̂1 ∨ p̂2.

In what follows, the set of Boolean position-variables is denoted by N̂ωε .

Definition 6 (Boolean formulas over N̂ωε ). The set of Boolean formulas over
N̂ωε , denoted by Bool(N̂ωε ), is defined by the grammar:

B ::= True | False | p̂ | B ∧ B | B ∨ B

where p̂ ∈ N̂ωε . The set of position-variables of φ ∈ Bool(N̂ωε ) will be denoted by
Var (φ). A valuation is a mapping ν : N̂ωε −→ {True, False}. We write ν |= φ
to mean that ν(φ) holds.

4.2 Syntax and semantics of CE-strategies

Besides the specification of failure, the second enrichment of the elementary CE-
strategies is the introduction of navigation strategies. Namely, we shall introduce
the left-choice strategy constructor (⊕), a restricted form of the composition
(“;”), and the fixed-point constructor (“µ”) allowing the recursion in the def-
inition of strategies. The resulting class is called the class of CE-strategies. In
what follows we assume that there is a denumerable set of fixed-point variables
denoted by Z. Fixed-point variables in Z will be denoted by X,Y, Z, . . .

Definition 7 (CE-strategies). The class of CE-strategies is defined by the fol-
lowing grammar:
S ::= ∅ | X | (u→ u);S | S ⊕ S | u→ u[τ ] | µX.S | @p.S | @p.τ |

〈[@p1.S1 . . . ,@pn.Sn] |φ〉

where X is a fixed-point variable in Z, and u is a term in T , and τ is a tuple of
contexts in T ω� and p, p1, . . . , pn are positions in Pos, and φ is a Boolean formula
in Bool(N̂ωε ) with Var (φ) = {p̂1, . . . , p̂n} \ {ε}. The set of CE-strategies will be
denoted by C.
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The strategy @p.S means to jump to the position p and to apply S there.
The strategy 〈[@p1.S1 . . . ,@pn.Sn] |φ〉 consists in applying each of @pi.Si, which
yields a valuation that sends the position-variable p̂i to False iff the application
of @pi.Si fails, then evaluating the Boolean formula φ. If this evaluation is false
then the whole strategy 〈[@p1.S1 . . . ,@pn.Sn] |φ〉 fails, otherwise, every sub-
strategy @pi.Si that failed behaves like the identity, i.e. it does nothing, while the
other non-failing sub-strategies @pj .Sj are applied. For example, if we apply the
CE-strategy S = 〈[@p1.S1,@p2.S2] | p̂1 ∨ p̂2〉 to a term t, and @p1.S1 fails while
@p2.S2 does not, we get an evaluation ν with ν(p̂1) = False and ν(p̂1) = True.
Since ν |= p̂1 ∨ p̂2, then the result of the application of S to t is precisely the
result of the application of @p2.S2 to t, making @p1.S1 behaving like the identity.

It’s worth mentioning that the aim of incorporation of the Boolean formu-
las in CE-strategies is to make it expressive enough so we can write the stan-
dard traversal strategies (see Example 2). The fragment of CE-strategies without
Boolean formulas remains closed under unification and combination.

We shall sometimes write µX.S(X) instead of µX.S to emphasize that the
fixed-point variable X is free in S.

To define the semantics of CE-strategies we need to introduce an intermediary
function η : F(T ∪{F})→ T ∪{F} → T ∪{F}, that stands for the fail as identity.
It is defined for any function f in F(T ∪ {F}) and any term t ∈ T ∪ {F} by

(η(f))(t) =
{
f(t) if f(t) 6= F
t otherwise.

Beside, let Si+1(S′) def= Si(S(S′)), for all any CE-strategies S(X) and S′ in C.
A CE-strategy strategy is closed if all its fixed-point variables are bound.
Definition 8 (Semantics of CE-strategies). The semantics of a closed CE-
strategy S is a function [[S]] in F(T ∪F), which is defined inductively as follows.

[[∅]](t) def= F.

[[(u, s′)]](t)def=
{

[[s′]](t) if u� t,

F otherwise.
[[@p.τ ]](t) def=

{
t[τ (t|p)]p if p ∈ Pos(t),
F otherwise.

[[S1 ⊕ S2]](t)def=
{

[[S1]](t) if [[S1]](t) 6= F,
[[S2]](t) otherwise.

[[µX.S(X)]](t) def= [[
⊕

i=1,δ(t)

Si(∅)]](t).

[[@p.S]](t) def=
{
t[[[S]](t|p)]p if [[s]](t|p) 6= F and p ∈ Pos(t),
F otherwise.

[[〈
⊔
i=1,n

@pi.Si |φ〉]](t)
def=
{(
η([[@pn.Sn]]) ◦ · · · ◦ η([[@p1.S1]])

)
(t) if Vf(S, t) |= φ,

F otherwise,

where S = [@p1.S1, · · · ,@pn.Sn], and
V(S, t)(p̂i) = False iff [[@pi.Si]](t) = F
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For any CE-strategies S, S′ in C, we shall write S ≡ S′ iff [[S]] = [[S′]]. To
simplify the presentation, we shall write (u, S) instead of (u → u);S and we
shall write (u, τ ) instead of u→ u[τ ].

Example 2. We show how to encode some standard traversal strategies in our
formalism using the fixed-point constructor. In what follows we assume that
S is a CE-strategy. We recall that, when applied to a term t, the CE-strategy
OneLeft(S) tries to apply S to the subterm of t (if any) which is the closest to
the root and on the far-left. The CE-strategy TopDown(S) tries to apply S to the
maximum of the sub-terms of t starting from the root of t, it stops when it is
successfully applied. Hence,

OneLeft(S) = µX.
(
S ⊕

⊕
f∈F, ar(f)=n

(
f(x1, · · · , xn),

⊕
i=1,n

〈
[@i.X] |

∨
i=1,n

î
〉))

,

TopDown(S) = µX.
(
S ⊕

⊕
f∈F, ar(f)=n

(
f(x1, · · · , xn),

〈
[@1.X, · · · ,@i.X] |

∨
i=1,n

î
〉))

.

We generalize next the condition of well-foundedness from elementary CE-strategies
to CE-strategies. Before that, it is helpful to view an CE-strategy as a tree with
back-edges. A tree with back-edges is an oriented tree with possible edges going
from a node to at most one of its ancestors in the tree.

Definition 9 (Well-founded CE-strategies.). A CE-strategy S is well-founded
iff

i.) Every cycle in S passes through a position3.
ii.) All its sub-strategies of the form 〈[@p1.S1, . . . ,@pn.Sn,@q1.τ 1, . . . ,@qm, τm] |φ〉,

where n + m ≥ 1 and pi, qj are positions and τ i are tuples of contexts in
Tω� and Si are CE-strategies, are subject to the following conditions:
(a) qi @ qj, for all i < j, where i, j ∈ [m], and
(b) pi ‖ pj, for all i 6= j, where i, j ∈ [n], and
(c) qj @ pi, for all j ∈ [m] and i ∈ [n].

For instance the CE-strategy µX.((f(x), τ )⊕X) is not well-founded because
the cycle that corresponds to the regeneration of the variable X does not cross
a position delimiter, while the CE-strategy µX.((f(x), τ ) ⊕ (@1.X)) is well-
founded. In all what follows we assume that the CE-strategies are well-founded.
Notice that any CE-strategy is terminating. This is a direct consequence of Item
(i) of the well-foundedness of CE-strategies, that is, every cycle in a well-founded
CE-strategy passes through a position delimiter.

The set of Boolean formulas (resp. positions) of an CE-strategy S, will be
denoted by Φ(S) (resp. Pos(S)). It is defined in a straightforward way.

3 This constraint is similar to the one imposed on the modal µ-calculus formulas in
which each cycle has to pass through a modality [1].
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4.3 Canonical form of CE-strategies

Instead of the direct combination of CE-strategies, we shall first simplify the
CE-strategies by turning each CE-strategy into an equivalent CE-strategy in the
canonical form. A CE-strategy is in the canonical form if each of its Boolean
formulas is a conjunction of position-variables, where each position-variable is
in N̂ε instead of N̂ωε . The advantage of the use of canonical CE-strategies is that
their combination is much simpler.

Definition 10 (Canonical form of CE-strategies). An CE-strategy strategy
S is in the canonical form iff any Boolean formula φ in Φ(S) is of the form
φ =

∧
i p̂i, where p̂i ∈ N̂ε. The set of CE-strategies in the canonical form is

denoted by Co.

It follows that if a CE-strategy strategy S is in the canonical form, then we have
Pos(S) ⊂ Nε.
Lemma 1. Any CE-strategy can be turned into an equivalent CE-strategy in the
canonical form.

Proof. (Sketch) Firstly, we turn all the Boolean formulas of the CE-strategy into
formulas in the disjunctive normal form. Then we express the disjunction in
terms of the left-choice strategy. Secondly, we turn each position in Nωε into a
secession of positions in Nε by relying on the fact that the CE-strategy @(ip).S
is equivalent to @i.(@p.S), where i ∈ Nε and p ∈ Nωε . ut

4.4 From CE-strategies to elementary CE-strategies

Out of a CE-strategy and a term it is possible to construct an elementary
CE-strategy. The main purpose of this mapping is to formulate a correctness-
completeness criterion for the unification and combination of CE-strategies in
terms of elementary CE-strategies. Roughly speaking, this criterion imposes that
the mapping of the combination of two CE-strategies is equivalent to the com-
bination of their respective mapping. The definition of this mapping follows.
Definition 11. Define the function Ψ : C × T −→ E, that associates to each
closed CE-strategy S in C and a term t in T an elementary CE-strategy Ψ(S, t)
in E by

Ψ(∅, t) = ∅. Ψ(@p.τ , t) = @p.τ .

Ψ((u, τ ), t) =
{

(ε, τ ) if u� t,

∅ otherwise.
Ψ((u, S), t) =

{
Ψ(S, t) if u� t,

∅ otherwise.

Ψ(〈
⊔
i∈[n]

@pi.τ i |φ〉, t) =
⊔
i∈[n]

@pi.τ i. Ψ(@p.S, t) = @p · Ψ(S, t|p).

Ψ(S ⊕ S′, t) =
{
Ψ(S, t) if Ψ(S, t) 6= ∅,
Ψ(S′, t) otherwise.

Ψ(µX.S(X), t) = Ψ
( ⊕
i=1,δ(t)

Si(∅), t
)
.

11



If S = ti∈[n]@pi.Si, then

Ψ
(〈
S |φ

〉
, t
)

=
{⊔

i∈[n] @pi.η(Ψ(Si, t|pi
)) if V(S, t) |= φ,

∅ otherwise.

The application of the elementary CE-strategy Ψ(S, t) to the term t will be simply
written as Ψ(S, t)(t) instead of [[Ψ(S, t)]](t).

It turns out that the function Ψ (Definition 11) preserves the semantics of
CE-strategies in the following sense.

Lemma 2. For any CE-strategy S in C and any term t in T , we have [[S]](t) =
Ψ(S, t)(t).

The proof of this Lemma does not provide any difficulties since the definition of
Ψ is close to the definition of the semantics of CE-strategies.

Lemma 3. The function Ψ enjoys the following properties.
i.) For any elementary CE-strategies E,E′ in E, we have that E = E′ iff

Ψ(E, t) = Ψ(E′, t) for any term t.
ii.) For any CE-strategies S, S′ in C, we have that S ≡ S′ iff Ψ(S, t) = Ψ(S′, t)

for any term t.

5 Unification and combination of CE-strategies

The problem of the closure of the class of CE-strategies under combination asks
whether, for any two CE-strategies S, S′ ∈ C, there exists a third CE-strategy
S′′ ∈ C such that for every term t ∈ T , we have that Ψ(S, t) g Ψ(S′, t) =
Ψ(S′′, t). This can be understood as a correctness-completeness criterion of the
combination of CE-strategies given in terms of the elementary CE-strategies. We
define the combination of CE-strategies by means of their unification. Instead
of unifying/combining CE-strategies directly, we unify/combine their canonical
forms. We omit the symmetric cases in the following definition.

Definition 12 (Unification of canonical CE-strategies). The unification
of CE-strategies in the canonical form is a binary operation f : Co × Co −→ Co
inductively defined as follows.

∅f S = ∅. S f∅ = ∅.
@i.τ f@i.τ ′ = @i.(τ · τ ′). @i.τ f@j.τ ′ = [@i.τ ,@j.τ ′], if j @ i.
@i.τ f@i.S = @i.(@ε.τ f S). @i.τ f@j.S = [@i.τ ,@j.S, ], if j @ i.

(u, τ )f@i.τ ′ = (u,@ε.τ f@i.τ ′), (u, τ )f@i.τ ′ = ∅,
if i ∈ [ar(u)] ∪ {ε}. if i /∈ [ar(u)] ∪ {ε}.

@i.τ f (u, S) = (u, (@i.τ )f S), @i.τ f (u, S) = ∅,
if [ar(u)] ∪ {ε}. if i /∈ [ar(u)] ∪ {ε}.

(u, τ )f (u′, S′) = (u ∧ u′, (@ε.τ f S′)). (u, S)f (u′, S′) = (u ∧ u′, S f S′).

12



For the rest, assume L =
⊔
i∈I

@i.Si and L′ =
⊔
j∈J

@j.S′j.

Let L1 =
⊔

i∈I∩J
@i.(SifS′i) and L2 =

⊔
i∈I\J

@i.Si and L3 =
⊔

i∈J\I
@i.S′i. Define

〈L |φ〉f 〈L′ |φ′〉 =
〈
L1 t L2 t L3 |φ ∧ φ′

〉
. (u, S)f 〈L |φ〉 =

(
u, S f 〈L |φ〉

)
.

(S1 ⊕ S2)f S = (S1 f S)⊕ (S2 f S).

For the fixed-point CE-strategies,

µX.S(X)f µX ′.S′(X ′) = µZ.S′′
(
µX.S(X), µX ′.S′(X ′), Z

)
,

where S′′(X,X ′, Z) = [S(X)f S′(X ′)]|XfX′:=Z , and Z is fresh.
(µX.S(X))f S′ = S′′(µX.S(X)), where S′′(X) = S(X)f S′ and S′.

Comments. We comment on the key points in Definition 12. The unification of
(u, S) with (u′, S′) is naturally (u∧u′, SfS′) since we want to merge them. The
idea behind the unification of µX.S(X) with µX ′.S′(X ′) is to unfold µX.S(X)
(resp. µX ′.S′(X ′)) to S(∅)⊕S

(
µX.S(X)

)
(resp. S′(∅)⊕S′(µX ′.S′(X ′))) and to

combine the resulting CE-strategy. This is achieved by firstly unifying S(X) with
S′(X ′), where clearly the fixed-point variable X (resp. X ′) is free in S(X) (resp.
S′(X ′)). The resulting CE-strategy S′′(X,X ′, X fX ′) contains three free fixed-
point variables. The key point is to viewXfX ′ as a fresh fixed-point variable, say
Z, and to bind it to the full expression S′′(µX.S(X), µX ′.S′(X ′), Z), meaning
that Z corresponds exactly to the CE-strategy that we are defining.
Example 3. Let S(X) = (u, τ ) ⊕ @1.X and S′(X ′) = (u′, τ ′) ⊕ @1.X ′, be two
CE-strategies. We compute µX.S(X) f µX ′.S′(X ′). Firstly, the unification (∗)
of S(X) and S′(X ′) yields:

(∗) = S(X)f S′(X ′)
= ((u, τ )⊕@1.X)f ((u′, τ ′)⊕@1.X ′)
= ((u, τ )f (u′, τ ′))⊕ (@1.X f (u′, τ ′))⊕ ((u′, τ )f@1.X ′)⊕ (@1.X f@1.X ′)
= (u ∧ u′, τ ′ ·τ )⊕ (u, [@1.X ′,@ε.τ ])⊕ (u′, [@1.X,@ε.τ ])⊕ (@1.(X fX ′)).

Hence, combination of µX.S(X) and µX ′.S′(X ′) is

(µX.S(X))f (µX ′.S′(X ′)) = µZ.
(
(u ∧ u′, τ ′ · τ )⊕ (u, [@1.(µX ′.S′(X ′)),@ε.τ ])⊕
(u′, [@1.(µX.S(X)),@ε.τ ′])⊕ (@1.Z)

)
.

Definition 13 (Combination of canonical CE-strategies). The combina-
tion of CE-strategies in the canonical form is a binary operation g : Co×Co −→
Co, defined for any S and S′ in Co by S g S′ def= (S f S′)⊕ S ⊕ S′.

The unification and combination of CE-strategies can defined in terms of
their canonical form.
Definition 14 (Unification and combination of CE-strategies). Let S, S′
be two CE-strategies in C and S̃, S̃′ ∈ Co their canonical form, respectively. The
unification (resp. combination) of S and S′ is defined by SfS′ def= S̃f S̃′ (resp.
S g S′

def= S̃ g S̃′).
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5.1 The correction and completeness of the unification and
combination of CE-strategies

Now we are ready to state the main results of this paper. Namely, the unification
and combination of CE-strategies is sound and complete.

Theorem 1. For every term t ∈ T and for every CE-strategies S and S′ in the
canonical form in Co, we have that Ψ(S f S′, t) = Ψ(S, t)f Ψ(S′, t).

Similarly, the combination of the CE-strategies is sound and complete. The
following Theorem is a consequence of Theorem 1.

Theorem 2. For every term t ∈ T , for every CE-strategies S and S′ in the
canonical form in Co, we have that Ψ(S g S′, t) = Ψ(S, t)g Ψ(S′, t).

Since each CE-strategy can be turned into an equivalent CE-strategy in the
canonical form (Lemma 1) and since the image of two equivalent CE-strategies
under the homomorphism Ψ is identical (Item ii. of Lemma 3), then Theorems
1 and 2 hold for the class of CE-strategies as well.

Besides, thanks to the fact that the function Ψ is an homomorphism (in
the first argument), one can transfer all the properties of the combination and
unification of elementary CE-strategies (stated in Proposition 1) to CE-strategies.

Proposition 2. The following hold.

1. The set C of CE-strategies together with the unification and combination
operations enjoy the following properties.
(a) The neutral element of the unification and combination is @ε.�.
(b) Every CE-strategy S is idempotent for the unification and combination,

i.e. S f S = S and S g S = S.
(c) The unification and combination of CE-strategies are associative.

2. The unification and combination of CE-strategies is non commutative.
3. For any CE-strategies S and S′ in C, and for any term t in T , we have that

Ψ(S f S′, t) = ∅ iff Ψ(S, t) = ∅ or Ψ(S′, t) = ∅.
Ψ(S g S′, t) = ∅ iff Ψ(S, t) = ∅ and Ψ(S′, t) = ∅.

4. The unification and combination of CE-strategies is a congruence, that is,
for any CE-strategies S1, S2, S in C, we have that:

If S1 ≡ S2 then S1 f S ≡ S2 f S and S f S1 ≡ S f S2.

If S1 ≡ S2 then S1 g S ≡ S2 g S and S g S1 ≡ S g S2.

6 Conclusion and future work

We addressed the problem of extension and combination of proofs encountered in
the field of computer aided asymptotic model derivation. We identified a class of
rewriting strategies of which the operations of unification and combination were
defined and proved correct. The design of this class is inspired by the formalism
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µ-calculus. On the one hand the jumping into an immediate position of the tree
together with a Boolean formula that specifies the failure are morally similar
to the diamond and box modalities (〈·〉 and [·]) of the propositionsal modal µ-
calculus [1]. On the other hand we use of the fixed-point operator which is finer
and more powerful than the repeat constructor used e.g. in [7].

The CE-strategies are indeed modular in the sense that they navigate in the
tree without modifying it, then they insert contexts. This makes our formalism
flexible since it allows one to modify and enrich the navigation part and/or the
insertion part without disturbing the set-up.

Although the CE-strategies can be viewed as algebraic infinite trees [8], our
technique of the unification and combination involving µ-terms and their un-
folding is new. Therefore, we envision consequences of these results on the study
of the syntactic (or modulo a theory) unification and the pattern-matching of
infinite trees once the infinite trees are expressed as µ-terms in the same way
we expressed the CE-strategies. Thus, a rewriting language that transforms al-
gebraic infinite trees can be elaborated.
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Appendix: detailed proofs for reviewers

7 Proofs for preliminary section 2

If π = {p̂1, . . . , p̂n} is a set of variable-positions, then we shall write
∧
π (resp.∨

π) for the Boolean formula p̂1 ∧ . . . ∧ p̂n (resp. p̂1 ∨ . . . ∨ p̂n). In particular,∧
∅ =

∨
∅ = False.

Fact 3 Let u, t be two terms and γ, γ′ two substitutions. We have that, if γ(u)�
t and γ is subsumed by γ′, then γ′(u)� t as well.

Lemma 4. Let u, u′, t be terms in T . Then,

(u ∧ u′)� t iff u� t and u′ � t.

Proof. For the direction (⇒), let γ be the most general unifier of u and u′, and
α be a substitution such that α(u ∧ u′) = t. This means that α(γ(u)) = t and
α(γ(u′)) = t. That is, γ(u)� t and γ(u′)� t.

For the direction (⇐), let σ and σ′ be substitutions such that σ(u) = t
and σ′(u′) = t. Consider the decomposition σ = σ1 ] σ2 and σ′ = σ′1 ] σ′2,
where Dom(σ1) ∩ Dom(σ′1) = ∅ and Dom(σ2) = Dom(σ′2). Since σ(u) = σ′(u′),
it follows that σ2 = σ′2. But this means that σ2(u) = σ2(u′), and σ2(u) � t. In
other words, u and u′ can be unified. Let γ be the most general unifier of u and
u′. But since σ2(u) � t and σ2 is subsumed by γ, then it follows from Fact 3
that γ(u)� t. ut

8 Proofs and formal definitions for section 4

8.1 CE-strategies as tree-with back edges

It is helpful to view CE-strategies as trees
with back-edges. For instance, the tree-
like structure of the CE-strategy S(X) =
(f(x), τ ) ⊕ (@1.X), where the fixed-point
variable X is free, is depicted on the left
of Figure 4. While the tree with- back-edge
related to µX.S(X) is depicted on the right.

⊕

;

f(x) τ

@1

X

µX

⊕

;

f(x) τ

@1

X

Fig. 4. The tree-like structure of
the CE-strategy S(X) = (f(x), τ ) ⊕
(@1.X) (left) and µX.S(X) (right).
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8.2 Set of Boolean formulas and positions of a CE-strategy

Definition 15 (Set of Boolean formulas and positions of a CE-strategy).
The set of Boolean formulas (resp. positions) of an CE-strategy S, denoted by
Φ(S) (resp. Pos(S)), is inductively defined by

Φ(@p.τ ) = ∅ Pos(@p.τ ) = {p}
Φ((u, τ )) = ∅ Pos((u, τ )) = ∅

Φ(X) = ∅ Pos(X) = ∅
Φ((u, S)) = Φ(S) Pos((u, S)) = Pos(S)

Φ
( ⊕
i∈[n]

Si
)

=
⋃
i∈[n]

Φ(Si) Pos
( ⊕
i∈[n]

Si
)

=
⋃
i∈[n]

Pos(Si)

Φ(〈
⊔
i∈[n]

@pi.Si |φ〉) = {φ} ∪
⋃
i∈[n]

Φ(Si) Pos(〈
⊔
i∈[n]

@pi.Si |φ〉) =
⋃
i∈[n]

{pi} ∪ Pos(Si)

Φ(µX.S(X)) = Φ(S(X)) Pos(µX.S(X)) = Pos(S(X))

8.3 Depth of CE-strategies

Taking into account that the structure of a CE-strategy is no longer a tree but a
tree with back-edges that may contains cycles, we slightly modify the standard
measure of the depth of trees in order to capture both the number of nested
loops, caused by the nested application of the constructor µ, and the distance
from the root of the tree to the leaves. Many proofs will be done by induction
with respect to this measure.

Definition 16 (Depth of a CE-strategy). The depth of an CE-strategy is
function ∆ : C −→ N× N defined inductively as follows.

∆(@p.τ ) = (0, 0)
∆((u, τ )) = (0, 0)

∆(X) = (0, 0)
∆((u, S)) = (0, 1) +∆(S)

∆(S1 ⊕ . . .⊕ Sn) = (0, 1) +max(∆(S1), . . . ,∆(Sn))
∆(〈@pn.S1, · · · ,@pn.Sn |φ〉) = (0, 1) +max(∆(S1), . . . ,∆(Sn))

∆(µX.S(X)) = (1, 0) +∆(S(X))

We shall denoted by <,≤ and >,≥ the related lexicographic orders on N× N.

Notice that if a CE-strategy S is iteration-free, i.e. it does not contain the con-
structor µ, then its depth ∆(S) = (0, n), for some n ∈ N.

8.4 Canonical form of CE-strategies

Lemma 5. (i.e. Lemma 1) Any CE-strategy can be turned into an equivalent
CE-strategy in the canonical form.
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Proof. Firstly, we turn all the Boolean formulas of the CE-strategy into formulas
in the disjunctive normal form. Then we express the disjunction in terms of
the left-choice strategy. (Lemmas 6 and 7). Thus we obtain an equivalent CE-
strategy in which all the Boolean formulas are conjunctions of position-variables.
Secondly, we turn each position in Nωε into a secession of positions in Nε (Lemma
8) by relying on the fact that the CE-strategy @(ip).S is equivalent to @i.(@p.S),
where i ∈ Nε and p ∈ Nωε . ut

Lemma 6. Let p1, . . . , pn be parallel positions in Nωε , and S1, . . . , Sn be CE-
strategies, with n ≥ 1. Let π, π′ ⊆ {p̂1, . . . , p̂n} with π ∪ π′ = {p̂1, . . . , p̂n} and
let φ =

∧
π and φ′ =

∧
π′ be Boolean formulas. Let S = [@p1.S1, . . . ,@pn.Sn].

Then we have the equivalence

〈S |φ ∨ φ′〉 ≡〈S |φ ∧ φ′〉 ⊕⊕
℘′⊂π′

℘′=|π′|−1

〈S|π∪℘′ |φ ∧ φ′|℘′〉 ⊕ · · · ⊕
⊕
℘′⊂π′

|℘′|=1

〈S|π∪℘′ |φ ∧ φ′|℘′〉 ⊕

⊕
℘⊂π

|℘|=|π|−1

〈S|℘∪π′ |φ|℘ ∧ φ′〉 ⊕ · · · ⊕
⊕
℘⊂π
|℘|=1

〈S|℘∪π′ |φ|℘ ∧ φ′〉 (1)

Proof. Recall that

[[〈S |φ ∨ φ′〉]](t) =
{

(η([[@pn.Sn]]) ◦ · · · ◦ η([[@p1.S1]])(t) if V(S, t) |= φ ∨ φ′,
F otherwise.

We discuss four cases depending on whether V(S, t) |= φ or V(S, t) |= φ′.

1. If V(S, t) |= φ and V(S, t) |= φ′, then in this case

V(S, t) |= φ ∧ φ′ and [[〈S |φ ∨ φ′〉]](t) = [[〈S |φ ∧ φ′〉]](t).

Thus Eq. (1) holds.
2. If V(S, t) |= φ and V(S, t) 6|= φ′, then we must show that

[[〈S |φ ∧ φ′〉]](t) = F,
(2)

and
∃!℘′ ⊂ π′, [[〈S |φ ∨ φ′〉]](t) = [[〈S|π∪℘′ |φ ∧ φ′|℘′〉]](t),

(3)
and

∀%′ ⊂ π′, where |%′| ≥ |℘′| and
%′ 6= ℘′, [[〈S|π∪%′ |φ ∧ φ′|%′〉]](t) = F.

(4)

However, Eq. (2) follows from the fact that V(S, t) |= φ and V(S, t) 6|= φ′.
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To prove Eq. (3), we let

℘′
def= {p̂i ∈ π | V(S, t)(p̂i) = True} ∩ π′.

Hence, V(S, t) |= φ ∨ φ′ if and only if V(S|π∪℘′ , t) |= φ ∧ φ′|℘′ . Besides,

∀p̂i ∈ π ∪ π′, η([[@pi.Si]])(t) =
{

[[@pi.Si]](t) if V(S, t)(p̂i) = True
t otherwise,

and

∀p̂i ∈ π ∪ ℘′, η([[@pi.Si]])(t) = [[@pi.Si]](t) and V(S|π∪℘′ , t)(p̂i) = True.

Summing up, Eq. (3) holds.
To prove Eq. (4), we notice that there exists p̂ ∈ %′ such that V(S, t)(p̂) =
False, and hence V(Sπ∪%′ , t) 6|= φ′|%′ , making [[〈S|π∪%′ |φ ∧ φ′|%′〉]](t) = F.
Thus Eq. (1) holds.

3. If V(S, t) 6|= φ and V(S, t) |= φ′, then this case is similar to the case when
V(S, t) |= φ and V(S, t) 6|= φ′ discussed above in Item 2.

4. If V(S, t) 6|= φ and V(S, t) 6|= φ′, then in this case

[[〈S |φ ∨ φ′〉]](t) = F, and
∀℘′ ⊂ π′, [[〈S|π∪℘′ |φ ∧ φ′|℘′〉]](t) = F, and ∀℘ ⊂ π, [[〈S|℘∪π′ |φ|℘ ∧ φ′〉]](t) = F,

making the Eq. (1) hold.
ut

Lemma 7. Let p1, . . . , pn be parallel positions in Nωε , and S1, . . . , Sn be CE-
strategies, with n ≥ 1. Let π = {p̂1, . . . , p̂n} and Let S = [@p1.S1, . . . ,@pn.Sn].
Then we have the equivalence

〈S |
∨
π〉 ≡

( ⊕
℘⊆π
|℘|=|π|

〈S|℘ |
∧
℘〉
)
⊕ · · · ⊕

( ⊕
℘⊂π
|℘|=0

〈S|℘ |
∧
℘〉
)

(5)

Proof. We recall that

〈S |
∨
π〉(t) =

{(
η([[@pn.Sn]]) ◦ · · · ◦ η([[@p1.S1]])

)
(t) if V(S, t) |=

∨
π,

F otherwise.

Out of the valuation V(S, t), we shall show that there exists a unique ℘ ⊆ π
such that

[[〈S |
∨
π〉]](t) = [[〈S|℘ |

∧
℘〉]](t), (6)

and that for all ℘′ ⊆ π where |℘′| ≥ |℘| and ℘′ 6= ℘, we have that

[[〈S|℘′ |
∧
℘′〉]](t) = F. (7)
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For this purpose, we define ℘ by

℘
def= {p̂ ∈ π | V(S, t) = True}.

Therefore, V(S, t) |=
∨
π iff V(S|℘, t) |=

∧
℘, and

∀p̂i ∈ π, η([[@pi.Si]])(t) =
{

[[@pi.Si]](t) if V(S, t) |=
∨
π

t otherwise

and

∀p̂i ∈ ℘,V(S|℘, t) |=
∧
℘ and η([[@pi.Si]])(t) = [[@pi.Si]](t).

Hence Eq. (6) holds. And Eq. (7) follows from the fact that there exists q̂ ∈ ℘′
such that V(S, t)(q̂) = False, thus V(S|℘′ , t)(q̂) = False and V(S|℘′ , t) 6|=

∧
℘′.
ut

Lemma 8. Each CE-strategy in which every Boolean formulas is a conjunction
of position-variables in N̂ωε , can be turned into an equivalent CE-strategy in which
every Boolean formulas is a conjunction of position-variables in N̂ε.

Proof. Let S be CE-strategy strategy. The idea is simple. If there are no Boolean
formulas in the CE-strategy, then we rely on the observation that the CE-strategy
@(ip).S′ is equivalent to @i.(@p.S′) where i ∈ Nε and p ∈ Nωε . Which means
that we use the reduction rule

@(ip).S′ _ @i.(@p.S′) (8)

to put the CE-strategy in the canonical form. We generalize the rule (8) to take
into account the presence of Boolean formulas as follows. Let

S =
(⊔
j

@1̂pj .S1
j

)
t · · · t

(⊔
j

@n̂pj .Snj
)
, and

S1 = @1̂.
〈(⊔

j

@p̂j .S1
j

)
|
∧
j

p̂j
〉
, and

Sn = @n̂.
〈(⊔

j

@p̂j .S1
j

)
|
∧
j

p̂j
〉

Then we define the reduction rule〈
S |
∧
i

∧
j

îpj

〉
_

〈
[S1, . . . , Sn] |

∧
i

î
〉
.

Since all the Boolean formulas are conjunctions of position-variables, then we
have 〈

S |
∧
i

∧
j

îpj

〉
≡
〈
[S1, . . . , Sn] |

∧
i

î
〉
.

ut
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8.5 Properties of the function Ψ

Lemma 9 (Ψ preserves the semantics, i.e. Lemma 2). For any CE-strategy
S in C and any term t in T ,

[[S]](t) = Ψ(S, t)(t) (9)

Proof. The proof is by induction on ∆(S), the depth of S.

Basic case: ∆(S) = (0, 0). We distinguish three cases depending on S.
1. If S = ∅, then this case is trivial.
2. If S = @p.τ . This case is trivial since Ψ(S, t) def= S.
3. If S = (u, τ ). In this case

[[S]](t) =
{
τ [t] if u� t

F otherwise,

and on the other hand,

Ψ(S, t) =
{

@ε.τ if u� t

∅ otherwise
hence Ψ(S, t)(t) =

{
τ [t] if u� t

F otherwise

That is, [[S]](t) = Ψ(S, t)(t).
Induction case: ∆(S) > (0, 0). We distinguish three cases depending on S.

1. If S is a left-choice of the form

S = S1 ⊕ S2

then,

[[S]](t) =
{

[[S1]](t) if [[S1]](t) 6= F,
[[S2]](t) otherwise.

and

Ψ(S1 ⊕ S2, t)
def=
{
Ψ(S1, t) if Ψ(S1, t) 6= ∅,
Ψ(S2, t) otherwise.

Since Ψ(S1, t) = ∅ iff Ψ(S1, t)(t) = F, we get

Ψ(S1 ⊕ S2, t)(t)
def=
{
Ψ(S1, t)(t) if Ψ(S1, t)(t) 6= F,
Ψ(S2, t)(t) otherwise.

From the induction hypothesis we have that [[Si]](t) = Ψ(Si, t)(t) for
i = 1, 2. Hence, [[S1 ⊕ S2]](t) = Ψ(S1 ⊕ S2, t)(t).
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2. If S is of the form

S = 〈[@p1.S1, . . . ,@pn.Sn,@q1.τ 1, . . . ,@qm.τm] |φ〉, n ≥ 1,m ≥ 0,

then let

f = η([[@pn.Sn]]) ◦ · · · ◦ η([[@p1.S1]]) and f ′ = [[@qm.τm]] ◦ · · · ◦ [[@q1.τ 1]]

On the one hand

[[S]](t) def=
{

(f ′ ◦ f)(t) if V(S, t) |= φ

F otherwise

=
{(
η([[@pn.Sn]]) ◦ · · · ◦ η([[@p1.S1]])

)
(t) if V(S, t) |= φ

F otherwise

On the other hand, let

L = [η(@p1.Ψ(S1, t|p1)), . . . , η(@pn.Ψ(Sn, t|pn
))],

and
L′ = [@q1.τ 1, . . . ,@qm.τm].

Thus

Ψ(S, t) def=
{
L t L′ if V(S, t) |= φ,

∅ otherwise.

Hence,

Ψ(S, t)(t) =
{

([[L′]] ◦ [[L]])(t) if V(S, t) |= φ,

F otherwise.

It remains to show that, for any term t in T ,

f(t) = [[L]](t) and f ′(t) = [[L′]](t).

But f ′ = [[L′]], and thus it remains to show that

∀i ∈ [n], [[@pi.Si]](t) = [[@pi.Ψ(Si, t|pi
)]](t). (10)

However,

[[@pi.Si]](t) =
{
t
[
[[Si]](t|pi

)
]
pi

if pi ∈ Pos(t)
F otherwise

and

[[@pi.Ψ(Si, t|pi
)]](t) =

{
t
[
Ψ(Si, t|pi

)(t|pi
)
]
pi

if pi ∈ Pos(t)
F otherwise

From the induction hypothesis we have [[Si]](t|pi
) = Ψ(Si, t|pi

)(t|pi
).

Therefore, the Eq. (10) holds.
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3. If S is of the form S = µX.S(X), then the claims follows from the fact
that

[[µX.S(X)]](t) = [[
⊕

i=1,δ(t)

Si(∅)]](t) and Ψ(µX.S(X), t) = Ψ(
⊕

i=1,δ(t)

Si(∅), t),

by applying the induction hypothesis, since

∆
( ⊕
i=1,δ(t)

Si(∅)
)
< ∆

(
µX.S(X)

)
,

because if∆
(⊕

i=1,δ(t) S
i(∅)

)
= (n,m), for some n,m ∈ N, then∆

(
µX.S(X)

)
=

(n+ 1,m′), for some m′ > m.

This ends the proof of Lemma 2. ut

Lemma 10 (i.e. Lemma 3). The function Ψ enjoys the following properties.

i.) For any elementary CE-strategies E,E′ in E, we have that

E = E′ iff Ψ(E, t) = Ψ(E′, t),

for any term t.
ii.) For any CE-strategies S, S′ in C, we have that

S ≡ S′ iff Ψ(S, t) = Ψ(S′, t),

for any term t.

Proof. We only prove Item ii.), the other item follows immediately from the
definition of Ψ . On the one hand, from the definition of ≡ we have that

S ≡ S′ iff [[S]](t) = [[S′]](t), ∀t ∈ T .

However, it follows from Lemma 2 that

[[S]](t) = Ψ(S, t)(t) and [[S′]](t) = Ψ(S′, t)(t).

Therefore,

Ψ(S, t)(t) = Ψ(S′, t)(t),∀t ∈ T .

Since, both Ψ(S, t) and Ψ(S′, t) are elementary CE-strategies, it follows from
Item i.) of this Lemma that Ψ(S, t) = Ψ(S′, t).
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9 Proofs for section 5

9.1 Correctness and Completeness of the unification and
combination of CE-strategies.

Theorem 4 (i.e. Theorem 1). For every term t ∈ T , for every CE-strategies
S and S′ in the canonical form in Co, we have that

Ψ(S f S′, t) = Ψ(S, t)f Ψ(S′, t)

Proof. The proof is by a double induction on ∆(S) and ∆(S′). We recall that if
there are two symmetric cases, we only prove one of them. We make an induction
on ∆(S).

Base case: ∆(S) = (0, 0). We make an induction on ∆(S′).
Base case: ∆(S′) = (0, 0). We distinguish three cases depending on the

structure of S and S′.
1. The cases when (S, S′) = (∅,∅) or (S, S′) = (@i.τ ,@j.τ ′) are trivial

whether i = j or not.

2. If (S, S′) =
(
@i.τ , (u, τ ′)

)
, where i ∈ Nε \ {ε}, then in this case

S f S′ = (u, [@i.τ ,@ε.τ ′]) and

Ψ(S f S′, t) =
{

[@i.τ ,@ε.τ ′] if u� t

∅ otherwise.

On the other hand,

Ψ(S, t) =
{

@ε.τ if u� t

∅ otherwise.
and Ψ(S′, t) = @i.τ ′

Hence

Ψ(S, t)f Ψ(S′, t) =
{

[@i.τ ,@ε.τ ′] if u� t

∅ otherwise.

= Ψ(S, t)f Ψ(S′, t)

3. If S = @ε.τ and S′ = (u, τ ′), then this case is similar to the previous
one except that the insertion of the tuples of the contexts τ and τ ′
occurs at the root position instead of two different positions. We
have that

S f S′ = (u, τ ′ · τ ) and Ψ(S f S′, t) =
{

@ε.(τ ′ · τ ) if u� t

∅ otherwise.
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On the other hand,

Ψ(S, t) =
{

@ε.τ if u� t

∅ otherwise.
and Ψ(S′, t) = @ε.τ ′

Hence

Ψ(S, t)f Ψ(S′, t) =
{

@ε.(τ ′ · τ ) if u� t

∅ otherwise.

= Ψ(S, t)f Ψ(S′, t)

Induction step: ∆(S′) > (0, 0). We distinguish six cases depending on the
structure of S and S′.
1. If S = (@i, τ ) and S′ = (u′, R′), where i ∈ Nε, then in this case

S f S′ =
(
u′, (@i.τ )fR′

)
,

and

Ψ(S f S′, t) =
{
Ψ
(
(@i.τ )fR′, t

)
if u′ � t,

∅ otherwise.

Since ∆(R′) < ∆(S′), it follows from the induction hypothesis that

Ψ(S f S′, t) =
{
Ψ(@i.τ , t)f Ψ(R′, t

)
if u′ � t

∅ otherwise.

=
{

@i.τ f Ψ(R′, t
)

if u′ � t and i ∈ Pos(t)
∅ otherwise.

On the other hand,

Ψ(S, t) =
{

@i.τ if i ∈ Pos(t)
∅ otherwise.

and Ψ(S′, t) =
{
Ψ(R′, t) if u′ � t

∅ otherwise

Hence the unification Ψ(S, t)f Ψ(S′, t) is defined by

Ψ(S, t)f Ψ(S′, t) =
{

@i.τ f Ψ(R′, t) if Ψ(R′, t
)
and u′ � t

∅ otherwise

= Ψ(S, t)f Ψ(S′, t).

2. If S = (@i, τ ) and S′ = 〈
⊔
j∈J @j.Sj |φ〉, where i ∈ Nε, then we only

discuss the case when i ∈ J , the case when i /∈ I is immediate. In
this case, let

S =
⊔

j∈J\{i}

@j.Sj t (@i.τ f@i.Si)
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and

S f S′ =
〈
S |φ

〉
, and

Ψ(S f S′, t) =
{⊔

j∈J\{i}@j.Ψ
(
Sj , t|j

)
t Ψ

(
(@i.τ f@i.Si), t|i

)
if V(S, t) |= φ,

∅ otherwise

=
{⊔

j∈J\{i}@j.Ψ
(
Sj , t|j

)
t
(
Ψ
(
@i.τ , t|i)f Ψ(@i.Si, t|i)

)
if V(S, t) |= φ,

∅ otherwise

Since ∆(Si) < ∆(S′, t), it follows from the induction hypothesis that

Ψ(S f S′, t) =
{⊔

j∈J\{i}@j.Ψ
(
Sj , t|j

)
t
(
@i.τ f Ψ(@i.Si, t|i)

)
if V(S, t) |= φ,

∅ otherwise

On the other hand,

Ψ(S, t) =
{

@i.τ if i ∈ Pos(t),
∅ otherwise

and Ψ(S′, t) =
{⊔

j∈J @j.Ψ
(
Sj , t|j

)
if V(S, t) |= φ,

∅ otherwise

and since i ∈ J , the unification of Ψ(S, t) and Ψ(S′, t) is

Ψ(S, t)f Ψ(S′, t) ={⊔
j∈J\{i}@j.Ψ

(
Sj , t|j

)
t (@i.τ f@i.Ψ

(
Si, t|i)) if i ∈ Pos(t) and V(S, t) |= φ,

∅ otherwise

Since φ is a conjunction of position-variables, and i ∈ J , which means
i ∈ Var(S), then

V(S, t) |= φ iff i ∈ Pos(t) and V(S, t) |= φ.

That leads to Ψ(S f S′, t) = Ψ(S, t)f Ψ(S′, t).

3. If S = (@i.τ ) and S′ = µZ.R(Z), where i ∈ Nε, then in this case

S f S′ = S′′
(
µZ.R(Z)

)
, where S′′(Z) = (@i.τ )fR(Z), and

Ψ(S f S′, t) = Ψ(S′′(µZ.R(Z)), t)

= Ψ
(
S′′
( ⊕
i=1,δ(t)

Ri(∅)
)
, t
)

= Ψ
(

(@i.τ )fR
( ⊕
i=1,δ(t)

Ri(∅)
)
, t
)

= Ψ
(

(@i.τ )f
⊕

i=1,δ(t)

Ri+1(∅)
)
, t
)

= Ψ
(

(@i.τ )f
⊕

i=1,δ(t)

Ri(∅)
)
, t
)
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If we assume that ∆
(⊕

i=1,δ(t) R
i(∅)

)
= (n,m), for some n,m ∈

N, then ∆
(
µZ.R(Z)

)
= (n + 1,m′), for some m′ ∈ N. Meaning

that ∆
(⊕

i=1,δ(t) R
i(∅)

)
< ∆

(
µZ.R(Z)

)
. Thus it follows from the

induction hypothesis that

Ψ(S f S′, t) = Ψ((@i.τ ), t)f Ψ
( ⊕
i=1,δ(t)

Ri(∅), t
)

On the hand,

Ψ(S′, t) = Ψ(µZ.R, t)

= Ψ
( ⊕
i=1,δ(t)

Ri(∅), t
)

Hence,

Ψ(S f S′, t) = Ψ(S, t)f Ψ(S′, t).

4. If S = (u, τ ) and S′ = (u′, R′), then in this case

S f S′ = (u ∧ u′, (@ε.τ )f S′)
and

Ψ(S f S′, t) =
{
Ψ
(
(@ε.τ )f S′, t

)
if (u ∧ u′)� t

∅, otherwise.

=
{
Ψ(@ε.τ , t)f Ψ(S′, t) if (u ∧ u′)� t

∅, otherwise.

On the other hand,

Ψ(S, t) =
{

@ε.τ if u� t

∅ otherwise
and Ψ(S′, t) =

{
Ψ(S′, t) if u′ � t

∅, otherwise.

Since

(u ∧ u′)� t iff u� t and u′ � t (Lemma 4)

We get

Ψ(S f S′, t) = Ψ(S, t)f Ψ(S′, t).
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5. If S = (u, τ ) and S′ = 〈
⊔
i∈I @i.S′i |φ′〉, then we only prove the case

when I ⊂ Nε \ {ε}, the case when ε ∈ I is similar. We have that

S f S′ =
(
u, 〈
⊔
i∈I

@i.S′i t (@ε.τ ) |φ′〉
)
, and

Ψ(S f S′, t) =
{
Ψ
(
〈
⊔
i∈I @i.S′i t (@ε.τ ) |φ′〉, t

)
if u� t

∅, otherwise

=
{⊔

i∈I @i.Ψ(S′i, t|i) t (@ε.τ ) if u� t and V(
⊔
i∈I @i.Ψ(S′i), t) |= φ′

∅, otherwise

= Ψ(S, t)f Ψ(S′, t).

6. If S = (u, τ ) and S′ = µZ.R(Z), then this case is similar to the case
where S = @i.τ discussed before.

Induction step: ∆(S) > (0, 0). We make an induction on ∆(S′).
Base case: ∆(S′) = (0, 0). This case is symmetric to the case where∆(S) =

(0, 0) and ∆(S′) > (0, 0) discussed before.

Induction step: ∆(S′) > (0, 0). We distinguish four cases.
1. If S = (u,R) and S′ = (u′, R′), then in this case

S f S′ = (u ∧ u′, R fR′) and Ψ(S f S′, t) =
{
Ψ(R fR′, t) if (u ∧ u′)� t

∅ otherwise

Since

(u ∧ u′)� t iff u� t and u′ � t (Lemma 4)

and since ∆(R) < ∆(S) and ∆(R′) < ∆(S′), it follows from the
induction hypothesis that

Ψ(S f S′, t) =
{
Ψ(R, t)f Ψ(R′, t) if u� t and u′ � t

∅ otherwise

On the other hand,

Ψ(S, t) =
{
Ψ(R, t) if u� t

∅ otherwise
and Ψ(S′, t) =

{
Ψ(R′, t) if u′ � t

∅ otherwise

Therefore Ψ(S, t)f Ψ(S′, t) = Ψ(S f S′, t).

2. If S and S′ are lists of position delimiters of the form

S = 〈
⊔
i∈I

@i.Si |φ〉 and S′ = 〈
⊔
j∈J

@j.S′j |φ′〉
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where I,J ⊂ Nε, then let

S =
⊔
i∈I

@i.Si and S′ =
⊔
j∈J

@j.S′j

On the one hand we have that

Ψ(S, t) =
{⊔

i∈I @i.η
(
Ψ(Si, ti)

)
if V(S, t) |= φ

∅ otherwise,

and

Ψ(S′, t) =
{⊔

j∈J @j.η
(
Ψ(S′j , tj)

)
if V(S′, t) |= φ′

∅ otherwise.

Hence, the unification Ψ(S, t)f Ψ(S′, t) is defined by

Ψ(S, t)f Ψ(S′, t) ={⊔
i∈I @i.η

(
Ψ(Si, ti)

)
f
⊔
j∈J @j.η

(
Ψ(S′j , t|j)

)
if V(S, t) |= φ and V(S′, t) |= φ′

∅ otherwise.

On the other hand, let

S′′ =
⊔

i∈I∩J
@i.(Si f S′i) t

⊔
i∈I\J

@i.Si t
⊔

i∈J\I

@i.S′i

and thus the combination S f S′ is defined by

S f S′
def=
〈
S′′ |φ ∧ φ′

〉
.

To simplify the presentation, let

S̃′′ =
⊔

i∈I∩J
@i.η

(
Ψ((Si f S′i), t)

)
t
⊔

i∈I\J

@i.η
(
Ψ(Si, t)

)
t
⊔

i∈J\I

@i.η(Ψ(S′i, t)).

Thus Ψ(S f S′, t) can be written as

Ψ(S f S′, t) =
{
S̃′′ if S′′ |= φ ∧ φ′

∅ otherwise.

3. 〈
⊔
i∈I

@i.Si |φ〉f (u′, S′) =
(
u′, 〈

⊔
i∈I

@i.Si |φf S′〉
)

4. If S = µX.S(X) and S′ = µX ′.S′(X ′), then we have

(µX.S(X))f (µX ′.S′(X ′)) def= µZ.S′′(µX.S(X), µX ′.S′(X ′), Z)

where S′′(X,X ′, X fX ′) def= S(X)f S′(X ′).
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Let t ∈ T and let n = δ(t). To show that

Ψ
(
µX.S(X), t

)
f Ψ

(
µX ′.S′(X ′), t

)
= Ψ

(
µZ.S′′(µX.S(X), µX ′.S′(X ′), Z), t

)
it is sufficient to show that⊕

i∈[n]

S̃i(∅) =
⊕
i∈[n]

⊕
i∈[n]

Si(∅)f S′i(∅) (11)

We have that for all i ≥ 1,

Si(∅)f S′i(∅) def= S(Si−1(∅))f S′(S′i−1(∅))
def= S′′

(
Si−1(∅), S′i−1(∅), Si−1(∅)f S′i−1(∅)

)
def= S̃i(∅)

hence,

[[µX.S(X)]]f [[µX ′.S′(X ′)]] def=
( ⊕
i∈[n]

Si(∅)
)
f
( ⊕
i∈[n]

S′i(∅)
)

= S′′
( ⊕
i∈[n−1]

Si(∅),
⊕

i∈[n−1]

S′i(∅),
⊕

i∈[n−1]

Si(∅)f
⊕

i∈[n−1]

S′i(∅)
)

=
⊕
i∈[n]

S̃i(∅)

= [[µX.S(X)f µX ′.S′(X ′)]]

Hence,

Ψ
(
µX.S(X)f µX ′.S′(X ′), t

)
= Ψ

(( ⊕
i∈[n]

Si(∅)
)
f
( ⊕
i∈[n]

S′i(∅)
)
, t
)

= Ψ
( ⊕
i∈[n]

Si(∅), t
)
f Ψ

( ⊕
i∈[n]

S′i(∅), t
)

= Ψ(µX.S(X), t)f Ψ(µX ′.S′(X ′), t)

5. The cases of (µX.S(X))f S′ and S f µX ′.S′(X ′) are similar to the
previous one.

6. If S = S1 ⊕ S2 then we recall that

Ψ(S1 ⊕ S2, t) ≡ Ψ(S1, t)⊕ Ψ(S2, t),

and

Ψ(S f S′, t) def= Ψ
(
(S1 f S

′)⊕ (S2 f S
′), t
)

= Ψ(S1 f S
′, t)⊕ Ψ(S2 f S

′, t).
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Hence,

Ψ(S, t)f Ψ(S′, t) =
(
Ψ(S1, t)⊕ Ψ(S2, t)

)
f Ψ(S′, t)

=
(
Ψ(S1, t)f Ψ(S′, t)

)
⊕
(
Ψ(S2, t)f Ψ(S′, t)

)
.

Since ∆(Si) < ∆(S), for i = 1, 2, it follows from the induction hy-
pothesis that

Ψ(S, t)f Ψ(S′, t) = Ψ(S1 f S
′, t)⊕ Ψ(S2 f S

′, t)
= Ψ(S f S′, t).

This ends the proof of Theorem 4. ut

Theorem 5 (i.e. Theorem 2). For every term t ∈ T , for every CE-strategies
S and S′ in the canonical form in Co, we have that

Ψ(S g S′, t) = Ψ(S, t)g Ψ(S′, t). (12)

Proof.

Ψ(S g S′, t) = Ψ
(
(S f S′)⊕ S ⊕ S′, t

)
(Def. 13 of g)

= Ψ(S f S′, t)⊕ Ψ(S, t)⊕ Ψ(S′, t) (Def. 11 of Ψ)
= (Ψ(S, t)f Ψ(S′, t))⊕ Ψ(S, t)⊕ Ψ(S′, t) (Theorem 1)
= Ψ(S, t)g Ψ(S′, t) (Def. 13 of g)

Proposition 3 (i.e. Proposition 2). The following hold.

1. The set C of CE-strategies together with the unification and combination
operations enjoy the following properties.
(a) The neutral element of the unification and combination is @ε.�.
(b) Every CE-strategy S is idempotent for the unification and combination,

i.e. S f S = S and S g S = S.
(c) The unification and combination of CE-strategies are associative.

2. The unification and combination of CE-strategies is non commutative.
3. For any CE-strategies S and S′ in C, and for any term t in T , we have that

Ψ(S f S′, t) = ∅ iff Ψ(S, t) = ∅ or Ψ(S′, t) = ∅.
Ψ(S g S′, t) = ∅ iff Ψ(S, t) = ∅ and Ψ(S′, t) = ∅.

4. The unification and combination of CE-strategies is a congruence, that is,
for any CE-strategies S1, S2, S in C, we have that:

If S1 ≡ S2 then S1 f S ≡ S2 f S and S f S1 ≡ S f S2.

If S1 ≡ S2 then S1 g S ≡ S2 g S and S g S1 ≡ S g S2.

Proof. We only prove the last Item. To prove the associativity of the both unifi-
cation and combination for CE-strategies we rely on the associativity of the uni-
fication and combination of elementary CE-strategies (Proposition 1) together
with the property of the function Ψ (Theorems 1 and 2).
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Let S1, S2 and S3 be CE-strategies in C. It follows from Item iii.) of Lemma
3 that in order to prove that

S1 g (S2 g S3) ≡ (S1 g S2)g S3,

it suffices to prove that, for any term t ∈ T , we have that

Ψ
(
S1 g (S2 g S3), t

)
= Ψ

(
(S1 g S2)g S3, t

)
.

But this follows from an easy computation:

Ψ
(
S1 g (S2 g S3), t

)
= Ψ(S1, t)g Ψ(S2 g S3, t) (Theorem 2)
= Ψ(S1, t)g (Ψ(S2, t)g Ψ(S3, t)) (Theorem 2)
= (Ψ(S1, t)g Ψ(S2, t))g Ψ(S3, t) (Proposition 1)
= Ψ(S1 g S2, t)g Ψ(S3, t) (Theorem 2)
= Ψ

(
(S1 g (S2 g S3), t

)
(Theorem 2)

On the one hand, if follows from Theorem 2 that

Ψ(S1 f S, t) = Ψ(S1, t)f Ψ(S, t).

On the other hand, since S1 ≡ S2, it follows from Item iii.) of Lemma 3 that

Ψ(S1, t) = Ψ(S2, t).

Hence we get

Ψ(S1 f S, t) = Ψ(S2, t)f Ψ(S, t)
= Ψ(S2 f S, t) (Theorem 2)

Again, from Item iii.) of Lemma 3, we get

S1 f S ≡ S2 f S.

The proof of the remaining claims is similar.
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