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ABSTRACT. In this paper we consider a predator-prey model given by a reaction-diffusion system.
It incorporates the Holling-type-Il and a modibed Leslie-Gower functional response. We focus on
qualitaive analysis, bifurcation mecanisms and patterns formation.

RESUME. Nous considZrons un modsle proie-prZdateur exprimZ sous forme de systme de rZaction-
diffusion. En absence de diffusion, le systeme ZtudiZ est de type Holling-type-II et la rZponse fonc-
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IGanalyse qualitative des solutions , IO6Ztude des bifurcations et la formation de motifs spatio-temporels.
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1. Introduction

The dynamical relationships between species and their complex properties are at the
heart of many important ecological and biological processes. Predator-prey dynamics are
well-studied in the process of control and conservation of some ecosystems. We assume
that only basic qualitative features of the system are known, namely the invasion of a prey
population by predators. The local dynamics has been studied in [4, 8]. This model incor-
porates the Holling-type-ll and a modi ed Leslie-Gower functional responses. Without
diffusion it reads as,

dH _ ~ ~ Cj_P

dT = aaShH S H+ Kk

dp P .
_ = @

dar 25 ik,

with,
H@©O) 0,P@0) O

H and P represent the population densities at time;Ta;, by, k1, r2, a2, andk, are
model parameters assuming only positive valuges.is the growth rate of preyd. a,
describes the growth rate of predatBrsb; measures the strength of competition among
individuals of specie$l. c; is the maximum value of thper capita reduction ofH

due toP. ¢, has a similar meaning to,. k; measures the extent to which environment
provides protection to preM . k, has a similar meaning teo; relatively to the predator

P.

The historical origin and applicability of this model is discussed in details in [4, 8, 15, 16,
6]. The corresponding PDE version has been rst done and partially studied in [9].

This paper is organized as follows. In Section 2, we prove the global existence of so-
lutions, we also study the stability of the positive steady states. We investigate complex
pattern formation and spatiotemporal Chaos emergence.

2. Global existence of solutions

The mathematical model we consider here consists of reaction-diffusion equations
which express conservation of predator and prey densities. It has the following form,

H - - Cj_P
= D; H+ H
T 1 apSh SH+k1
(2)
P < GP
= +
T D, P ast+k2 P

H = H(T,X) andP = P(T, X) are the densities of preys and predators, respectively.
is the laplacian operata ; andD, are the diffusion coef cients of prey and predator
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respectively.
To investigate problem (2), we introduce the following scaling tranformations,

_ _ a1 a1 _ b _ Cb
t=aT, x= X(Dl) , Y= Y(Dl) , u(t) = alH(T), v(t) = alaZP(T)

aC a ik ik D>
a= , b= , € = , = , =
a;Cp ai 1 a; € M D,
We obtain the following equations, for the local model,
E ~ ~ E
9l B 1588 %2 S fELE)
dt Ei+ e (3)
dE2 _  pg, 18 B2 - (E1,E>)
dat - 2 E,ve g(E1, E2
and the following system for the spatio-temporal equations :
u(tx)  _ u+ru 18us Y = u+f@uv), x ,t>0
t u+e
v (t,x) ~ vV )
' = v+bv 1S = v+g(uv), x , t>0
t u+ e

We consider the Neumann boundary conditions given by,
u = v =0
u(0,x) = ug(x), Vv(0,x) = vo(x), X R", n=1,23.

Here, is a bounded domain, the initial daig andvg, are non-negative functions.

u % . -
and  are respectively the normal derivativesuodndv on

2.1. Global existence

By standard existence theory, e.g. see [1], [3], and [2], it is not dif cult to establish
the local existence of the unique soluti¢m(.,t),v(.,t)) of (4) forO = t < T max,
whereTnax is determined byig(x) andvp(x). Now we establish the global existence by
proving that for any nite timeT, u(.,t) | , v(.,t) . areboundedfod t<T.

Theorem 1 For any smooth nonnegative functiamg(x) andvg(x), such that,
uo(x) 1

5, (1+ D71+ e) ©)
4 4b '
system (4) has a unique smooth global solutiort fer0.

max (Ug(x) + Vo(X))

Proof. First, itis easily seenthafx,t) Oandv(x,t) 0since(0, 0)is a sub-solution
of each equation of (4). We have
u (t,x)

. u+ u(Su)

! 0.t>0 (6)

u(x, 0) = up(x) Upr  Maxup(x).
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u is the normal derivative af on
By the comparison principle, we hau¢x,t) ui(t) 1,
Uo1 . . .
where,uq(t) = - «. is the solution of the initial value problem:
l( ) Upr + (1 S u01)e5t b

dUl

ui(1 S ui) )

dt
u1(0) upp 1

From the second equation of system (4) we have

Vi vibv 18 VY ,
t u+ e
By the comparison principle, we deduce that
\% dE2
t dt

whereE is the solution of the second equation of system (3) satistyin®) = max vp(X).
Thus by comparison principle and from [4, 8],

\ dEz + dEl
t dt dt -’
Letus denote by = E, + Eq,
Y, d
t dt

From [4, 8] we have,
2
d 5, (1+b*(1+e)
dt 4 4b

2
Since (0) §+ ® 8" ) and by Gronwall lemma we obtain,

5, (1+D2(1+ e)
4 4b

Thus,
5, (1+ b1+ e)
4 4b '
The proof is complete.

Theorem 2 The domain given by

, 1+ b1+ . - L .
@A [0,1] x O, i + ( b)4E) €2) is a positively invariant region for the

global solutions of system (4).

(i) The solutions of problem (4), which initial conditions are " x R* converge
towardsA.



Proof. For any initial conditiof(ug(x), vo(Xx)) of system (4) we have by comparison
principle,

u Ei, v Ejz with E1(0) = max ug(x) andE,(0) = max vp(x)
and from ([4, 8]) we have
tI|[rn Ei(t) 1,

5, (L+ b1+ e)

Jim B+ Eo) i

This completes the proof

2.2. Stability of steady states

The steady statdsi(x), v(x)) of system (4) satisfy,

u+tu 15us =0, X
u-+ e
viby 18 VY =0, x (8)
u+ e
u_v_,

From analysis above and from [4, 9, 8], it is easily seen that system (8) has the following
nonnegative solutions:

So =(0,0)
S;=(1,0)
S2=(0,e) 9)
S3=(u,v ), where(u ,v ) isthe positive solution of the system
1508 & =0
u +e
s Vo=
u + e

Ss = (u(x),v(x)) , whereu(x) andv(x) are two positive functions

In this section, we are going to investigate the linear stability of the above equilibrium so-
lutionsS; of system (8) whose existence has been proved in last section. It is well-known
(see [11]) that the stability question 8 is answered by considering the corresponding
eigenvalue problem for the linearized operator aro8ndLet us substitute

(u(x,t),v(x,t)) = S + W(x,t) = S + (wy(x,t),wz(x,t)) into system (4) and then
pick up all the terms which are linear W :

vtv =D W+ L(S)W, (10)

where
D = diag(1, ),



1S2us p2v, S

L(u,v) = bvz(u+ er)? béu+2%1v . (11)
(u+ez)? u+ ey

Proposition 1 Sp = (0, 0) is unstable.

Proof. From equation (10), the linearized system of equation (4) arBynid

W1

¢ = w1 + Wq, X
W
t2 = Wa + bws, X (12)
W 1 W o
| = | =0.

Now we study the following eigenvalue problem :

Wy + Wy = Wi, X
Wy + bw = wy, X (13)
Wi W2

| = | =0.

To prove Proposition 1, we need to prove that the largest eigenvalue of system (13) is
positive. Let be an eigenvalue of system (13) with eigenfuncijon,w,). If w;

0, then is an eigenvalue of+ 1 with homogeneous Neumann boundary condition.
Therefore, must be real. Similarly, ifv, 0, is also real. Hence all eigenvalues

of system (13) are real. Let; be the largest eigenvalue of system (13). The principal
eigenvalue ; of

W]_ + W]_ = w 1, X
14
W1 | - 0 (14)
is positive and the associated eigenfunction> 0. We claim that ; is also an eigen-
value of system (13). In fact, we take, 0 then(wz, wz) = (\wy, 0) satis es system
(13) with = 3. So 1 > 0is an eigenvalue of system (13). Therefore we must have
1 1 > 0. HenceSy is unstable.

Proposition 2 S; = (1, 0) is unstable.

Proof.
From (10), the linearized system of (4) arouddis

w . N
tl = Wlswlslﬁelwz, X
w
tz = Wo + bwe, X (15)
W 1 )
| = | =0

Now we study the following eigenvalue problem:

- ~ a
W1 Sw; S W = Wiq, X
1 1 1+e1 2 1
w2 + bw, = Wy X (16)
W W2

| = | =0



We need to prove that the largest eigenvalue of system (16) is positive. First, same as in
Proposition 1, all eigenvalues of system (16) are real. Ldbe the largest eigenvalue of
system (16). Sincb > 0, the principal eigenvalue; of

w2+ bw, = wj, X
w 17

2| = o )
is positive and the associated eigenfunction > 0. Let us prove that ; is also an
eigenvalue of system (16). In fact, we take to be the solution of linear problem

wi S L+ 1wy a Wa, X
1 + e]_ (18)
W1
| =0
then(wy, w,) = (wy, W,) is a solution of problem (16) with = ;. So ; > Oisan

eigenvalue of problem (16). Therefore we must haye ; > 0. HenceS; is unstable.

Proposition 3
If e > ae; thenS, = (0, e,) is unstable. Ie; < ae; thenS, = (0, &) is stable.

Proof.
From equation (10), the linearized system of equation (4) ar&nid

e w s %P, x
t e
V\tlzz wo + bwy S bw,, X (19)
W 1 W o
| = | =0

Now we study the following eigenvalue problem :

. a
wit (@8 2w = wa, x

C1l
wo + bwg S bw, = wp, X (20)

w w
1|: 2|:O

We need to prove that the largest eigenvalue of system (20) is posityesifae,. First,

same as before, all eigenvalues of problem (20) are real. { be the largest eigenvalue
of problem (20). Since; > ae», the principal eigenvalue; of

~ a
wy+(1S eez)W1= Wi, X

! (21)
W 1 | -0

is positive and the associated eigenfunction > 0. Let us prove that ; is also an
eigenvalue of problem (20). In fact, we take > 0 to be the solution of linear problem

ws S (b+ 1)ws = Sbwy, x

W2I -0 (22)



then(wy, w,) = (w1, W,) satis es problem (20) with = ;. So ; > 0is an eigenvalue

of problem (20). Therefore we musthave ;1 > 0. HenceS; is unstable.

Let (wy, W) be the principal eigenfunction of problem (20) corresponding to the largest

eigenvalue ;. If w; 0, then 1 is also an eigenvalue of problem (21). Then we must

have ; < 0if e; < ae, because, in this case, the largest eigenvalue of problem (21) is
1=18 %2 <0

If w; 0O, thenwe havev, 0. Therefore ; is an eigenvalue of

W Sbw = wy, X

W2I -0 (23)

Obviously the largest eigenvalue oj problem (238ib < 0. Therefore we also have
1 < 0. Thus we know thatif ; =1 S 52 < 0, thenS; = (0, &) is stable.

Proposition 4 Assume thaa ; and0 < e; < e; with
e =S(a+1)+ (a+1)2+2a(l+2a)S 1
Then(u ,v ) is stable.

Proof. Let j denote thg -th eigenfunction oS on with homogenous Neumann
boundary condition. That is,

é i= 0 in

j =0, on (24)
for scalar j satisfying0= o< 1< »..
From (10), the linearized system of (4) aroynod, v ) is

vtv =D W+ W, (25)
whereD = diag1, ), and

& & e(lSu) &
_ A B _ 1S S +:1 Suf‘ﬁel . (26)
Q R b Shb

We expand the solutioi/ of (25) via

W= z(t) (), (27)

j=0

where eaclz; ()  R2. Substituting (27) into (25) and equating the coef cients of each
i » we have
dz
at = G
whereC; is the matrix
Cj = é jD.



Now the solution(u ,v ) is stable if and only if eaclz; (t) decays to zero. This is
equivalent to the condition that eaCh has two eigenvalues with negative real parts. The
eigenvalues 1 » of C; are determined by

S [A+RS 1+ )+ 7 S j(R+ A)+ ARSBQ=0.

Therefore the fact that ea€) has two eigenvalues with negative real parts is guaranteed
by
A+RS j(1+ )<0 (28)
and
28 |(R+ A)+ ARSBQ> 0. (29)

We haveR = Sb < 0. Therefore, observing that OandB < 0, (28) and (29) hold
if

A 0, andQ> 0.
Therefore to havéd 0, we need

2u S1+e O

1 . - . <
Let usrecall thaty = 5 1SaSe + 2 ,Where = ( a+ e181)284(ae28e1).

Consequently, we need thb aSe; + :S1+e 0
Thus,

(a+ e S1)2S4(@eSe)Sa? a
e+(a+2)e S2a(l+2e)+1 0.

This is true from the assumptions of the proposition, helaice 0. ObviouslyQ > 0,
and this completes the proof.

3. Complex pattern formation and spatiotemporal chaos

3.1. Local bifurcation in a one dimensional space

In this section, we present our numerical results in one dimensional space. We suppose
that the two species diffuse on a line, R.
At boundaries we use the zero- ux condition. Let us consider the two following intial
conditions :

u(0,x) = up forLyy <x<L 2, otherwiseu(0,x) =0
v(0,x) = vp forLy, <x<L 5, otherwisev(0,x) =0 (30)

The initial domain, where the prey moves, is larger than that of the predator for making,
during the simulation, the impact of the boundaries as small as possible. Thus, we assume,

O<Lgiyz Liyv<La La<L
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