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ABSTRACT. In this paper we consider a predator-prey model given by a reaction-diffusion system.
It incorporates the Holling-type-II and a modiÞed Leslie-Gower functional response. We focus on
qualitaive analysis, bifurcation mecanisms and patterns formation.

RÉSUMÉ. Nous considŽrons un mod•le proie-prŽdateur exprimŽ sous forme de syst•me de rŽaction-
diffusion. En absence de diffusion, le syst•me ŽtudiŽ est de type Holling-type-II et la rŽponse fonc-
tionnelle une forme modiÞŽe du terme de Leslie-Gower. Dans cet article, nous nous intŽressons ˆ
lÕanalyse qualitative des solutions , lÕŽtude des bifurcations et la formation de motifs spatio-temporels.
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1. Introduction

The dynamical relationships between species and their complex properties are at the
heart of many important ecological and biological processes. Predator-prey dynamics are
well-studied in the process of control and conservation of some ecosystems. We assume
that only basic qualitative features of the system are known, namely the invasion of a prey
population by predators. The local dynamics has been studied in [4, 8]. This model incor-
porates the Holling-type-II and a modi�ed Leslie-Gower functional responses. Without
diffusion it reads as,

�
�����

�����

dH
dT

=
�

a1 Š b1H Š
c1P

H + k1

�
H

dP
dT

=
�

a2 Š
c2P

H + k2

�
P

(1)

with,

H (0) � 0 , P(0) � 0.

H and P represent the population densities at time T.r 1, a1, b1, k1, r 2, a2, andk2 are
model parameters assuming only positive values.a1 is the growth rate of preysH . a2

describes the growth rate of predatorsP. b1 measures the strength of competition among
individuals of speciesH . c1 is the maximum value of theper capita reduction ofH
due toP. c2 has a similar meaning toc1. k1 measures the extent to which environment
provides protection to preyH . k2 has a similar meaning tok1 relatively to the predator
P.
The historical origin and applicability of this model is discussed in details in [4, 8, 15, 16,
6]. The corresponding PDE version has been �rst done and partially studied in [9].
This paper is organized as follows. In Section 2, we prove the global existence of so-
lutions, we also study the stability of the positive steady states. We investigate complex
pattern formation and spatiotemporal Chaos emergence.

2. Global existence of solutions

The mathematical model we consider here consists of reaction-diffusion equations
which express conservation of predator and prey densities. It has the following form,

�
�����

�����

�H
�T

= D1� H +
�

a1 Š b1H Š
c1P

H + k1

�
H

�P
�T

= D2� P +
�

a2 Š
c2P

H + k2

�
P

(2)

H = H (T, X ) andP = P(T, X ) are the densities of preys and predators, respectively.
� is the laplacian operator.D 1 andD 2 are the diffusion coef�cients of prey and predator
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respectively.
To investigate problem (2), we introduce the following scaling tranformations,

t = a1T, x = X (
a1

D1
)

1
2 , y = Y (

a1

D1
)

1
2 , u(t) =

b1

a1
H (T), v(t) =

c2b1

a1a2
P(T)

a =
a2c1

a1c2
, b =

a2

a1
, e1 =

b1k1

a1
, e2 =

b1k2

r1
, � =

D2

D1

We obtain the following equations, for the local model,
�
���

���

dE1

dt
= E1

�
1 Š E1 Š

aE2

E1 + e1

�
= f (E1, E2)

dE2

dt
= bE2

�
1 Š

E2

E1 + e2

�
= g(E1, E2)

(3)

and the following system for the spatio-temporal equations :
�
���

���

�u (t, x )
�t

= � u + u
�

1 Š u Š
av

u + e1

�
= � u + f (u, v) , x � � , t > 0

�v (t, x )
�t

= � � v + bv
�

1 Š
v

u + e2

�
= � � v + g(u, v) , x � � , t > 0

(4)

We consider the Neumann boundary conditions given by,

�u
��

=
�v
��

= 0

u(0, x) = u0(x), v(0, x) = v0(x), x � � � Rn , n = 1 , 2, 3.

Here,� is a bounded domain, the initial datau0 andv0, are non-negative functions.
�u
��

and
�v
��

are respectively the normal derivatives ofu andv on � � .

2.1. Global existence

By standard existence theory, e.g. see [1], [3], and [2], it is not dif�cult to establish
the local existence of the unique solution(u(., t) , v(., t)) of (4) for 0 = t < T max ,
whereTmax is determined byu0(x) andv0(x). Now we establish the global existence by
proving that for any �nite timeT, � u(., t) � L � , � v(., t) � L � are bounded for0 � t < T .

Theorem 1 For any smooth nonnegative functionsu 0(x) andv0(x), such that,
�
��

��

u0(x) � 1

max
�̄

(u0(x) + v0(x)) �
5
4

+
(1 + b)2(1 + e2)

4b
,

(5)

system (4) has a unique smooth global solution fort > 0.

Proof. First, it is easily seen thatu(x, t ) � 0 andv(x, t ) � 0 since(0, 0) is a sub-solution
of each equation of (4). We have

�
������

������

�u (t, x )
�t

� � u + u (1 Š u)

�u
��

= 0 , t > 0

u(x, 0) = u0(x) � u01 � max
�̄

u0(x).

(6)
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�u
��

is the normal derivative ofu on� � .

By the comparison principle, we haveu(x, t ) � u1(t) � 1,

where,u1(t) =
u01

u01 + (1 Š u01)eŠ t is the solution of the initial value problem:

� du1

dt
= u1(1 Š u1)

u1(0) = u01 � 1
(7)

From the second equation of system (4) we have

�v
�t

= � � v + bv
�

1 Š
v

u + e2

�
,

By the comparison principle, we deduce that

�v
�t

�
dE2

dt

whereE2 is the solution of the second equation of system (3) satisfyingE 2(0) = max
�̄

v0(x).

Thus by comparison principle and from [4, 8],

�v
�t

�
dE2

dt
+

dE1

dt
.

Let us denote by� = E2 + E1,
�v
�t

�
d�
dt

From [4, 8] we have,
d�
dt

�
5
4

+
(1 + b)2(1 + e2)

4b
Š �

Since� (0) � 5
4 + (1+ b)2 (1+ e2 )

4b and by Gronwall lemma we obtain,

� �
5
4

+
(1 + b)2(1 + e2)

4b

Thus,

v �
5
4

+
(1 + b)2(1 + e2)

4b
.

The proof is complete.

Theorem 2 The domain given by

(i) A � [0, 1] ×
	
0,

5
4

+
(1 + b)2(1 + e2)

4b



is a positively invariant region for the

global solutions of system (4).

(ii) The solutions of problem (4), which initial conditions are inR+ × R+ converge
towardsA.



Proof. For any initial condition(u0(x), v0(x)) of system (4) we have by comparison
principle,

u � E1, v � E2, with E1(0) = max
�

u0(x) andE2(0) = max
�

v0(x)

and from ([4, 8]) we have

lim
t � + �

E1(t) � 1,

lim
t � + �

�
E1(t) + E2(t)

�
�

5
4

+
(1 + b)2(1 + e2)

4b
.

This completes the proof

2.2. Stability of steady states

The steady states(u(x), v(x)) of system (4) satisfy,
�
������

������

� u + u
�

1 Š u Š
av

u + e1

�
= 0 , x � �

� � v + bv
�

1 Š
v

u + e2

�
= 0 , x � �

�u
��

=
�v
��

= 0 .

(8)

From analysis above and from [4, 9, 8], it is easily seen that system (8) has the following
nonnegative solutions:

S0 = (0 , 0)

S1 = (1 , 0)

S2 = (0 , e2) (9)

S3 = ( u� , v� ) , where(u� , v� ) is the positive solution of the system
�
��

��

1 Š u� Š
av�

u� + e1
= 0

1 Š
v�

u� + e2
= 0 .

S4 = ( u(x), v(x)) , whereu(x) andv(x) are two positive functions.

In this section, we are going to investigate the linear stability of the above equilibrium so-
lutionsSi of system (8) whose existence has been proved in last section. It is well-known
(see [11]) that the stability question forSi is answered by considering the corresponding
eigenvalue problem for the linearized operator aroundSi . Let us substitute
(u(x, t ), v(x, t )) = Si + W (x, t ) = Si + ( w1(x, t ), w2(x, t )) into system (4) and then
pick up all the terms which are linear inW :

�W
�t

= D � W + L(Si )W, (10)

where
D = diag(1, � ),



L(u, v) =


1 Š 2u Š ae1 v

(u+ e1 )2 Š au
u+ e1

bv2

(u+ e2 )2 bŠ 2bv
u+ e2

�

. (11)

Proposition 1 S0 = (0 , 0) is unstable.

Proof. From equation (10), the linearized system of equation (4) aroundS 0 is
�
�����

�����

�w 1

�t
= � w1 + w1, x � �

�w 2

�t
= � � w2 + bw2, x � �

�w 1

��
|� � =

�w 2

��
|� � = 0 .

(12)

Now we study the following eigenvalue problem :
�
��

��

� w1 + w1 = �w 1, x � �
� � w2 + bw2 = �w 2, x � �

�w 1

��
|� � =

�w 2

��
|� � = 0 .

(13)

To prove Proposition 1, we need to prove that the largest eigenvalue of system (13) is
positive. Let� be an eigenvalue of system (13) with eigenfunction(w 1, w2). If w1 ��
0, then� is an eigenvalue of� + 1 with homogeneous Neumann boundary condition.
Therefore,� must be real. Similarly, ifw2 �� 0, � is also real. Hence all eigenvalues
of system (13) are real. Let� 1 be the largest eigenvalue of system (13). The principal
eigenvalue� 1 of

�
� w1 + w1 = �w 1, x � �
�w 1

��
|� � = 0

(14)

is positive and the associated eigenfunction�w1 > 0. We claim that� 1 is also an eigen-
value of system (13). In fact, we takew2 � 0 then(w1, w2) = ( �w1, 0) satis�es system
(13) with � = � 1. So� 1 > 0 is an eigenvalue of system (13). Therefore we must have
� 1 � � 1 > 0. HenceS0 is unstable.

Proposition 2 S1 = (1 , 0) is unstable.

Proof.
From (10), the linearized system of (4) aroundS1 is

�
�����

�����

�w 1

�t
= � w1 Š w1 Š a

1+ e1
w2, x � �

�w 2

�t
= � � w2 + bw2, x � �

�w 1

��
|� � =

�w 2

��
|� � = 0

(15)

Now we study the following eigenvalue problem:
�
���

���

� w1 Š w1 Š
a

1 + e1
w2 = �w 1, x � �

� � w2 + bw2 = �w 2, x � �
�w 1

��
|� � =

�w 2

��
|� � = 0

(16)



We need to prove that the largest eigenvalue of system (16) is positive. First, same as in
Proposition 1, all eigenvalues of system (16) are real. Let� 1 be the largest eigenvalue of
system (16). Sinceb > 0, the principal eigenvalue� 1 of

�
� � w2 + bw2 = �w 2, x � �
�w 2

��
|� � = 0

(17)

is positive and the associated eigenfunction�w2 > 0. Let us prove that� 1 is also an
eigenvalue of system (16). In fact, we take�w1 to be the solution of linear problem

�
��

��

� w1 Š (1 + � 1)w1 =
a

1 + e1
�w2, x � �

�w 1

��
|� � = 0

(18)

then(w1, w2) = ( �w1, �w2) is a solution of problem (16) with� = � 1. So� 1 > 0 is an
eigenvalue of problem (16). Therefore we must have� 1 � � 1 > 0. HenceS1 is unstable.

Proposition 3
If e1 > ae2 thenS2 = (0 , e2) is unstable. Ife1 < ae2 thenS2 = (0 , e2) is stable.

Proof.
From equation (10), the linearized system of equation (4) aroundS 2 is

�
�����

�����

�w 1

�t
= � w1 + (1 Š

ae2

e1
)w1, x � �

�w 2

�t
= � � w2 + bw1 Š bw2, x � �
�w 1

��
|� � =

�w 2

��
|� � = 0

(19)

Now we study the following eigenvalue problem :
�
���

���

� w1 + (1 Š
ae2

e1
)w1 = �w 1, x � �

� � w2 + bw1 Š bw2 = �w 2, x � �
�w 1

��
|� � =

�w 2

��
|� � = 0

(20)

We need to prove that the largest eigenvalue of system (20) is positive ife1 > ae2. First,
same as before, all eigenvalues of problem (20) are real. Let� 1 be the largest eigenvalue
of problem (20). Sincee1 > ae2, the principal eigenvalue� 1 of

�
��

��

� w1 + (1 Š
ae2

e1
)w1 = �w 1, x � �

�w 1

��
|� � = 0

(21)

is positive and the associated eigenfunction�w1 > 0. Let us prove that� 1 is also an
eigenvalue of problem (20). In fact, we take�w2 > 0 to be the solution of linear problem

�
� � w2 Š (b+ � 1)w2 = Šb�w1, x � �

�w 2

��
|� � = 0

(22)



then(w1, w2) = ( �w1, �w2) satis�es problem (20) with� = � 1. So� 1 > 0 is an eigenvalue
of problem (20). Therefore we must have� 1 � � 1 > 0. HenceS2 is unstable.
Let ( �w1, �w2) be the principal eigenfunction of problem (20) corresponding to the largest
eigenvalue� 1. If �w1 �� 0, then� 1 is also an eigenvalue of problem (21). Then we must
have� 1 < 0 if e1 < ae2 because, in this case, the largest eigenvalue of problem (21) is
� 1 = 1 Š ae2

e1
< 0.

If �w1 � 0, then we have�w2 �� 0. Therefore� 1 is an eigenvalue of

�
� � w2 Š bw2 = �w 2, x � �

�w 2

��
|� � = 0

(23)

Obviously the largest eigenvalue of problem (23) isŠb < 0. Therefore we also have
� 1 < 0. Thus we know that if� 1 = 1 Š ae2

e1
< 0, thenS2 = (0 , e2) is stable.

Proposition 4 Assume thata � 1
2 and0 < e 1 < ē1 with

ē1 = Š(a + 1) +
�

(a + 1) 2 + 2 a(1 + 2 a) Š 1.

Then(u� , v� ) is stable.

Proof. Let � j denote thej -th eigenfunction ofŠ� on � with homogenous Neumann
boundary condition. That is,

�
Š � � j = � j � j , in �

�� j

�� = 0 , on � � ,
(24)

for scalar� j satisfying0 = � 0 < � 1 < � 2...
From (10), the linearized system of (4) around(u � , v� ) is

�W
�t

= D � W + � W, (25)

whereD = diag(1, � ), and

� =
�

A B
Q R

�
=


1 Š 2u� Š e1 (1Š u � )

u � + e1
Š au �

u � + e1

b Šb

�

. (26)

We expand the solutionW of (25) via

W =
��

j =0

zj (t) � j (x), (27)

where eachzj (t) � R2. Substituting (27) into (25) and equating the coef�cients of each
� j , we have

dzj

dt
= Cj zj ,

whereCj is the matrix
Cj = � Š � j D.



Now the solution(u� , v� ) is stable if and only if eachzj (t) decays to zero. This is
equivalent to the condition that eachCj has two eigenvalues with negative real parts. The
eigenvalues� 1,2 of Cj are determined by

� 2 Š � [A + R Š � j (1 + � )] + � 2
j � Š � j (R + �A ) + AR Š BQ = 0 .

Therefore the fact that eachCj has two eigenvalues with negative real parts is guaranteed
by

A + R Š � j (1 + � ) < 0, (28)

and

� 2
j � Š � j (R + �A ) + AR Š BQ > 0. (29)

We haveR = Šb < 0. Therefore, observing that� j � 0 andB < 0, (28) and (29) hold
if

A � 0, andQ > 0.

Therefore to haveA � 0, we need

2u� Š 1 + e1 � 0

Let us recall that,u� =
1
2

�
1 Š a Š e1 + �

1
2

�
, where� = ( a+ e1 Š 1)2 Š 4(ae2 Š e1).

Consequently, we need that1 Š a Š e1 + �
1
2 Š 1 + e1 � 0

Thus,

(a + e1 Š 1)2 Š 4(ae2 Š e1) Š a2 � a

e2
1 + (2 a + 2) e1 Š 2a(1 + 2 e2) + 1 � 0.

This is true from the assumptions of the proposition, henceA � 0. ObviouslyQ > 0 ,
and this completes the proof.

3. Complex pattern formation and spatiotemporal chaos

3.1. Local bifurcation in a one dimensional space

In this section, we present our numerical results in one dimensional space. We suppose
that the two species diffuse on a line,� � R.
At boundaries we use the zero-�ux condition. Let us consider the two following intial
conditions :

u(0, x) = u0 for L 1u < x < L 2u , otherwiseu(0, x) = 0

v(0, x) = v0 for L 1v < x < L 2v , otherwisev(0, x) = 0 (30)

The initial domain, where the prey moves, is larger than that of the predator for making,
during the simulation, the impact of the boundaries as small as possible. Thus, we assume,

0 < L 1u � L 1v < L 2v � L 2u < L
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