A Learning Algorithm for Change Impact Prediction

Vincenzo Musco 1 Antonin Carette 2 Martin Monperrus 1, 2 Philippe Preux 3, 4
1 SPIRALS - Self-adaptation for distributed services and large software systems
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
4 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : Change impact analysis (CIA) consists in predicting the impact of a code change in a software application. In this paper, the artifacts that are considered for CIA are methods of object-oriented software; the change under study is a change in the code of the method, the impact is the test methods that fail because of the change that has been performed. We propose LCIP, a learning algorithm that learns from past impacts to predict future impacts. To evaluate LCIP, we consider Java software applications that are strongly tested. We simulate 6000 changes and their actual impact through code mutations, as done in mutation testing. We find that LCIP can predict the impact with a precision of 74%, a recall of 85%, corresponding to a F-score of 64%. This shows that taking a learning perspective on change impact analysis let us achieve good precision and recall in change impact analysis.
Type de document :
Communication dans un congrès
5th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, May 2016, Austin, United States. pp.8-14, 〈10.1145/2896995.2896996〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01279620
Contributeur : Vincenzo Musco <>
Soumis le : dimanche 28 février 2016 - 17:07:34
Dernière modification le : mardi 3 juillet 2018 - 11:25:24
Document(s) archivé(s) le : lundi 30 mai 2016 - 07:51:56

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Vincenzo Musco, Antonin Carette, Martin Monperrus, Philippe Preux. A Learning Algorithm for Change Impact Prediction. 5th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, May 2016, Austin, United States. pp.8-14, 〈10.1145/2896995.2896996〉. 〈hal-01279620〉

Partager

Métriques

Consultations de la notice

661

Téléchargements de fichiers

546