P. M. Adler, J. Thovert, and V. V. Mourzenko, Fractured porous media
DOI : 10.1093/acprof:oso/9780199666515.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00477715

C. Alboin, J. Jaffré, J. E. Roberts, and C. Serres, Domain decomposition for flow in porous fractured media, Domain Decomposition Methods in Sciences and Engineering, Domain Decomposition Methods in Sciences and Engineering, pp.365-373, 1999.

P. Angot, F. Boyer, and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.239-275, 2009.
DOI : 10.1051/m2an/2008052

URL : https://hal.archives-ouvertes.fr/hal-00127023

R. G. Baca, R. C. Arnett, and D. W. Langford, Modelling fluid flow in fractured-porous rock masses by finite-element techniques, International Journal for Numerical Methods in Fluids, vol.17, issue.4, pp.337-348, 1984.
DOI : 10.1002/fld.1650040404

G. I. Barenblatt, I. P. Aheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], Journal of Applied Mathematics and Mechanics, vol.24, issue.5, pp.1286-1303, 1960.
DOI : 10.1016/0021-8928(60)90107-6

H. B. Ameur, G. Chavent, F. Clément, and P. Weis, Image segmentation with multidimensional refinement indicators, Proceedings of the 5th Internat. Conf. on Inverse Problems: Modeling and Simulation, pp.577-597, 2010.
DOI : 10.1088/0266-5611/18/3/317

URL : https://hal.archives-ouvertes.fr/inria-00533799

H. B. Ameur, G. Chavent, and J. Jaffré, Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities, Inverse Problems, vol.18, issue.3, pp.775-794, 2002.
DOI : 10.1088/0266-5611/18/3/317

H. B. Ameur, F. Clément, P. Weis, and G. Chavent, The multidimensional refinement indicators algorithm for optimal parameterization, Journal of Inverse and Ill-posed Problems, vol.16, issue.2, pp.107-126, 2008.
DOI : 10.1515/JIIP.2008.008

URL : https://hal.archives-ouvertes.fr/inria-00079668

M. Bimpas, A. Anditis, and N. Uzunoglu, Integrated High Resolution Imaging Radar and Decision Support System for the Rehabilitation of WATER PIPElines, Water Intelligence Online, vol.9, 2010.
DOI : 10.2166/9781780401560

B. L. Biondi, 3D Seismic Imaging Investigations in Geophysics 14, Society of Exploration Geophysicists, 2006.

K. Brenner, M. Groza, C. Guichard, and R. Masson, Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.2, pp.303-330, 2015.
DOI : 10.1051/m2an/2014034

URL : https://hal.archives-ouvertes.fr/hal-00910939

K. Brenner, M. Groza, C. Guichard, G. Lebeau, and R. Masson, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. In Finite volumes for complex applications. VII. Elliptic, parabolic and hyperbolic problems, Math. Stat, vol.78, pp.527-535, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097704

G. Chavent, Nonlinear least squares for inverse problems. Scientific Computation Theoretical foundations and step-by-step guide for applications, 2009.

G. Chavent and J. E. Roberts, A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems, Advances in Water Ressources, pp.329-348, 1991.
DOI : 10.1016/0309-1708(91)90020-O

F. Cheikh, Identification des fractures dans un milieu poreux, 2016.

C. D. Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids, M2AN Math. Model. Numer. Anal, vol.46, issue.2, pp.465-489, 2011.

P. Dietrich, R. Helmig, M. Sauter, H. Hötzl, J. Köngeter et al., Flow and transport in fractured porous media, 2005.
DOI : 10.1007/b138453

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, of Mathematics and its Applications, 1996.

I. Faille, E. Flauraud, F. Nataf, S. Pegaz-fiornet, F. Schneider et al., A new fault model in geological basin modelling, application to finite volume scheme and domain decomposition methods, Finite Volumes for Complex Applications III, pp.543-550, 2002.

N. Frih, V. Martin, J. E. Roberts, and A. Saâda, Modeling fractures as interfaces with nonmatching grids, Computational Geosciences, vol.16, issue.2, pp.1043-1060, 2012.
DOI : 10.1007/s10596-012-9302-6

URL : https://hal.archives-ouvertes.fr/inria-00561601

N. Frih, J. E. Roberts, and A. Saâda, Modeling fractures as interfaces: a model for Forchheimer fractures, Computational Geosciences, vol.25, issue.7, pp.91-104, 2008.
DOI : 10.1007/s10596-007-9062-x

URL : https://hal.archives-ouvertes.fr/inria-00207993

H. Hoteit and A. Firoozabadi, An efficient numerical model for incompressible two-phase flow in fractured media, Advances in Water Resources, vol.31, issue.6, pp.891-905, 2008.
DOI : 10.1016/j.advwatres.2008.02.004

J. Jaffré, V. Martin, and J. E. Roberts, Generalized cell-centered finite volume methods for flow in porous media with faults, Finite volumes for complex applications, III, pp.343-350, 2002.

M. Karimi-fard, L. J. Durlofsky, and K. Aziz, An efficient discrete fracture model applicable for general purpose reservoir simulators, SPE J, pp.227-236, 2004.

M. Karimi-fard and A. Firoozabadi, Numerical Simulation of Water Injection in Fractured Media Using the Discrete-Fracture Model and the Galerkin Method, SPE Reservoir Evaluation & Engineering, vol.6, issue.02, pp.117-126, 2003.
DOI : 10.2118/83633-PA

D. Kim, Finite element, discrete-fracture model for multiphase flow in porous media, AIChE Journal, vol.4, issue.6, pp.1120-1130, 2006.
DOI : 10.1002/aic.690460604

P. Knabner and J. E. Roberts, Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy???Forchheimer flow in the fracture, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.5, pp.1451-1472, 2014.
DOI : 10.1051/m2an/2014003

URL : https://hal.archives-ouvertes.fr/hal-00945028

R. Le-goc, J. De-dreuzy, and P. Davy, Statistical characteristics of flow as indicators of channeling in heterogeneous porous and fractured media, Advances in Water Resources, vol.33, issue.3, pp.257-269, 2010.
DOI : 10.1016/j.advwatres.2009.12.002

URL : https://hal.archives-ouvertes.fr/insu-00577996

M. Lesinigo, C. D. Angelo, and A. Quarteroni, A multiscale Darcy???Brinkman model for fluid flow in fractured porous media, Numerische Mathematik, vol.30, issue.3, pp.717-752, 2011.
DOI : 10.1007/s00211-010-0343-2

V. Martin, J. Jaffré, and J. E. Roberts, Modeling Fractures and Barriers as Interfaces for Flow in Porous Media, SIAM Journal on Scientific Computing, vol.26, issue.5, pp.1667-1691, 2005.
DOI : 10.1137/S1064827503429363

URL : https://hal.archives-ouvertes.fr/inria-00071735

F. Moreles and R. E. Showalter, The narrow fracture approximation by channeled flow, Journal of Mathematical Analysis and Applications, vol.365, issue.1, pp.320-331, 2010.
DOI : 10.1016/j.jmaa.2009.10.042

V. Reichenberger, H. Jakobs, P. Bastian, and R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Advances in Water Resources, vol.29, issue.7, pp.1020-1036, 2006.
DOI : 10.1016/j.advwatres.2005.09.001

X. Tunc, I. Faille, T. Gallouët, M. Cacas, and P. Havé, A model for conductive faults with non-matching grids, Computational Geosciences, vol.81, issue.6, pp.277-296, 2011.
DOI : 10.1007/s10596-011-9267-x

X. Tunc, I. Faille, T. Gallouët, M. C. Cacas, and P. Havé, A model for conductive faults with non-matching grids, Computational Geosciences, vol.81, issue.6, pp.277-296, 2012.
DOI : 10.1007/s10596-011-9267-x

J. E. Warren and P. J. Root, The Behavior of Naturally Fractured Reservoirs, Society of Petroleum Engineers Journal, vol.3, issue.03, pp.245-255, 1963.
DOI : 10.2118/426-PA