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Abstract: Determining the receptive �eld of a visual sensory neuron is a �rst but crucial step to-
wards the characterization of neurons response to local spatio-temporal stimuli. Existing methods
are based on convex optimization methods neglecting biophysical constraints of neurons (bounded
�ring rate), and they are relatively poor in terms of accuracy and running time. We propose a
new method to estimate receptive �elds by a nonconvex variational approach, thus relaxing the
simplifying and unrealistic assumption of convexity made by standard approaches. The method
consists in studying a relaxed discrete energy minimized by a proximal alternating minimization
algorithm. We compare our approach with the classical spike-triggered-average technique on sim-
ulated data, considering a typical retinal ganglion cell. Results show a high improvement in term
of accuracy and convergence with respect to the duration of the experiment.
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Une approche variationelle non-convexe pour l'estimation
des champs recepteurs

Résumé : Déterminer le champ récepteur d'un neurone sensoriel visuel est une première mais
cruciale étape pour caractériser la réponse neuronale à des stimuli spatio-temporels locaux. Les
méthodes existantes sont basées sur des approches d'optimisation convexes négligeant les con-
traintes biophysiques des neurones (taux de décharge borné), et elles sont relativement faibles en
terme de précision et de temps de calcul. Nous proposons une nouvelle méthode pour estimer les
champs récepteurs basée sur une approche variationnelle non convexe, relaxant ainsi l'hypothèse
simpli�catrice et irréaliste de convexité faite dans les approches standard. La méthode consiste
à étudier une énergie discrète relaxée, minimisée par un algorithme proximal de minimisation
alternée. Nous comparons notre approche avec la technique classique despike triggered averaged
sur des données simulées, en considérant une cellule ganglionnaire type de la rétine. Les résultats
montrent une forte amélioration en terme de précision et de convergence par rapport à la durée
de l'expérience.

Mots-clés : Neurosciences, problème inverse, estimation de champs récepteur, approche
variationnelle, optimisation non régulière et non convexe, Kurdyka-Lojasiewicz
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4 Drogoul, Aubert, Cessac and Kornprobst

1 Introduction

This paper deals with the estimation of receptive �elds of individual visual neurons (e.g., ganglion
cells in the retina). Knowing the receptive �eld of a particular neuron allows to characterize the
relation between stimulus (images) and the neuron response (action potentials, also called spikes).
It is a �rst but crucial step to understand which region of the visual �eld and which stimuli a
neuron is sensitive to. Thus, biologists always allow time for estimating receptive �eld in their
experimental protocole.�

A classical view is that visual sensory neurons respond to speci�c local spatio-temporal pat-
terns, and that their response can be characterized by a spatio-temporal convolution kernel called
the receptive �eld, followed by a static nonlinearity and stochastic (Poisson-like) mechanisms of
spikes generation. The static nonlinearity is in general non convex (e.g., sigmoid shape) since
�ring rate is bounded because neurons have a refractory period. Mathematically, this description
corresponds to the so-called linear-nonlinear Poissonian (LNP) model [15, 40, 36, 32]. LNP mod-
els can simulate the spiking activity of ganglion cells (or cortical cells) in response to synthetic
or natural images [13], and they voluntarily ignore the detailed neuronal mechanisms. These
functional model are widely used by experimentalists to characterise the cells that they record,
map their receptive �eld and characterise their spatiotemporal feature selectivities [15].

The LNP model is illustrated in Fig. 1: Given a visual stimulus s : (x; t ) 2 
 � [0; T] ! R,
where 
 � R2 is the spatial domain and T > 0 is the duration of the experiment, a LNP neuron
generates a sequence ofn(T) spikes timesf t i g1� i � n (T ) such that

f t i g1� i � n (T ) is generated by a Poisson process of rater (t) = f ((s � u)( t)) ; (P)

where f is a nonlinear function and u : 
 d := 
 � [� d;0] �! R is the so-called receptive �eld
which corresponds to the linear part of the processing, whered > 0 is the length of its temporal
support: the response of the neuron at timet depends on the history of the stimulus up to time
t � d back in the past. The operator � is de�ned by

[s � u](t) =
Z 0

�1

Z



s(x; t + � )u(x; � )dx d�: (1)

Assuming Hypothesis (P), the problem of estimating the receptive �eld u(x; t ) is an inverse
problem: given a stimulus s(x; t ) of duration T and the n(T) spikes f t i g1� i � n (T ) , recover the
unknown receptive �eld u(x; t ).

{ t i } 1! i ! n (T )s(x, t ), t ! [0, T]

Poisson spikingReceptive field Nonlinearity

u

tt
! t

t

x f

sig

ramp

Figure 1: Illustration of the LNP model ( P) (gray box). Two kinds of nonlinear functions f
are illustrated: ramp- or sigmoid-like nonlinearities. Here the stimulus is a sequence of white
noise images, which is the classical stimulus used for the spike-triggered averaged approach (STA,
see [15]).

� Experimentally, measuring retinal activity can be achieved by recording simultaneous light-evoked responses
from hundreds of RGCs thanks to multielectrode arrays (MEA). One may use conventional 60-MEAs or, e.g., new
generation of large-scale, high density MEA consisting of 4096 electrodes (APS CMOS-MEA, [5, 24]).

Inria



Receptive �eld estimation: the nonconvex case 5

This inverse problem can be formulated using a Bayesian approach formulated in a discrete
setting. Considering a discretization of the receptive �eld uN 2 RN , we searchuN as maximum
likelihood or equivalently (see, e.g., [31, 35, 33]):

inf
u N

�
� log

�
� (uN jf t i g1� i � n (T ) )

� 	

= inf
u N

�
� log(� (f t i g1� i � n (T ) ju

N )) � log(� (uN ))
	

; (2)

where� (uN jf t i g1� i � n (T ) ) is the density probability of the random variable uN given f t i g1� i � n (T ) ,
� (f t i g1� i � n (T ) juN ) is the density probability of the random variable f t i g1� i � n (T ) given uN , and
� (uN ) is the density probability of the random variable uN .

Then, assuming that � (uN ) is a distribution of the form � (uN ) = e� J (u N ) ; and passing to the
limit when N ! 1 in (2) we get that the continuous problem is (see Appendix, Sect. A):

inf
u

E(u) =  (s � u) + J (u); (3)

where  (s � u) is the data �delity term with  de�ned by

 (z) =
Z T

0
f (z(� ))d� �

n (T )X

i =1

log(f (z(t i ))) ; (4)

and J (u) is the prior term to infer qualitative properties to the solution, according to what is
known about the general shape of a receptive �eld.

To solve (3), it is classical to assume that the nonlinearity f is a ramp function or an ex-
ponential. In that case, one has to solve a convex problem which can be done by classical
methods [31, 35, 26]. On the opposite, in this paper we consider the case when the nonlinearity
f can be a sigmoid, which is more realistic from a physiological point of view: it models the fact
that the neuron has a bounded �ring rate (see [21], Sect.5.2.3). However, sincef is nonconvex,
the data �delity term  (s � u) also becomes nonconvex.

The prior term J (u) is chosen according to the properties we want to impose on the solution.
The �rst property is that u should be localized in space and time since neurons are sensitive to
a particular region of the visual �eld. This can be imposed by a sparsity constraint term. Here
we choose to use a convex relaxation of the sparsity and we penalise theL 1�norm of u [12]. The
second property is that u should be smooth. We propose thatu belongs to the spaceBV2 that
contains piecewise linear functions. Note that in [6], this regularity constraint has been used for
image restoration. It allows to recover functions with fast smooth variations more precisely than
using a simplekr uk2

L 2 �regularity constraint.
The spaceBV2, is de�ned by

BV2(O) =
�

u 2 W 1;1(O);
@u
@xi

2 BV (O) for i 2 f 1; :::; N g
�

;

where O � RN with N 2 N? is a regular domain, W 1;1(O) and BV (O) stands respectively for
the Sobolev space and the space of functions of bounded variations. OnBV2, the following norm
can be de�ned:

jujBV 2 (O ) �
Z

O
jD 2uj = sup

� Z

O
< r u; div (' ) >; ' 2 C1

0 (O)N � N ; k' kL 1 (O ) � 1
�

;

being the total variation of the gradient where C1
0 (O) is the space of functionsC1(O) with

compact support in O [6, 17]. So the prior term will be de�ned by

J (u) = � kukL 1 (
 d ) + � jujBV 2 (
 d ) ; (5)

RR n ° 8837



6 Drogoul, Aubert, Cessac and Kornprobst

where �; � > 0 are weights associated respectively to the sparsity and to the regularity ofu.
This paper is concerned with the study of problem (3) with  and J de�ned respectively by

(4) and (5). In Sect. 2, we study the discrete version of problem (3). We introduce a relaxed
problem which allows to compute an approximation of the solution. We make a theoretical study
of the relaxed problem and propose and alternated minimizing algorithm converging toward a
critical point of the relaxed energy. In Sect. 3, we test the approach on simulated data to provide
a quantitative evaluation with comparisons to the classical spike triggered averaged technique
(STA, see [15]) and we compare our approach with the classical variational approach using as
non linearity a convex function close to the nonlinear sigmoid function describing the �ring rate
of a real neuron. Section 4 is a discussion and conclusion section. Let us also mention several
appendices presenting more technical developments so that the paper be self-contained.

2 The discrete problem: well-posedness and relaxation

In this section we study the discrete problem. Section 2.1 gives some mathematical preliminar-
ies. Section 2.3 is about the well-posedness. Section 2.4 presents the main algorithm which is
an alternating minimization procedure followed by sections describing algorithms to compute
solutions of each sub-problem.

2.1 Preliminaries

We �rst recall some classical concepts of variational analysis which will be useful in the sequel. Let
� : Rn �! R[f + 1g a proper lower semicontinuous function. We denote as usual dom(� ) = f x 2
Rn ; � (x) < + 1g , epi(� ) = f (x; � ) 2 Rn ; � (x) � � g and graph(� ) = f (x; � ) 2 Rn ; � (x) = � g
respectively the domain, the epigraph and the graph of � .

2.1.1 Notions of subdi�erentials

We recall that the Fréchet subdi�erential of � at x 2 dom(f ) is de�ned by (see [38], De�nition 8.3)

@F � (x) =

(

x? 2 Rn ; lim inf
y ! x
y 6= x

1
kx � yk

(� (y) � � (x) � h x?; y � xi ) � 0

)

:

The limiting subdi�erential of � at x 2 dom(� ) is denoted and de�ned by

b@�(x) = f x? 2 Rn 9xn ! x; � (xn ) ! � (x); x?
n 2 @F � (xn ) ! x?g:

Let us remark that
@F � � b@�;

where the �rst set is convex and closed while the second is closed (see [38], Theorem 8.6).
We say that � is convex if its epigraph is convex, andsemiconvexif there exists a constant

c � 0, such that � (z) + c
2 z2 is convex. If � is convex, for x 2 dom(� ) we have

@F � (x) = b@�(x) = @�(x)
def
:= f x? 2 Rn ; � (x) � � (x?) � h x?; x � x? i 8 x 2 Rn g:

These equalities remains true for semiconvex functions (see [38], Example 8.8).
We say that x is a critical point of � if and only 0 2 @�(x).

Finally, we say that � : Rn ! R is separableif it can be written as � (x) =
nP

i =1
� i (x i ) where � i

are real functions.

Inria



Receptive �eld estimation: the nonconvex case 7

2.1.2 Notion of proximal operator

The following mapping introduced by Moreau [28] is very useful in non-smooth optimisation,
and is a generalization of the notion of projector. Theproximal operator of � is denoted and
de�ned by:

prox � (x) = arg min
y2 Rn

�
� (y) +

1
2

kx � yk2
2

�
8x 2 Rn ; (6)

and it can be shown that

prox � =
�

I + b@�
� � 1

:

Remarks 2.1. Some properties of the proximal operator.

(i) If � + 1
2 (: � x)2 is convex for all x, then prox � is univalued.

(ii) If � is not convex, the proximal operatorprox � can be multivalued.

(iii) Let � > 0, the function � � : x 7! inf y f � (y) + 1
2� kx � yk2

2g is called the Moreau envelope or
Moreau-Yoshida regularization of � . The Moreau envelope can be considered as a smooth
approximation of � . Note that � � (x) � � (x)8x.

(iv) Let us consider a shifted and scaled proper function~� (x) = � (ax + b), then its proximal
operator is given byprox ~� (x) = ( proxa2 � (ax + b) � b)=a.

2.1.3 Notion of conjugate function

The Legendre-Fenchel transformof � is de�ned by (see [38], p. 473)

� ?(x) = sup
y

hx; yi � � (y) 8x 2 Rn : (7)

Function � ? is called the conjugate of function� , and � ?? = ( � ?)? is the biconjugate of function
� . For a subsetK � Rn we de�ne the indicator function i K and the support function � K by

i K (x) =

(
0 if x 2 K;
+ 1 otherwise;

and � K (x) = sup
x 2 K

hx; yi : (8)

The link between � K and i K is that they are mutually conjugate when K is convex and closed.
Let us recall that all functions � lower semicontinous, convex and one-homogeneous (i.e.,� (�x ) =
�� (x) for � > 0) verify

� ?(x) = � K � (x) with K � = f x 2 Rn ; 8y 2 Rn hy; xi � � (y)g: (9)

2.2 Problem de�nition

In this section, we study a discrete version of (3). The stimulus is a sequence ofN t images, each
one presented during a period of� t so that the duration of the experiment is T = N t � t . Each
image is of sizeNx � Ny pixels. Receptive �eld is of sizeNx � Ny � D where D is a �xed depth
in time. We introduce the real vector spacesX , Y and Z so that:

u 2 X = RN x � N y � D ; s 2 Y = RN x � N y � N t ; z 2 Z = RN t ; (10)

endowed with the scalar producth:; :i and the associated normk:k2 =
p

h:; :i . We denote byk:k1

the l1�norm.

RR n ° 8837



8 Drogoul, Aubert, Cessac and Kornprobst

Given these notations, if � = ( � i )1� i � N t is the number of spikes per time step (in[i � t; (i +
1)� t[) and if we assume that � t = 1 without loss of generality (up to change f by � tf ), then
the data �delity term (4) can be rewritten as

 � (z) =
N tX

i =1

f (zi ) �
n (T )X

i =1

log(f (zk i )) ;

where ki is the index of the small interval containing the spiking time t i , so that

 � (z) =
N tX

i =1

 � i (zi ); with  � i (zi ) = f (zi ) � � i log(f (zi )) : (11)

The function  � i (z) has a limited domain of de�nition denoted by Z +
� i

equal to R if � i = 0 (no
spikes), andf f > 0g if � i > 0.

We impose the following hypotheses on the sigmoid functionf :

Hypothesis 1. f is C0(R) and is bounded from below.

Hypothesis 2. (i) f is de�nable in the log-exp structure (see Appendix C for de�nition and
properties around these notions).

(ii) f is semi-convex, i.e., there exists� > 0 such that f (z) + �
2 z2 is convex.

(iii) z 7! � log(f (z)) is convex on the setf f > 0g.

Remark 2.1. Hypothesis 2(i) is required by Theorem 2.1 concerning the convergence of the
algorithm (see Sect. 2.4). Note that the assumption to be de�nable in the log-exp structure is not
very restrictive. For example, the nonlinearities generally chosen areC0(R) and analytic on R
except at a �nite number of points (see, e.g., [31]), so that they verify this hypothesis. Concerning
Hypothesis 2(ii) , remark that it is veri�ed by convex functions, so that all results coming next
will hold in the convex case too.

In practice, we will choosef as a non decreasing piecewise cubic sigmoid function varying on
[� 1; � 2], equals to zeros forz < � 1 and equals to a constantc > 0 on [� 2; + 1 [. Figure 2 shows
the shape of the data �delity term  � (:) for this kind of sigmoid. One can easily verify that the
data �delity term is nonconvex when 0 � � < c .

! 1 ! 2

0

c

! 1 ! 2f ! 1(" )

c ! " log(c)

! 1 ! 2

c ! " log(c)
c ! ! log(c) c ! ! log(c)

! ! (.)! ! (.) ! ! (.)

! = 0 0 < ! < c ! ! c

0 0 0

Figure 2: Graphs of the data �delity term  � (:) for � 2 R+ , depending on values of� .

Inria



Receptive �eld estimation: the nonconvex case 9

The prior term is de�ned by

J (u) = � kuk1 + � kHuk1; (12)

where H : X ! X � is the Hessian matrix operator (� = 9 in 3D).
To discretize the Hessian operator, we use symmetric boundary conditions:

(Hu) i;j;k = (( Hu) i;j;k )p;q for 1 � p; q � 3 with

(Hu)1;1
ijk =

8
><

>:

ui +1 ;j;k � 2ui;j;k + ui � 1;j;k if 1 < i < N x ;
ui +1 ;j;k � ui;j;k if i = 1 ;
� (ui;j;k � ui � 1;j;k ) if i = Nx ;

(Hu)1;2
ijk =

8
><

>:

ui;j +1 ;k � ui � 1;j +1 ;k � ui;j;k + ui � 1;j;k if 1 < i < N x and 1 < j < N y ;
0 if i = 1 ;
0 if j = Ny ;

Other derivatives can be obtained by permutation of the indices.
Denoting by � d the discretization of � we get the discrete problem associated to (3):

inf
u2X

E(u) =  � (s � d u) + i Z +
�

(s � d u) + � kuk1 + � kHuk1; (13)

where i Z +
�

denotes the characteristic function associated toZ +
� =

Q N t
i =1 Z +

� i
. In (13), the data

�delity term only depends on s � d u and when minimizing it w.r.t. u, it is di�cult to guarantee
that s � d u remains in the domain of de�nition of  � . To overcome this problem, we propose to
introduce an auxiliary variable z 2 Z and solve the following relaxed formulation:

inf
z2Z ;u 2X

E� (z; u) =  � (z) + i Z +
�

(z) +
�
2

ks � d u � zk2
2 + � kuk1 + � kHuk1; (14)

where the term in � penalizes the di�erence betweenz and s � d u. Another interest of this
relaxed problem is that now the problem in z containing the nonconvexity is separable (it leads
to N t one-dimensional independent problems). This relaxation is close to augmented Lagrangian
for alternating direction method of multipliers (ADMM) algorithms [9] used in a convex context
(this later just introduces another dual variable to guarantee the equality constraint at critical
point and consists in two descents and one ascent of gradient). Let us notice that (14) gives
an approximation of solutions of (13) when � ! 1 while ADMM algorithms with augmented
Lagrangian give exact solutions for a convex energyE. In this paper we consider the general case
where E� is not convex and we will apply existing generic algorithms to compute critical points
of E� which contain solutions of (14).

2.3 Well-posedness

This section is about existence and uniqueness of solutions of problems (13) and (14).

Proposition 2.1 (existence). Assuming Hypothesis 1, then

1. Let � > 0, the energyE(u) (13) admits at least one minimizer.

2. Let � > 0 and � > 0, the energyE� (z; u) (14) admits at least one minimizer.

RR n ° 8837



10 Drogoul, Aubert, Cessac and Kornprobst

Proof. We only prove that E� (z; u) admits a minimizer for � > 0 and � > 0, the existence
of minimizer of E(u) being similar. Thanks to compactness of bounded sequences inRn and
lower semicontinuity of E� (z; u) (E� is even continuous), the existence question reduces to the
su�cient question of coerciveness. Let(zn ; un )n , a sequence such thatE� (zn ; un ) be bounded by
a constant M > 0. As  � (z) is bounded from below, we deduce thatkun k1 and kzn � s � d un k
are bounded. From that it is clear that zn is also bounded. Thus by extracting subsequences
and using the lower semicontinuity of E� , we easily deduce that there exists(�z; �u) such that
E� (�z; �u) = inf E� .

Proposition 2.2 (uniqueness). Assuming Hypothesis2 (ii)�(iii) , if � > � then the energy
E� (z; u) (14) is strictly convex w.r.t. to z and convex w.r.t u separately (but not convex w.r.t.
(z; u)). If moreover we assume thatf is convex (� = 0 in Hypothesis 2(ii) ), then (13) and (14)
are convex and critical points are global minima.

Proof. u 7! E� (z; u) is a sum of convex terms plus a quadratic one so it is strictly convex.
Thanks to Hypothesis 2(ii), we easily deduce thatzi 7! f (zi ) + �

2 (zi � x)2 is strictly convex
for each x 2 R if � > � . From the separability of E� (z; u) w.r.t z and Hypothesis 2(iii) we
deduce that z 7! E� (z; u) is strictly convex. The �rst term z 7! 	 � (z) is convex, the second term
(z; u) 7! k s � d u � zk2

2 also, and the third term u 7! J (u) as well. Hence, we get thatE� (z; u) is
convex and we deduce that critical points are global minima. Indeed, we have

E� (z; u) � E � (�z; �u) � @E� (�z; �u):(z � �z; u � �u) = 0 ; 8 (z; u) 2 Z � X ;

for each critical points (�z; �u).

Remark 2.2. Even if we assume thatf is strictly convex, the energyE� (z; u) is in general not
strictly convex. The reason is thatu 7! �

2 kz � s � d uk2
2 + � (Ku ) with K := I � H : X ! X � X �

and � (v) =
P

i jv1i j + jv2i j is in general not strictly convex since� is not strictly convex and
u 7! s � d u is in general not injective.

The following proposition establishes the link between solutions of the relaxed problem and
solutions of the initial one.

Proposition 2.3. Let � be a positive integer and letf (z� ; u� )g� � 1 be a family of solution of
problem (14) then E� (z; u) is bounded independently of� and

(i) All its cluster points are couples(s� d �u; �u) such that �u is a solution of (13).

(ii) The in�mum converges: inf (z;u ) E� (z; u) = E� (z� ; u� ) �!
� ! + 1

inf u E(u).

(iii) If E(u) admits a unique minimizer �u, then (z� ; u� ) �!
� ! + 1

(s � d �u; �u).

Proof. Let be �u a minimizer of the initial energy E(u) (13) and (z� ; u� ) a minimizer of the relaxed
energy E� (z; u) (14). Let � 0 > 0, and � � � 0, we have that

E� 0 (z� ; u� ) � E � (z� ; u� ) � E � (s� d �u; �u) = E(�u): (15)

As in the proof of Prop. 2.1, we deduce thatf (z� ; u� )g�> 0 is bounded independently of� and
that it converges up to a subsequence to(~z; ~u) 2 Z +

� � X . From the de�nition of E� (z; u)
and since � (z) and J (u) are bounded from below we deduce thatkz� � s� du� k �!

� ! + 1
0 and

that ~z = s� d ~u. Now let us prove that ~u is a minimizer of E(u). It is easily seen that the
quantity m� = E� (z� ; u� ) is non-decreasing and bounded from above byE(�u) so it converges to
its supremum. By uniqueness of the limit we have thatlim � m� = E(~u) and by passing to the
limit into (15), we get that E(~u) = E(�u). Hence ~u is a minimiser of E(u).
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Receptive �eld estimation: the nonconvex case 11

2.4 Main algorithm

To compute a solution of (14), we propose the proximal alternating minimization introduced
in [1] in a more general context. Given an initial condition u0 2 X , the algorithm consists in the
following two steps:

z(k+1) 2 argmin
z

E� (z; u(k ) ) +
1

2� (k )
kz � z(k ) k2

2; (16a)

u(k+1) 2 argmin
u

E� (z(k+1) ; u) +
1

2 (k )
ku � u(k ) k2

2; (16b)

where � (k ) ;  (k ) are sequences of parameters belonging to[r � ; r + ] with 0 < r � < r + for all k � 0
(note that this is the only condition on these parameters to obtain convergence). The quadratic
terms in (16) are necessary to show the convergence and it can be shown that one minimization
step leads to a decrease of the energy such that

E� (z(k+1) ; u(k+1) ) +
1

2� (k )
kz(k+1) � z(k ) k2

2 +
1

2 (k )
ku(k+1) � u(k ) k2

2 � E � (z(k ) ; u(k ) );

which gives an interpretation of the qualitative role of parameters � (k ) ;  (k ) for convergence.
Thus, the algorithm (16) consists at each iteration to compute the proximal mapping (up

to a multiplicative constant) of z 7! E� (z; u(k ) ) and of u 7! E� (z(k+1) ; u) successively. From a
numerical point of view, this algorithm is easy to handle:

ˆ If f is a piecewise cubic function verifying Hypotheses 1 and 2, when� i = 0 , then problem
(16a) can be solved analytically thanks to its separability: it is equivalent to compute the
proximal operator of f up to a multiplicative constant depending on � and � (k ) . When
� + 1

� ( k ) > � the problem is strictly convex so that the proximal operator is univalued.
Otherwise, in the general case set by Hypotheses 1 and 2, we use a Newton algorithm.

ˆ Problem (16b) is strictly convex. It can be solved by regularising the non di�erentiable and
non separable termkHuk1 and by using a standard forward-backward proximal algorithm
of Nesterov type [2]. Another possibility is to rewrite the non di�erentiable term of (16b)
by using the Fenchel transform (7) and to introduce a dual variable, inspired by [3].

Theorem 2.1. (convergence)Assume Hypotheses1 and 2(i) , Algorithm (16a)� (16b) generates
a sequence(z(k ) ; u(k ) )k which converges to a critical point(�z; �u) of E� (z; u) (i.e., 0 2 @E� (�z; �u))
and the sequence(z(k ) ; u(k ) ) veri�es

1X

k=1

kz(k ) � z(k � 1) k + ku(k ) � u(k � 1) k < 1 :

Proof. To prove convergence, we apply Theorem 9 from [1]. The di�cult point is to check
that E� veri�es the Kurdyka-Lojasiewicz (KL) property which is a notion introduced in 1963 by
Lojasiewicz for analytical functions and extended by Kurdyka in 1998 to functions de�nable in
an o-minimal structure. This is detailed in Appendix C.

Remark 2.3. The symbol2 can be replaced by= in (16b), since the subproblem is strictly convex
for � > 0. If we furthermore assume Hypothesis 2(ii)-(iii) then we can do as well in(16a). What
is remarkable is that the sequence(z(k ) ; u(k ) ) converges to a critical point of E� even if each
subproblem of (16) has a non unique solution, and from our knowledge this theorem is the only
one that establishes the convergence of the whole sequence to a critical point, just assuming that
the energy veri�es the KL property (De�nition C.1) and some classical assumptions to guarantee
existence of minimizer(s).
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12 Drogoul, Aubert, Cessac and Kornprobst

Corollary 2.1. Assume that f veri�es Hypothesis 1 and 2 and moreover that f is convex, then
the sequence(z(k ) ; u(k ) )k converges to a global minimum ofE� .

Proof. Under these assumptions and thanks to Prop. 2.2, we get thatE� is convex so critical
points are global minima which ends the proofs by applying Th. 2.1.

2.5 Solving problem (16a)

2.5.1 Using proximal operator de�nition

We remark that E� (z; u) is separable w.r.tz. Hence minimizing it w.r.t z at �xed u is equivalent
to minimize N t one dimensional energies:

z(k+1)
i = arg min

zi 2 R
 � i (zi ) + i Z +

� i
(zi ) +

� (k ) � + 1
2� (k )

 

zi �
�� (k ) (s� du(k ) ) i + z(k )

i

� (k ) � + 1

! 2

;

where� i is the number of spikes in thei -th time interval and  � i de�ned in (11) is the data �delity
term. We rewrite z(k+1)

i by using the proximal operator (6) associated to thei -th component of
the data �delity term:

z(k+1)
i = proxh ( k )  � i

 
�� (k ) (s � d u(k ) ) i + z(k )

i

� (k ) � + 1

!

; (17)

where h(k ) = � ( k )

� ( k ) � +1 and where we shorten the notation � i + i Z +
� i

by  � i . The function  � i

depends on the number of spikes� i and is de�ned from the sigmoid function. Generally the
sigmoid function is approximated by an exponential based function (see Hypothesis 2(i) and
Fig. 3(a)). The problem is that �nding an analytical expression of z(k+1)

i in that case is a hard
task. As a consequence, we propose two approximations for which analytical expressions can be
derived. The �rst approximation is de�ned by a piecewise linear approximation (see Fig. 3(b)
and Appendix D) but in this case problem (16a) is nonconvex independently of� and � (k ) (the
proximal operator is multivalued). The second approximation is de�ned by a piecewise cubic
sigmoid function (see Fig. 3(c) and Appendix E). It is the simplest choice verifying Hypotheses
1 and 2 which enables to computez(k+1)

i (17) analytically when there is no spike (� i = 0 ) and
numerically otherwise. This fact is interesting because spikes are sparsely distributed.

In the two following sections we study (17) for � i = 0 (no spike in the i -th interval) and � i > 0
(at least one spike).

2.5.2 Case � i = 0 (no spike)

In this case, (17) reduces to the computation of the proximal operator off with  = h(k ) .
Thanks to Remark 2.1-(iv), without loss of generality, we focus on a normalized sigmoid function.
Considering di�erent nonlinear functions f , Table 1 summarizes their properties, if they verify
Hypotheses 1 and/or 2 and their proximal operator. We give results for the three nonconvex
functions described in Fig. 3 but also for convex functions for which the same method applies
(see numerical results in Sect. 3). Details about how to estimate proximal operators are given in
Appendices D and E for piecewise linear and piecewise cubic sigmoid cases respectively.
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� 1
2

0 1
2

0

1

1
2

� 1
2

0 1
2

0

1

1
2

� 1
2

0 1
2

0

1

1
2

(a) (b) (c)

Figure 3: Sigmoid-like functions. (a) Exponential based function 1
1+ e� 5x . (b) Piecewise linear

approximation (38). (c) Piecewise cubic approximation (41).

Nonlinear function f (x) Properties Proximal operator prox f (x)
8
><

>:

0 if x < � 1
2

1
2 + x if jxj � 1

2

1 if x > 1
2

Hyp. 1
Hyp. 2(i)-(iii)
nonconvex

8
>>><

>>>:

x if x � � 1
2

� 1
2 if � 1

2 � x � 
x �  if � 1+2 

2 � x � 1+ 
2

x if x � 1
2

8
><

>:

0 if x � � 1
2

1
2 + 3

2 x � 2x3 if jxj � 1
2

1 if x � 1
2

Hyp. 1 and 2
nonconvex

8
><

>:

x if x � � 1
2

y� (x) if jxj � 1
2

x if x � 1
2

y� (x) given by (42)

multivalued if  >
1
6

1
1 + e� x Hyp. 1 and 2

nonconvex

No analytical expression

Use a Newton algorithm

(
0 if x � � 1

2
1
2 + x if x � � 1

2

Hyp. 1 and 2
convex

8
><

>:

x if x � � 1
2

� 1
2 if � 1

2 � x � � 1+2 
2

x � 2 if x � � 1+2 
2(

0 if x � � 1
2

1
2 + 2x + 2x2 if x � � 1

2

Hyp. 1 and 2
convex

(
x if x � � 1

2
x � 2
4 + 1 if x � � 1

2

log(1 + ex ) Hyp. 1 and 2
convex

No analytical expression

Use a Newton algorithm

Table 1: Proximal operators of f for di�erent nonlinear functions f (see Sect. 2.5.2)
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14 Drogoul, Aubert, Cessac and Kornprobst

Nonlinear function f (x) Properties Proximal operator prox  � (x)

8
><

>:

0 if x < � 1
2

1
2 + x if jxj � 1

2

1 if x > 1
2

Hyp. 1
Hyp. 2(i)-(iii)
nonconvex

8
><

>:

y+ (x) if x � x?
1

1
2 if x?

1 � x � 1
2

x if x � 1
2

y+ (x) given by (40)

x?
1 =  (1 � � ) +

1
2

multivalued if � < 1

Non decreasing non nega-
tive and C0, piecewiseC1

�

8
<

:

2 ] � 1
2 ; max(x; f ( � 1) (� )]

if f ( � 1) (� ) 6= ;
x otherwise

Use a Newton algorithm introducing a

regularizing parameteryor use

a Golden search algorithm.

Table 2: Proximal operators of  � (with  � (x) = f (x) � �log (f (x)) ) for di�erent nonlinear
functions f (see Sect. 2.5.3).

2.5.3 Case � i > 0 (presence of spikes)

In this case, (17) expands as

z(k+1)
i = arg min

y2 Z +
� i

�
f (y) � � i log(f (y)) +

1
2h(k )

(y � ai;k )2
�

; (18)

with ai;k = �� ( k ) (s� d u ( k ) ) i + z ( k )
i

� ( k ) � +1 and h(k ) = � ( k )

�� ( k ) +1 . As stated in Prop. 2.2, assuming Hypothesis

2(i)-(ii), problem (18) is strictly convex for � > � � 1
� ( k ) , hence it admits a unique solution that

is the proximal operator of h(k )  � evaluated at ai;k . If we model the nonlinearity by a piecewise
linear sigmoid function (which does not satisfy Hyp. 2(ii)), we get an analytical expression of
the proximal operator of  � for some > 0 which is given in Table 2. Otherwise, to compute
e�ciently an approximation of z(k+1)

i , either we use a Newton algorithm by regularizing the term
� log(f (y)) by � log(f (y) + � ) with � > 0 small enough or we use a Golden search algorithm by
using the fact that the solution belongs to ]� 1; zmax [ with zmax = max(ai;k ; f � 1(� )) with the
convention f � 1(x) = ; if x is not in the range of f as summed up in Table 2.

Remark 2.4. Let us remark that if we know the proximal operator associated to f
� = f � �log (f )

for a given non linearity f we can deduce the one associated to g
� for whateverg(x) = cf (ax + b)

thanks to this relation

 g
� (x) = c f

�
c

(ax + b) � �log (c);

and Remark 2.1(iv).

y In Newton algorithm, if f can be null, one can regularize log(f ) by changing it to log(f + � ) with � > 0 small
enough, so that dom ( � ) = R.

Inria



Receptive �eld estimation: the nonconvex case 15

2.5.4 Conclusion on a good choice of sigmoid

By modelling the sigmoid function by a C1(R) piecewise cubic function, Hypotheses 1 and 2 are
veri�ed and problem (14) is convex for � large enough (Proposition 2.2). In this case we also
get an analytical expression of the proximal operator associated to the data �delity term (11) in
the most frequent case which is the case of no spike has been emitted in the smalli -th temporal
bin ( � i = 0 ). It remains true for some other nonlinearities enumerated in Table 1. The choice
of a piecewise linear sigmoid function enables to have an analytical expression of the proximal
operator associated to the data �delity term  � (11) for some  > 0 and even when� > 0.
Otherwise for other choices of nonlinearity we can get some information about the location of
the solution (see Table 2).

2.6 Solving problem (16b)

Let us remind sightly rewrite problem (16b) as

u(k+1) = argmin
u

E� (z(k+1) ; u) +
1

2 (k )
ku � u(k ) k2

2;

= argmin
u

� 0

2
ks� du � z(k+1) k2

2 +
1

2 0(k )
ku � u(k ) k2

2 + kuk1 + � 0kHuk1; (19)

where parameters� 0, � 0 and  0(k ) are normalized by � . The di�culty in (19) comes from the
prior term which the sum of a non di�erentiable separable term (the sparsity constraint, kuk1),
and non di�erentiable and non separable term (the smoothness constraint,� 0kHuk1). Because
of this non di�erentiability, one needs algorithms taken from non-smooth convex optimization.
In this paper we use a proximal algorithm described in Sect. 2.6.1.

We give here two ways to compute an approximation of (16b). The �rst is based on a
regularization of the smoothness term and needs to introduce a small positive parameter" but
it is more computationally fast (Sect. 2.6.2). The second relies on duality and is largely inspired
from algorithm used in image processing [3, 14] (Sect. 2.6.3).

2.6.1 Proximal algorithm: Forward-backward algorithm with splitting

Proximal algorithms generalize descent algorithm with projection. For example, in the par-
ticular case of an indicator function of a convex setC, the proximal operator reduces to the
projector on the set C denoted PC. Generally, to solve minC g = min( g1 + i C) where g1 is a
di�erentiable function and i C the characteristic function associated toC, we use the iteration
x (n +1) = PC(x (n ) � � n r g1(xn )) . The idea of the proximal operator is to handle a more general
problem by replacing the characteristic function by a general proper functiong2 and the projec-
tor PC by the proximal mapping prox g 2 with  small enough. In [16] a collection of proximal
splitting methods is presented.

Among this class of proximal algorithms, we focused on the so-calledforward-backward al-
gorithm which consists in minimizing a non di�erentiable convex and proper function g which
decomposes as

g = g1 + g2; (20)

with g1 di�erentiable with a L-Lipschitz continuous gradient on its domain and g2 a simplez

convex proper function. It can be decomposed in two steps: a forward (explicit) gradient step
using the function g1 and a backward (implicit) step using the function g2. The forward-backward

zWe say that a function is simple if its proximal operator can be easily computed.
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16 Drogoul, Aubert, Cessac and Kornprobst

algorithm can be interpreted as a combination of the gradient method schemex (n +1) = x (n ) �
� n r g1(x (n ) ) and of the proximal point iteration x (n +1) = prox � n g2 (x (n ) ).

Another point of view can be obtained by discretizing and searching stationary points of
the dynamical system dx

dt = � (@g1(x) + r g2(x)) . If we take an implicit scheme in @f2 and an
explicit one in r g1 we obtain

x (n +1) = x (n ) � � n

�
@g1(x (n +1) ) + r g2(x (n ) )

�
;

and from (6) this rewrites as

x (n +1) = prox � n g2 (x (n ) � � n r g1(x (n ) ): (21)

Algorithm (21) is known to converge if g1 2 C1;1 with gradient L -Lipschitz and � n � 1
L . After

this short recalling on proximal algorithms, we present a variant introduced by Nesterov and
revised by Beck and Teboule called Fast Iterate Shrinkage-Thresholding Algorithm (FISTA) [2]:

Algorithm 1 FISTA algorithm [2].

1. Initialization: x0 2 dom(g1), y(1) = x0, t1 = 1 , 0 < h � 1
L

2. x (n ) = proxhg2

�
y(n ) � hr g1(y(n ) )

�

3. tn +1 =
t n +

p
t 2

n +4 t 2
n

2
4. y(n +1) = x (n ) + t n � 1

t n +1
(x (n ) � x (n � 1) )

Algorithm 1 will be used in the two subsequent sections. The interest of Algorithm 1 compared
to the original original formulation (21) is convergence speed. Algorithm (21) is known to
converge in terms of the objective function inO(1=n) [29]. Nesterov showed that this speed can be
improved and reachO(1=n2) by choosing an appropriate steps size(� n )n and a weighted average
on the previous iterate x (n ) and the candidate given by (21). Besides Nesterov demonstrated
that it was not possible to obtain a better convergence speed by using a �rst order algorithm (i.e.,
which only use the �rst order derivatives of the function). More precisely, if x? is the minimum
of g, given an initial data x0 2 dom(g1) algorithms de�ned by Nesterov [29] ensure that

g(x (n ) ) � g(x?) �
Lkx? � x0k2

n2 :

We refer the reader to [41] for a justi�cation of the convergence of this algorithm by using
dynamical system tools.

2.6.2 Solving problem (16b) by approximation of the smoothness constraint

As stated before, the non smooth part should be simple in the sense that its proximal operator
is easily computable. On that point, since kHuk1 is not separable, it is di�cult to compute
its proximal operator while for the term kuk1 it is easy to do. A solution is to introduce a
parametrized regularization kHuk1;" with " > 0 small enough such that

kHuk1;" =
X

i;j;k

q
"2 + j(Hu) i;j;k j2

Problem (19) is then replaced by

min
u2X

�
g(u) :=

� 0

2
ks� du � zk2

2 + � 0kHuk1;" + kuk1 +
1

2 0(k )
ku � u(k ) k2

2

�
: (22)
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Receptive �eld estimation: the nonconvex case 17

To use Algorithm 1, let us split g as in (20), with

8
<

:
g1(u) =

� 0

2
ks � d u � z(k+1) k2

2 + � 0kHuk1;" +
1

2 0(k )
ku � u(k ) k2

2;

g2(u) = kuk1;
(23)

where g1 is di�erentiable on X and its gradient is given by

r g1(u) = � 0s � ?
d (s � d u � z(k+1) ) + � 0H T

 
Hu

p
"2 + jHu j2

!

+
1

 0(k )
(u � u(k ) ); (24)

where � ?
d is the adjoint operator of � d (see Appendix B for de�nition and properties). From

Lemma B.1 and Lemma B.2, we haveks� d:k2 � k sk1. One can easily verify that in 3D, kH k2 �
12. Hence the Lipschitz constant ofr g1 is bounded by

L =
144� 0

"
+ � 0ksk2

1 +
1

 0(k )
: (25)

The proximal function associated to g 2 for some constant > 0 is de�ned by the element-wise
soft threshold operator:

prox g 2 (u) = prox  k:k1 (u) = ( prox  j :j (u1); :::; prox  j :j (uN )) ;

where N denotes the number of elements inu and with prox  j :j de�ned by (see Fig. 4)

prox  j :j (x) =

8
><

>:

x �  if x � ;
x +  if x � � ;
0 otherwise.

(26)

! ! !

prox! |.| (x)

x

Figure 4: Graph of function prox  j :j (x) de�ned by (26) which is a soft thresholding

Remark 2.5. More generally, if we replace the regularizing termkHuk1 by, e.g., � (Mu ) =
P N

i =1 � ((Mu ) i ) with � a C1;1 convex function whose its gradient is Lispschitz, andM a matrix,
we can apply Algorithm 1 by putting this term into the regular part (g1).
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18 Drogoul, Aubert, Cessac and Kornprobst

2.6.3 Exact solving of problem (16b)

One problem of the previous approach is that it needs another parameter" that cannot be �xed
a priori before knowing the range of values of the unknown. To avoid this, we propose another
standard approach in non-smooth optimization which consists in introducing a dual variable
using the Fenchel transform (7).

Let us �rst rewrite problem (19) as

u(k+1) = argmin
u

1
2

hA (k ) u; ui � h u; b(k ) i + kKu k� 0; (27)

with K = I � H mapping X into X �X � with � = 9 for the Hessian operator in 3D (� = 3 for the
gradient in 3D), kvk� 0 = kv1k1 + � 0kv2k1, Au = � 0s� ?

d s� d u + u
 0( k ) and b = � 0s� ?

d z(k+1) + u ( k )

 0( k ) .
To shorten notations, we will skip the dependence on the parameterk in the sequel.

Lemma 2.1 (Bect et al. [3]). If B is a symmetric positive matrix such that kB k2 < 1 then we
have

hBu; u i = inf
w

ku � wk2
2 + hCw; wi ;

with C = B (I � B ) � 1 . Moreover, the maximum is reached atw = ( I + C) � 1u = ( I � B )u.

We set � > 0 such that � kAk2 < 1. Thanks to Lemma 2.1 we get that (27) rewrites as

inf
u;w

1
2�

�
ku � wk2

2 + hCw; wi
�

� h u; bi + kKu k� 0;

where C = ( I � B ) � 1B with B = �A . We de�ne

F (u; w) = H (u; w) + kKu k� 0 with H (u; w) =
1
2�

�
ku � wk2

2 + hCw; wi
�

� h u; bi :

Thanks to the convexity of F (u; w), we have the relation

(u; w) minimizes F (u; w) ,

(
u minimizes F (:; w);
w minimizes F (u; :):

Thanks to Lemma 2.1, wu = ( I � B )u minimizes F (u; :). Now let us minimize F (w; :) at �xed
w 2 X . We de�ne the two following convex sets:

H K = f K T r; r 2 Hg with H = f (p; q) 2 X � X � ; jpi j � 1; jqi j � � 0g:

Lemma 2.2. The problem

inf
u

1
2�

ku � ck2
2 + kKu k� 0; (28)

has the unique solutionu = ( I � � � H K )(c) where � H K is the orthogonal projection on the set
H K = f K T p; p 2 Hg . Moreover let v be such thatK T v = 1

� � � H K (w), then v is solution of

inf
v2H

k�K T v � ck2
2: (29)

Proof. By writing the dual problem of (28) and by using relation (9), we get:

inf
u

1
2�

ku � ck2
2 + � H K (u);

where � H K is the support function given by (8). Interchanging sup and inf by using minimax
theorem [19] (VI Prop. 2.1), we get the result. For more details see [14].
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Receptive �eld estimation: the nonconvex case 19

Thanks to Lemma 2.2, we deduce thatuw = ( I � � � H K )(w + �b ) minimizes F (:; w). Now we
can derive the following algorithm to compute the solution of (19):

Proposition 2.4. Problem (27) can be solved with the following iterative algorithm:

cn = ( I � B )un + �b; (30a)

vn = argmin
v2H

kcn � �K T vk2
2 = � � H K (cn ); (30b)

un +1 = cn � �K T vn : (30c)

Remark that to compute the projection � H �K one needs to �nd the solution of (29) and for
that we use Algorithm 1 with the expression of the projector � H : X � X � ! H given by

(� H ((p; q))) i =
�

pi

max(1; jpi j)
;

� 0qi

max(� 0; jqi j)

�
: (31)

Theorem 2.2. If � is such that
� kAT Ak2 < 1;

then all the sequence(un )n converge to the solution of (19).

Proof. Algorithm (30) can be rewritten as

un +1 = ( I � � � H K ) (( I � B )un + �b ); (32)

which is a contraction on X (see [3] for more details).

2.7 Conclusion: the complete algorithm

In this section we recaptulate the complete algorithm we use to solve problem (13). It is presented
in Algo. 2. The block dedicated to the computation of u(k+1) can be changed using Sect. 2.6.2
(introducing another parameter � > 0 close to 0 to regularize the termkHuk1) but all results
presented here are obtained from Algo. 2.

3 Numerical results

In this section we show results using a simulated spike train, that is obtained thanks to an arti�cial
neuron following here the LNP model (P). Section 3.1 presents two approaches from the state-
of-the-art that we will use for comparison. Section 3.2 describes the experimental protocol and
in particular how simulated spike train is generated. Section 3.3 gives results concerning both
estimation quality and convergence.

3.1 Comparison with the state-of-the-art

In this section we remind two state-of-the-art methods used in Sect. 3.3 to make comparisons
with our variational nonconvex approach (referred by VarNCvx in this section).

xWith g1 (v) = k�K T v � ck2
2 and g2 (v) = i H (v) (of proximal operator given by (31)).
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Algorithm 2 Final algorithm.
Require: Parameters of the functional (14): � , � , � , f verifying Hypotheses 1 and 2(i).
Require: Parameters of the algorithm: Nalt , Nnest , Nproj , ( (k ) )1� k � N alt , (� (k ) )1� k � N alt ,
Require: Initialization: u(0) 2 X

for k = 1 : Nalt do
for i = 1 : N t do

z(k+1)
i de�ned by (17) and computed thanks to Table 1 and 2.

end for
Set u0 = u(k )

for n = 1 : Nnest do
Compute cn (30a)
Compute vn (30b) with Nproj iterations of Algorithm 1 x

Compute un (30c)
end for
Set u(k+1) = uN nest

end for

3.1.1 Variational approach with convex nonlinear function f

As explained in the introduction which has motivated all this work, in state-of-the-art variational
approaches, convex nonlinear functionsf are used [31, 26, 35]. To show what is the interest of
using a non convex functionf , the same Algorithm (16a)�(16b) will be applied but with a convex
function instead. This method will be referred to as VarCvx and based on the following function
f c (see Fig. 5(e)):

f c(x) =

(
0 if x < � 1

2 ;
1
2 + 2x + 2x2 otherwise:

(33)

3.1.2 Spike Triggered average (STA)

The STA approach is a very classical method used in the neuroscience community to obtain a
discrete approximation of the receptive �eld of sensory neurons [15].

In the case of a visual neuron stimulated by a visual stimuluss, STA estimator is de�ned by

STA(x; � ) =
1

n(T)

n (T )X

i =1

s(x; t i � � );

where f t i g1� i � n (T ) is the sequence ofn(T) spikes times generated by the neuron.
A common visual stimulus used in experiments is a sequence of white noise images (see

Fig. 5(a) and also Fig. 1 for illustrations), i.e., images whose the power spectrum is constant.
That particular case is interesting since it can be shown that the STA estimator at time n(T)
�xed converges in law to N (u; � 2

n (T ) ) when n(T) is large and whereu is the receptive �eld to
recover. Even if the process describing the stimulus does not generate exactly a white noise but
only an independent discrete uniform binary random signal, by an heuristic way, thanks to the
central limit and Bussgang's theorems, convergence remains true whenn(T) ! + 1 .

Remark 3.1. An important parameter of the STA is the spatial resolution of the estimation,
which corresponds to the size of the blocks of the white noise stimulus images. In general, it is
experimentally �xed to reach a compromise to have a neuron su�ciently responding: indeed, for
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Receptive �eld estimation: the nonconvex case 21

STA to be precise, one needs a su�cient number of spikes, which can be obtained both by increas-
ing the experiment duration (still limited by physiological constrains) or choosing an "optimal"
block size: If too small, neuronal responses might be too weak since receptive �eld would have to
integrate too small details, thus leading to receptive �eld with low Signal-to-Noise-Ratio; on the
contrary, if too large, smallest receptive �eld will be lost, or not described with enough details,
because of the coarse approximation.

3.2 Simulated spike train: the direct problem

In this section we describe how simulated spike train is generated, following the direct problem
described in Fig. 1 and 5 and assuming that we consider classical ON type retinal ganglion cell
which can be approximated by a LNP model.{

Stimulus We choose as visual stimulus a sequence ofN t binaryk white noise images of size
20 � 20 pixels with block size 4 � 4 pixels, thus allowing direct comparisons with STA in the
sequel. One sample image is shown in Fig. 5(a). Each images is fed as input to the neuron during
a time period of length � t. Following notations of Sect. 2, up to changing the maximum of the
sigmoid c by c� t, we choose� t = 1 .

Receptive �eld of the arti�cial neuron The linear part of the response of classical retinal
ganglion cells is generally modeled by a nonseparable spatio-temporal �ltering (see, e.g., [44]).
A common approximation is to consider that it is separable in space and time. We make this
assumption here. Note that this is only to de�ne our ground truth more simply, but of course
this is not an hypothesis needed for our approach to work.

We assume that the receptive �eld u of the ON retinal ganglion cell is separable in space and
time, so that

u(x; t ) = v(x)w(t):

The spatial part can be described by a di�erence of Gaussian functions (DoG) (Fig. 5(b)�(c)):

v(x) = ! C G� C (x) � ! SG� S (x);

where

G� (x) = e� j x j 2

2 � 2 :

This center-surround behavior which has been found in the 60's [39, 20] corresponds to a measure
of the local contrast. This DoG is driven by four parameters which can be all interpreted
functionally. � C is a measure of the blur applied to the image hitting the retina originating in
particular from the sampling frequency of photoreceptors. In some sense it de�nes the precision
of the retina. Ratio � S=� C de�nes the relative surround. ! C is a linear gain which gives the
orders of magnitude for retina ampli�cation. Ratio ! S=! C de�nes the relative surround weight.
In our simulations, we chose� C = 2 :2, � S = 3 , ! C = 100 and ! S=! C = 0 :9.

The temporal part can be described by a di�erence of Exponential functions (DoE) (Fig. 5(d)):

w(t) = ! A E(t; n A ; � A ) � ! B E(t; n B ; � B ); with � A < � B ;

{ Remark that primate retina has around 20 types of ganglion cells which interrogates any point in visual space
about a number of distinct qualities [43, 22, 25]. This is achieved via parallel complex retinal circuitry which
cannot be all approximated accurately by LNP models.

k We choose as convention that s takes values in f� 1; 1g.
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where

E(t; n; � ) = ( nt )n exp(� nt
� )

(n � 1)!� n +1 :

This band-pass temporal �lter has a strong functional similarity with the DoG model. The
�rst part E (t; n A ; � A ) corresponds to the low-pass properties while the second partE (t; n B ; � B )
represents the delayed inhibition that makes the response transient.�� Ratio ! B =! A de�nes the
strength of the transient. In our simulations we chose! A = ! B = 1 , � A = 5 , � B = 7 , nA = 5 ,
nB = 7

Receptive �eld is then discretized as a spatio-temporal volume of size20� 20� 30 pixels. It
de�nes our ground truth (GT). Some temporal slices are shown in Fig. 6 (�rst row). So, given
u, one can already compute the linear responses � d u.

Nonlinearity of the arti�cial neuron Given s � d u, one has to set the nonlinearity f to
compute the rate of the Poisson process generating spikes (P). To do so, we choose to take
f (x) = cf 0(ax + b) where f 0 is the piecewise cubic function (41), so that the distribution of
s � d u values mainly falls outside saturation regime, so that neuron response present su�cient
variability to recover receptive �eld (see Fig. 5(e) for illustration). This is done empirically.
Parameters area = 0 :167, b = 0 :1, c = 0 :8.

Simulated spike train Since we use as temporal discretization step the inter-frame� t, we
simulate � = ( � i )1� i � N t , the vector associated to the number of spikes occurring during each
bin [(i � 1)� t; i � t [. From Lemma A.1, � follows a Poisson distribution of parameterf (s � d u).
Figure 1 was giving an example of simulated spike train with bars width proportional to the
number of spikes by bin. Here the number of spikes is around 500.
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Figure 5: How simulated spike trains are generated (see Sect. 3.2)? (a) One image of the stimulus
consisting in a sequence of images with white noise. This kind of stimulus is commonly used
for STA estimator, and it is also used here in our approach for comparison. (b) and (c) Spatial
pro�le of the receptive �eld used to generate the simulated spike train. (d) Temporal pro�le of
the receptive �eld. (e) Nonlinearities super-imposed on the histogram ofs � d u for two cases:
there is the non convex one which is used to generate the spike train and for our approach, and
the convex one used for comparion (Sect. 3.1.1).

3.3 Reconstruction

This section presents results obtained with our approach, using Algorithm 2 described in Sect. 2.7.
Parameters of the approach were chosen as� = 1000,  (k ) = � (k ) = 10, Nalt = 300, Nnest = 40,

�� In response to an input step function, DoE temporal �ltering part makes induces a peal of activity, and then
a decrease of activity as the inhibition (of time scale � B ) builds up and compete with the direct signal (of time
scale � A ).
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Nproj = 20 and u0 = 0 .
Figure 6, shows comparisons of receptive �eld estimation with di�erent approaches. Second

row shows STA estimation. Result is noisy and resolution is constrained by the block size of
the stimulus (by de�nition). Remark that the block size of the stimulus should depend on the
receptive �eld to reconstruct (in general, it cannot be of size 1 pixel) because of the operator
� d which sums spatially on the stimuli. Hence if the support of the receptive �eld is composed
of several pixels, the linear responses � d u leads to a gray value constant in time, so that
receptive �eld cannot be recovered (see also Remark 3.1). Third row shows a linear interpolation
of receptive �eld to have a 20� 20 pixels spatial resolution. This is given to compare with results
from variational approaches which have that resolution. Fourth and �fth rows show results
using the variational approach, with the convex nonlinearity f c (VarCvx) and the nonconvex
nonlinearity f (VarNCvx) respectively. Qualitatively, variational approach enables to reconstruct
very accurately the receptive �eld compared to STA. Note that signi�cant qualitative di�erences
between VarCvx and VarNCvx appear. In particular, VarCvx does not enable to reconstruct the
surrond of the receptive �eld while VarNCvx does (see Fig. 8 for a more quantitative comparison).

Figure 7 shows the in�uence of weights� and � de�ning the prior in energy (14). Qualitatively,
as expected, the more the sparsity weight� is large the more the receptive �eld is localized, and
the more the smoothness constraint is large, the more the receptive �eld is smooth. In both
cases, we �nd one optimal value of parameters to reach the lowest covariance error.

Figure 8 compares the temporal pro�les of receptive �eld obtained with VarCvx and VarNCvx.
Results show that VarCvx case is always biased while VarNCvx converges to the ground truth
when the duration of the experiment increases (equivalently when the number of spikes increases).

Figure 9(a)�(b) compare the rate of convergence w.r.t the number of spikes observed. Our
approach converges faster in the sense of both the covariance errorEcov (u; uGT ) and the l2-norm
El 2 (u; uGT ). The three methods converge in the sense of the covariance error but we see that in
the sense of thel2 error the variational approach with the convex approach does not converge.
Another observation is that error decays linearly (in log scale) for both the STA approach and the
nonconvex variational approach with a slope of the convergence equal for both methods which
can be explained by the central limit Theorem.

Figure 9(c) illustrates the speed of convergence of the algorithm: we compare the error
decaying for our approach VarNCvx and for VarCvx, using a convex approximationf c (33) as
usually done in the literature.

Finally, Fig. 10 shows the execution time in seconds of Algorithm 2 implemented in Matlab
and run on a GPU Quadro K4000.

4 Conclusion

Following the classical model of visual sensory neuron that is the linear-nonlinear Poissonian
(LNP) model, we focused on the case when the nonlinearity is a sigmoid which is more realistic
from a physiological point of view. This work presents for the �rst time, up to our knowledge,
an approach to solve the nonconvex variational formulation for receptive �elds estimation. Com-
pared to the state-of-the-art, results on synthetic data are very promising. Our approach allows
to estimate receptive �eld with great accuracy and it converges faster w.r.t. stimulus duration,
which makes it a good candidate for experimentalists who need to estimate receptive �elds in a
limited amount of time yy.

yy Let us emphasize again that estimating receptive �elds is an important step done in almost every recording
session. However, it is generally not the main goal of the experimentalist who want to investigate other properties
of cells. Thus, because of physiological constraints such as the limited life duration of the tissue, keeping the
receptive �eld estimation step short will let more time to experimentalists for the main purpose of their main
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Figure 6: Qualitative comparison of receptive �eld reconstructions with respect to ground truth
(�rst row, GT). Columns 1�4 show a selection of temporal slices and column 5 shows a horizontal
cut passing through the center of receptive �eld(at temporal depth represented in column 4).
Rows 2 and 3 show STA results. Rows 4 and 5 show results obtained using the variational
approach, with the convex nonlinearity f c (VarCvx) and the nonconvex nonlinearity f (VarNCvx)
respectively (for � = 9 and � = 11).
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parameter � (for � = 1 �xed).
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Figure 8: Comparison of the temporal pro�le of the receptive �eld estimates as function of the
duration of the experiment N t . Results show that VarNCvx gives a non-biaised estimated better
than VarCvx.
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Figure 9: Study of the convergence of the VarNCvx approach. (a) Covariance error (Ecov (u; uGT ))
as a function of the number of spikes for the convex and non convex variational approaches and
the STA. (b) l2-norm error (El 2 (u; uGT ) = ku � uGT k2) as a function of the number of spikes in
log-log scale. (c)l2-norm error as a function of the number of iterations for N t = 1000.
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Figure 10: Execution time of Algorithm 2 implemented in Matlab on GPU Quadro K4000
depending on two parameters: (a) In�uence of the temporal dimension of the stimulusN t : we
consider here a 1D receptive �eld, i.e.,Nx = Ny = 1 and D = 30. (b) In�uence of the spatial
resolution Nx � Ny of the receptive �eld (and stimulus), with D = 30 and N t = 1000.
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26 Drogoul, Aubert, Cessac and Kornprobst

Future work will focus on validating our approach on real cell recordings. Our plan is to study
recordings coming from a new generation of large-scale, high density MEA consisting of 4096
electrodes (APS CMOS-MEA, [5, 24]. The main interest of this technology will be to provide
recordings of thousands of cells, allowing to benchmark our approach w.r.t. the state of the art
based on a large population of cells.

This work also opens new avenues to further improve it. Our approach works for any kind
of stimulus, contrarily to classical approaches such as STA which assume that stimulus should
be sequences of white noise images. So this allows to explore and optimize stimulus itself to
improve reconstructions and convergence (see, e.g., [30, 23] for an example of alternative stimulus
used to increase resolution). Here, we focused on LNP model, however, it is well known that
some sub-population of cells cannot be modelled with such model (e.g., ON-OFF cells which
respond to both onset and o�set of a stimulus). So it will be interesting to investigate how
our formulation can be extended using models generalizing LNP, e.g., by adding a non-linear
feedback on spikes [37], adding a suppresive LNP cascade [11, 27]. Finally, when applying our
approach to large populations of cells, one may need to have faster execution time which should
be possible thanks to stochastic algorithm with asychronous parallelization [34].

Acknowledgements We thank Daniela Pamplona (Inria, Biovision team) as well as Evelyne
Sernagor and Gerrit Hilgen (Institute of Neuroscience, Newcastle University, UK) and Matthias
Hennig (Institute for Adaptive and Neural Computation, University of Edinburgh) for their
helpful insights.

Appendices

A Bayesian approach

This section justi�es the formulation (3) derived from ( P) using a Bayesian approach. Before
giving the proof, some de�nitions and properties are reminded.

De�nition A.1. Let � (t) 2 C0(R+ ; R+ ). A process that produces random points in time is a
Poisson random process of rate� (t) if the counting processn(t) (number of events att) satis�es
the following properties8t � 0 :

P(n(t + dt) � n(t) = 1) = � (t)dt + o(dt); (34a)

lim
dt ! 0

P (n(t + dt) � n(t) > 1)
dt

= 0 : (34b)

The arrival time t ( i ) for i � 1 are de�ned by

t ( i ) = inf f t 2 R+ ; n(t) � i g:

Lemma A.1. Let n(t) be a Poisson random process of rate� (t), t0 > 0 and t � t0, the probability
that n events have occurred from timet0 to time t is

P(n(t) � n(t0) = n) =
�( t0; t)n

n!
e� �( t 0 ;t ) ;

where

�( t0; t) =
Z t

t 0

� (s)ds:

study.
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Receptive �eld estimation: the nonconvex case 27

Proof. Let dt small enough, we have by denotinggk (t) = P(n(t) � n(t0) = k):

gn (t) =
nX

k=0

gn � k (t)P(n(t + dt) � n(t) = k)

= gn (t)P(n(t + dt) � n(t) = 0) + gn � 1(t)P(n(t + dt) � n(t) = 1) + Rn (t; dt )

= gn (t)(1 � � (t)dt + o(dt)) + gn � 1(t) ( � (t)dt + o(dt)) + Rn (t; dt );

(35)

with

Rn (t; dt ) =
nX

k=2

gn � k (t)P(n(t + dt) � n(t) = k) = o(dt):

By passing to the limit in (35) when dt ! 0 we get

dgn

dt
+ �g n = �g n � 1: (36)

By using that g0(0) = 1 , the solution of this di�erential equation is

gn (t) =
�( t0; t)n

n!
e� �( t 0 ;t ) ;

with �( t0; t) =
Rt

t 0
� (s)ds.

Proof of formula (3). Let us �rst de�ne a discretized approximation of u(x; t ). To do so, we split

 � [0; T[ in N small voxels and we denoteuN

i the constant approximation of u(x; t ) in the i -th
voxel. Similarly, we split [0; T[ in N t small intervals of length � t = T

N t
and we denote by� N t (t)

the function equal to � N t
i for t in [(i � 1)� t; i � t [, where � N t

i is the number of spikes in that
interval. We have that

� N t (t) �!
N t !1

n (T )X

i =1

1t = t i ;

uN (x; t ) �!
N !1

u(x; t );

in the simple sense. Now we denote by� N t
i the value of � N t (t) when t belongs to the i -th bin

and by uN
i the value of uN (x; t ) on the i -th voxel. We denote by uN , sN � N t and � N t the

vectors of component respectivelyuN
i , sN

i , � N t
i = f ([sN � d uN ]i ) and � N t

i . From Lemma A.1 and
independence of� N t

i , we have

P(� N t juN ) =
N tY

i =1

P(� N t
i juN ) = e� � t

P
k � N t

k

N tY

i =1

(� N t
i � t) � N t

i

� N t
i !

:

Let be N t tending to in�nity, we get that

� (f t i g1� i � n (T ) ju
N ) = e�

RT
0 � N

n (T )Y

i =1

� N (t i );

where � N (t) = f ([s � uN ](t)) . Let be N ! 1 we get the well known formula [31]. Passing to
the � log we get

� log(� (f t i g1� i � n (T ) ju)) =
Z T

0
� (s)ds �

n (T )X

i =1

� (t i ): (37)
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B Study of the operator �

In this appendix we study properties of the operator � in the continuous case. Note that same
estimations can be obtained in discrete case. To simplify notations, up to extend the temporal
functions by 0 outside their support, we assume that the temporal support isR and we denote
by 
 � Rn the spatial domain. Notations which are used here are speci�c to this appendix
(f denotes whatever function and is not linked the nonlinearity used in our model (P)). The
following lemma is an adaptation of the Young inequality proof (see [10], Th. 4.15) to the in�nite
dimensional case (here the state space isL q(
) for someq � 1).

Lemma B.1. Let be s 2 L 1(R; L q(
)) and u 2 L 1(R; L q0
(
)) with q0 such that 1

q + 1
q0 = 1 , then

ks � ukL 1 (R) � k skL 1 (R;L q (
)) kukL 1 (R;L q0(
)) :

Proof. We set F (t; � ) =
R


 s(x; t � � )u(x; � )dx, by Holder inequality we have

jF (t; � )j � k s(t � � )kL q (
) ku(� )kL q0(
) :

By summing over t we get
Z

R
jF (t; � )jdt � k skL 1 (R;L q (
)) ku(� )kL q0(
) ;

and by summing over � we obtain the result.

Corollary B.1. Let s 2 L 1(R; L q(
)) and u 2 L p(R; L q0
(
)) with q0 such that 1

q + 1
q0 = 1 and

1 � p � 1 , then
ks � ukL p (R) � k skL 1 (R;L q (
)) kukL p (R;L q0(
)) :

Proof. Let us assume that1 < p < 1 and let p0 be such that 1
p + 1

p0 = 1 . Keeping the same
notations as in the proof of Lemma B.1, one can rewrite the upper bound ofjF (t; � )j as

jF (t; � )j � k s(t � � )k
1

p 0

L q (
)
| {z }

2 L p 0 w.r.t. �

ks(t � � )k
1
p

L q (
) ku(� )kL q0(
)
| {z }

2 L p w.r.t. �

:

By summing over � and thanks to Holder inequality we have
Z

R
jF (t; � )d� j � k sk

1
p 0

L 1 (R;L q (
))

��
kskL q (
) ? kukp

L q0(
)

�
(t)

� 1
p

;

where ? denotes the usual convolution operator. Taking the powerp we get

j(s � u)( t)jp � k sk
p
p 0

L 1 (R;L q (
))

�
kskL q (
) ? kukp

L q0(
)

�
(t):

By using Lemma B.1 we have


 kskL q (
) ? kukp

L q0(
)





L 1 (R)
� k skL 1 (R;L q (
)) kjujpkL 1 (R;L q0(
)) ;

= kskL 1 (R;L q (
)) kukp
L p (R;L q0(
))

:

Summing over t and taking the p-th root lead to the result.
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Receptive �eld estimation: the nonconvex case 29

Lemma B.2. Let s 2 L p(R; L q(
)) and z 2 L p0
(R) with 1

p + 1
p0 = 1 , then the adjoint operator

of � is given by

(s � ? z)(x; t ) =
Z

R
s(x; � � t)z(� );

and s � ? z 2 L p0
(R; L q(
)) with the estimation

ks � ? zkL p 0(R;L q (
)) � k skL 1 (R;L q (
)) kzkL p 0(R) :

Proof. Computing the scalar product of s � u and z gives the expression of� ?. Then the
estimation of the norm is similar to the proof of Cor. B.1.

Remark B.1. When q = p = 2 and the sequences 2 L 1(R; L 2(
)) is �nite, from Lemma B.2
and Corollary B.1, the Lipschitz constant of s � : and s � ? : in norm L 2(R) and L 2(R; L 2(
))
is bounded bykskL 1 (R;L 2 (
)) . Hence the Lipschitz constant of the operatorg 7! s � ? s � g from
L 2(
) into itself is bounded byksk2

L 1 (R;L 2 (
)) .

C Around the Kurdyla-Lojasiewicz property

To prove convergence, we apply Th. 9 from [1]. The di�cult point is to check that E� veri�es
the Kurdyka-Lojasiewicz (KL) property which is a notion introduced in 1963 by Lojasiewicz for
analytical functions and extended by Kurdyka in 1998 to functions de�nable in an o-minimal
structure. To be self-content, let us �rst recall some de�nitions and notions associated to this
property.

De�nition C.1 (KL property) . We say that a proper function � has the
Kurdyka-Lojasiewicz (KL) property at �x 2 dom(@�) if there exist a neighborhoodV of �x, � 2 ]0; 1 ]
and a continuous concave function : [0; � [! R+ with  (0) = 0 and such that:

(i)  is continuously di�erentiable on (0; � ) with  0 > 0.

(ii) For all x 2 V with � (�x) � � (x) � � (�x) + � , one has

 0(� (x) � � (�x))dist (0; @�(x)) � 1: (KL)

A proper closed function f satisfying the KL property at all points in dom(@�) is called a
KL function.

De�nition C.2 (KL exponent) . For a proper function � satisfying the KL property at �x 2
dom(� ), if the corresponding function  can be chosen as (s) = cs1� � for some c > 0 and
� 2 [0; 1[, i.e., there exists c, " > 0 and � 2]0; 1 ] such that

dist (0; @�(x)) � c(� (x) � � (�x)) � ;

wheneverkx � �xk2 � " and � (�x) � � (x) � � (�x) + � , then we say that� has the KL property at
�x with an exponent� . If � is a KL function and has the same exponent� at �x 2 dom(@�), then
we say that� is a KL function with an exponent of � .

Remark C.1. A proper lower semicontinuous function� : Rn ! R[f + 1g has the KL property
at every non critical point (see Lemma 2 in [1]) for whatever exponent� 2 [0; 1].
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30 Drogoul, Aubert, Cessac and Kornprobst

The exponent of the function involved in the KL inequality gives information on the rate of
convergence toward critical points for descent algorithms used in optimisation [1] and toward
stationary points for subgradient trajectories [7] from a dynamical systems point of view.

In order to determine which functions satisfy the KL property we introduce the notion of
semialgebraic sets. A subset ofRn is called semialgebraicif it can be written as a �nite union of
sets of the form

f x 2 Rn ; pi (x) = 0 ; qi (x) < 0; i = 1 ; :::; pg; g

where pi , qi are real polynomials. A proper function � : Rn ! R [ f + 1g is semialgebraic if its
graph is a semialgebraic subset ofRn +1 . It is known that semialgebraic functions verify the KL
property.

We recall the de�nition of o-minimal structure introduced in [18] which can be seen as an
axiomatization of properties of semialgebraic sets.

De�nition C.3. Let O = fO n gn 2 N be such that eachOn is a collection of subsets ofRn . The
family O is an o-minimal structure over R if it satis�es the following axioms:

(i) Each On is a boolean algebra. Namely; 2 O n and for eachA; B in On , A [ B , A \ B and
Rn nA belong toOn .

(ii) For all A in On , A � R and R � A belong toOn +1 .

(iii) For all A in On +1 , �( A) := f (x1; :::; xn ; ) 2 Rn ; (x1; :::; xn ; xn +1 ) 2 Ag belongs toOn .

(iv) For all i 6= j in f 1; :::; ng, f (x1; :::; xn ) 2 Rn ; x i = x j g 2 On .

(v) The set f (x1; x2) 2 R2; x1 < x 2g belongs toOn .

(vi) The elements ofO1 are exactly �nite unions of intervals.

Given an o-minimal structure O, a set A is said to bede�nable (in O), if A belongs toO. A
function � : Rn �! R [ f + 1g is said to be de�nable if its graph is a de�nable subset ofRn � R.

o-minimal structures have interesting properties:

ˆ Finite sums of de�nable functions are de�nable.

ˆ Indicator functions of de�nable sets are de�nable.

ˆ Compositions of de�nable functions are de�nable.

ˆ Generalized inverses of de�nable functions are de�nable.

ˆ Functions of the type Rn 3 x ! f (x) = sup y2 C g(x; y) or Rn 3 x ! f (x) = inf y2 C g(x; y)
where g and C are de�nable, are de�nable.

The class of semialgebraic sets is an o-minimal structure [4] that we denotesemi-alg.
A subset X � Rn is semianalytic if at each point a 2 X there exists a neighborhoodU such that
X \ U can be written as �nite union and intersection of analytic equalities and inequalities.
A subset X � Rn is subanalytic if each point of Rn admits a neighborhoodU such that X \ U
can be written as the projection of a bounded semianalytic subset ofRn � Rm for somem � 1.
Notice that image and preimage of a subanalytic set are not in general a subanalytic set. Let� n

de�ned by

� n (x1; :::; xn ) =
�

x1

1 + x2
1

; :::;
xn

1 + x2
n

�
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A subset X � Rn is globally subanalytic if its image under � n is a subanalytic subset ofRn .
Globally subanalytic sets are subanalytic and reciprocally any bounded subanalytic sets are
globally subanalytic. The class of globally subanalytic sets is an o-minimal structure that we
denoteglobal-subanal. There exists an o-minimal structure denotedlog-exp[42, 18] which contains
global-subanaland the graph of exp : R ! R. This huge o-minimal structure contains all the
aforementioned structures.

The following theorem enables to characterize KL functions by using the notion of o-minimal
structure.

Theorem C.1 (from [8]). Any proper lower semicontinuous function� : Rn ! R [ f + 1g which
is de�nable in an o-minimal structure O has the KL property at each point ofdom(@�). Moreover
the function  of the (KL) inequality is de�nable in O.

Proof of Theorem 2.1
In order to apply Th. 9 of [1], the only point to check is if E� veri�es the KL property (see
Def. C.1). Thanks to Th. C.1, a su�cient condition is that E� be de�nable in an o-minimal
structure. Hence we need to �nd the smallest structure in which our functional is de�ned. Our
energy is composed of three kinds of terms:

' 1(z) =  � (z);

' 2(z; u) = kz � s � d uk2
2;

' 3(u) = � kuk1 + � kHuk1:

For each term, one can show that it is de�nable:

ˆ With Hypothesis 2, in the case � = 0 the �rst term ' 1(z) is de�nable in the log-exp
structure. For � > 0 by Hypothesis 2 and stability by composition with log and linear
transform, ' 1(z) is still be de�nable in this structure.

ˆ The second term is semialgebraic so it is de�nable in the log-exp structure.

ˆ The third term is the sum of terms of the form j(Hu) i jR� where the normjvjR� =
p P �

i =1 v2
i

is semialgebraic (its graph can be written as
f (v; z);

P �
i =1 v2

i = z2; z � 0g. Hence thanks to stability by sum and composition with
linear operator, we deduce that' 3(u) is de�nable in the log-exp structure.

With the stability by the � operator (axiom (ii) of Def. C.3), we deduce that (z; u) 7! ' 1(z)
and (z; u) 7! ' 3(u) are also in the log-exp structure. In conclusion, the energyE� (z; u) =P

i  � i (z) + �
2 ' 2(z; u) + ' 3(u) is de�nable in the log-exp structure. Theorem C.1 gives that E�

veri�es the KL property with a function  in (KL) which is de�nable in the log-exp structure.
By applying Theorem 9 of [1] we get the result. �

Remark C.2. Let us notice that to show thatE� veri�es KL we have shown thatE� is de�nable
in the log-exp structure. Hence we have no more information on the function in (KL) than
it is de�nable in this later structure. In general, f is piecewise de�ned by analytic expression,
but if we can show that it admits locally an analytic extension thenE� is subanalytic and veri�es
(KL) locally with  a power function [7]. This fact is important because according to the power
of the function  , the rate of convergence is di�erent (see [1], Th. 11).
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32 Drogoul, Aubert, Cessac and Kornprobst

D Solving problem (16a) for a piecewise linear sigmoid

This appendix gives the expression of the solution of (16a) in the case of a piecewise linear
continuous sigmoid-like non linearity (see Figure 3(b)). We will see that in this case (16a)
cannot be reduced to an equality. The normalized piecewise linear sigmoid function that we
study is

f (x) =

8
>>>>><

>>>>>:

0; for x < �
1
2

;

1
2

+ x; for jxj �
1
2

;

1; for x >
1
2

(38)

Remark D.1. The non linearity f (38) does not verify Hypothesis 2(ii): at point x = 1
2 , f cannot

be locally split into the di�erence of a convex function and a quadratic one. Hence the proximal
operator can be multivalued (which will be the case here, see below). However, convergence of
(16) is still guaranteed thanks to Th. 2.1.

D.1 Case � = 0

Let  > 0, we are interested in computing the proximal operator associated tof . Since
f (y) is constant for jyj � 1

2 , we split R into the union of two disjoint sets: I 1 =
�
� 1

2 ; 1
2

�

and I 2 =
�
�1 ; + 1

2

�
[

�
1
2 ; + 1

�
, and we compute:

g1(x) = min
j y j� 1

2

' x; (y) with y1(x) = arg min
j y j� 1

2

' x; (y);

g2(x) = min
j y j� 1

2

' x; (y) with y2(x) = arg min
j y j> 1

2

' x; (y);

where ' x; (y) = f (y) + 1
2 (x � y)2. Standard computations lead to:

y1(x) =

8
><

>:

� 1
2 if x � � 1+2 

2 ;
x �  if � 1+2 

2 � x � 1+2 
2 ;

1
2 if x � 1+2 

2 ;

and

y2(x) =

8
>>><

>>>:

x if x � � 1
2 ;

� 1
2 if � 1

2 � x � ;
1
2 if  � x � 1

2 ;
x if x � 1

2 :

Computing g(x) = min (g1(x); g2(x)) we get the expression of the proximal operator off (see
Figure 11)

prox f (x) =

8
>>><

>>>:

x if x � � 1
2 ;

� 1
2 if � 1

2 � x � ;
x �  if � 1+2 

2 +  � x � 1+ 
2 ;

x if x � 1
2 :

(39)

Let us underline that the proximal function of f is multivalued at x = 1+ 
2 as we can see on

Fig. 11.
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Figure 11: Plots of functions used in the piecewise linear sigmoid case. (a)prox f (x). (b)
'  (x) = f (x) + 1

2 (x � 1+ 
2 )2. (c) f  (x) = inf y f (y) + 1

2 (x � y)2 the Moreau envelop of f
compared to f .

D.2 Case � > 0

We recall the expression of the function � (11) in this case, extended onf f � 0g by the value
+ 1 (Fig. 12):

 � (x) =

(
1
2 + x � �log

�
1
2 + x

�
if jxj < 1

2 ;
1 if x � 1

2 :

� 1
2

1
2

f � 1(� )

1

� 1
2

1
2

1

� < 1 � � 1

Figure 12: Shape of the data �delity term  � in the case of nonlinear sigmoid-like piecewise
linear function f (38).

Remark D.2.  � is convex as soon as� � 1. This fact comes from the non increasing of �

for � � 1.
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Let  > 0, in order to compute the proximal operator of  � , we compute

h1(x) = min
j y j� 1

2

' x; (y); z1(x) = arg min
j y j� 1

2

' x; (y);

h2(x) = min
j y j> 1

2

' x; (y); z2(x) = arg min
j y j> 1

2

' x; (y);

where ' x; (y) = f (y) � � i log(f (y)) + 1
2 (x � y)2. It is easily seen that

z2(x) =

(
1
2 if x � 1

2 ;
x if x � 1

2 :

We set � x; (y) = 1
2 + y � �log ( 1

2 + y) + 1
2 (x � y)2 for y > � 1

2 then

� 0
x; (y) = 0 , y2 +

�
 +

1
2

� x
�

y +

2

�
x
2

� � = 0 ; � > 0:

We search roots of� 0
x; (y) = 0 belonging to [� 1

2 ; 1
2 ].

We compute � =
�
x � ( � 1

2 )
� 2

+ 4 � > 0, there are two distinct roots

y� (x) =
� ( + 1

2 � x) �
p

�
2

: (40)

We check that y+ � � 1
2 and y� � � 1

2 for all x 2 R. Besides

y+ �
1
2

, x � x?
1 :=  (1 � � ) +

1
2

:

By setting x?
1 =  (1 � � ) + 1

2 , we obtain the following tables of variations:

y � 1
2

1
2 y+ + 1

� 0
x; k � 0 +

� x; k
& � x; ( 1

2 )&
� x; (y+ ) %

y � 1
2 y+

1
2 + 1

� 0
x; k+ 1 � 0 +

� x; k+ 1 & � x; (y+ ) %
case(x � x?

1) case(x � x?
1)

We can show thatx 7! y+ (x) is not decreasing and we havey+ (x?
1) = 1

2 and lim x !�1 y+ (x) =
� 1

2 . We get that:

z1(x) =

(
y+ (x) if x � x?

1;
1
2 if x � x?

1;

and by computing h = min (h1; h2) we get the expression ofprox  � (Fig. 13):

ˆ Case� � 1

prox  � (x) =

(
y+ (x) if x � x?

1;
x if x � x?

1:

ˆ Case� > 1

prox  � (x) =

8
><

>:

y+ if x � x?
1;

1
2 if x?

1 � x � 1
2 ;

x if x � 1
2 :

We conclude this study by the observation that for � < 1 the function  � (z) is not semiconvex
(even not lower C2), that leads to the fact that its proximal operator is multivalued at x = x?

1
and is given at this point by the set f 1

2 ; x?
1g.
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�1 x?
1

1
2

� 1
2

1
2

y1(x)
x

�1 x?
1 = 1

2

� 1
2

1
2

y1(x)
x

�1 x?
1

1
2

� 1
2

1
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� � 1 � = 1 � > 1

Figure 13: Plots of prox  � (x) for di�erent values of � > 0.

E Solving problem (16a) for a piecewise cubic sigmoid

The cubic approximation that we choose is:

f (x) =

8
><

>:

0 if x � � 1
2 ;

1
2 + 3

2 x � 2x3 if jxj � 1
2 ;

1 if x � 1
2 :

(41)

Remark E.1. The sigmoid f given by (41) veri�es Hypothesis 1 and 2:

(i) f is semialgebraic (see Appendix C) since its graph can be written as a �nite union of
polynomial inequalities.

(ii) The function y 7! � log(f (y)) is convex on] � 1
2 ; + 1 [.

(iii) The function f (y) + 3 y2 is convex.

We denote by ' x; the function to minimize at �xed x:

' x; (y) = f (y) +
1

2
(x � y)2;

and we setg(x) = min y ' x; (y).
In practice  will be close to 0 since� will be chosen large (see (17)). Hence, we assume that

 � 1
6 so that ' x; be convex for all x.

Following the same reasoning as for the computation of the proximal operator in the case of
a piecewise linear sigmoid, we compute

g1(x) = min
j y j� 1

2

' x; (y); y1(x) = arg min
j y j� 1

2

' x; (y);

g2(x) = min
j y j� 1

2

' x; (y); y2(x) = arg min
j y j� 1

2

' x; (y);

and g(x) = min( g1(x); g2(x)) and the proximal operator is de�ned by

prox f (x) =

(
y1(x) if g(x) = g1(x);
y2(x) otherwise.
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E.1 Computation of y1(x)

For jyj � 1
2 , ' x; (y) = 1

2 + 3
2 y � 2y3 + 1

2 (x � y)2 and its derivative is ' 0
x; (y) = � 6y2 + y

 + 3
2 � x

 .
The problem is now to search roots of' 0

x; (y) = 0 belonging to [� 1
2 ; 1

2 ]. The discriminant of the

equation ' 0
x; (y) = 0 is � = 1

 2 + 36 � 24x
 = � 0

 2 with � 0 = 1 + 36  2 � 24x . There exists real
roots if

� � 0 , x � x?
0 :=

3
2

 +
1

24
:

Case 1: � � 0 (i.e. x � x ?
0 )

The equation has two solutions which are:

y� =
1 �

p
� 0

12
; (42)

and ' x; varies as
y �1 y� y+ + 1

' 0
x; � 0 + 0 �

' x; & % &
(43)

We search values ofx for which y� are in [� 1
2 ; 1

2 ]:

�
1
2

� y� �
1
2

, � 6 + 1 �
p

� 0 � 6 + 1 ;

�
1
2

� y+ �
1
2

, � 6 � 1 �
p

� 0 � 6 � 1:

Since � 1
6 , we easily check thaty+ � 1

2 for all x and that x?
0 � 1

2 . For y� there are three cases:

8
><

>:

� 1
2 � y� (x) � 1

2 if � 1
2 � x � 1

2 ;
y� (x) � 1

2 if x � 1
2 ;

y� (x) � � 1
2 if x � � 1

2 ;

and soy1(x) is given by

y1(x) =

8
><

>:

� 1
2 if x � � 1

2 ;
y� (x) if jxj � 1

2 ;
1
2 if x � 1

2 ;

where y� is given by (42).

Case 2: � < 0 (i.e. x > x ?
0 )

In this case, ' 0
x; � 0 i.e. ' x; is non increasing andy1(x) = 1

2 .

E.2 Computation of y2(x)

By a similar reasoning as for the computation ofg1 and y1, we get

y2(x) =

8
>>><

>>>:

x if x � � 1
2 ;

� 1
2 if � 1

2 � x � ;
1
2 if  � x � 1

2 ;
x if x � 1

2 :
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E.3 Expression of proxf (x)

(i) If x 2 [� 1
2 ; 1

2 ], y1(x) = y� (x) and from (43), we deduce that' x; (y) is minimal at y = y1(x)
and its value is g1(x).
Henceg1(x) � min (' x; (� 1

2 ); ' x; ( 1
2 )) = g2(x) and g(x) = g1(x) and

prox f (x) = y1(x).

(ii) If x � 1
2 and x � � 1

2 it is easily seen that g(x) = g2(x) and prox f (x) = y2(x) = x.

To summarize, prox f (x) is given by (Fig. 14):

prox f (x) =

8
><

>:

x if x � � 1
2 ;

y� (x) if jxj � 1
2 ;

x if x � 1
2 :

!" ! 1
2

1
2

+ "

! 1
2

1
2

x
y2(x)

! 1
2

1
2

0

1

g(x)
f (x)

!" ! 1
2

1
2

+ "

! 1
2

1
2

x
y2(x)

! 1
2

1
2

0

1

g(x)
f (x)

(a) (b)

f ! (x)

Figure 14: Plots of functions used in the piecewise cubic sigmoid case. (a)prox f (x) for  � 1
6 .

(b) g(x) = inf y f (y) + 1
2 (y � x)2 the Moreau envelope off .

Remark E.2. We remind that the case � 1
6 never happens in our applications since is small

since it is a O
�

1
�

�
and � is large. However in this case we can show that the proximal operator

is multivalued. More precisely, there existsx?
1 2 [ 1

2 ; x?
0] such that y� (x?

1) < x ?
1 and the proximal

operator is for  � 1
6 of the form:

prox f (x) =

8
><

>:

x if x � � 1
2 ;

y� (x) if � 1
2 � x � x?

1;
x if x � x?

1;

and soprox f (x?
1) = f y� (x?

1); x?
1g i.e. the proximal operator is multivalued.
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