Effective criteria for bigraded birational maps

Abstract : In this paper, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that became to be known as Jacobian dual matrices. Then, we focus on rational maps from the product of two projectine lines to the projective plane in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the paper.
Type de document :
Article dans une revue
Journal of Symbolic Computation, Elsevier, 2016, 〈10.1016/j.jsc.2016.12.001〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

Contributeur : Laurent Busé <>
Soumis le : mercredi 24 février 2016 - 11:34:16
Dernière modification le : lundi 29 mai 2017 - 14:26:16
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 02:50:29


Fichiers produits par l'(les) auteur(s)




Nicolás Botbol, Laurent Busé, Marc Chardin, Seyed Hamid Hassanzadeh, Aron Simis, et al.. Effective criteria for bigraded birational maps. Journal of Symbolic Computation, Elsevier, 2016, 〈10.1016/j.jsc.2016.12.001〉. 〈hal-01278405〉



Consultations de
la notice


Téléchargements du document